Arabian Coral Reefs: Insights from Extremes ABSTRACTS for ORAL PRESENTATIONS (Alphabetical by Last Name of First Author)

Total Page:16

File Type:pdf, Size:1020Kb

Arabian Coral Reefs: Insights from Extremes ABSTRACTS for ORAL PRESENTATIONS (Alphabetical by Last Name of First Author) Arabian Coral Reefs: Insights from Extremes ABSTRACTS FOR ORAL PRESENTATIONS (Alphabetical by last name of first author) Assessment of coral disease on northeastern Arabian reefs Aeby, G.; Work, T.; Howells, E.; Abrego, D.; Williams, G.; Burt, J. Disease is a natural component of all populations but disease outbreaks indicate a shift in the host- pathogen-environment triad of disease causation. Disease outbreaks in coral populations are occurring globally, and Arabian reefs are no exception. However, little work has been done to characterize diseases in this region. We examined coral disease at 17 sites across Abu Dhabi, Musandam, and Fujairah. Summertime surveys revealed 13 types of coral diseases including tissue loss of unknown etiology (white syndromes) in Porites, Platygyra, Dipsastrea, Cyphastrea, Acropora and Goniopora; growth anomalies in Porites, Platygyra, and Dipsastrea; black band disease in Platygyra, Dipsastrea, Acropora, Echinopora and Pavona; Porites bleached patches and Porites yellow-banded tissue loss disease. Across all reefs, the most widespread diseases were Platygyra growth anomalies (52.9% of all surveys), Acropora white syndrome (47.1%) and Porites bleached patches (35.3%). However, disease assemblages differed significantly among sub-regions with Abu Dhabi exhibiting the highest number of diseases and the greatest disease prevalence. Of particular concern, was a high number of localized outbreaks of tissue loss diseases (8 of 17 sites) primarily found in Abu Dhabi. Histopathological analyses revealed necrosis and varied potential disease agents including bacteria (Beggiatoa), fungi, metazoans, and algae associated with tissue loss diseases. Growth anomalies were characterized by proliferation of basal body wall (Acropora) or increased number and size of mesenterial filaments (Platygyra). Compared to coral reefs in the Indo-Pacific, Arabian reefs had unique diseases, e.g. Porites yellow-banded tissue loss, and a high number of localized outbreaks highlighting the need for further disease research. Phylogenetic analysis reveals taxonomic uncertainty of some species of Merulinidae in the Persian Gulf Alidoost-Salimi, P.; Ghavam Mostafavi, P.; Chen, AC.; Pichon, M.; Alidoost Salimi, M. The coral fauna of the Persian Gulf is subsets of the general Indo-Pacific fauna, with about 10% of the total Indo-Pacific species are also found in the Persian Gulf. Merulinidae has high representatives’ species throughout the Indo-Pacific as well as in the Persian Gulf and the Red Sea. Three species Cyphastrea microphthalma, Favites pentagona and Platygyra daedalea occur in the most coral carpets of Iranian islands, but their molecular phylogeny has not been considered. The aim of this study is the investigation of phylogenetic relationship of these species collected from two Iranian islands (Abu-Musa and Sirri) with the conspecific sequences from different regions through analysis of portion of ribosomal DNA. The result showed the mentioned species are para-polyphyletic. Also, there is no divergence between Persian Gulf, the Gulf of Aden and Indo-Pacific specimens. The phylogeny three showed F. pentagona is relatively distinct from other Favites species. The C. microphthalma is split weakly into two groups, including the representative from Persian Gulf and Gulf of Aden. Concerning P. daedalea, our result reveals the existence of one low supported molecular lineage and Platygyra species were indistinguishable from each other in their clad. The relationships of these species and it's closely related conspecific remained unresolved, and more study with wide geographic sampling is needed. This genetic data is the first attempt regarding the comparison of connectivity between the Persian Gulf and Indo-Pacific. Coral Bioerosion on the marginal reefs of northeastern Arabia Al-Mansoori N.; McParland D. ; Burt J. Northeastern Arabia represents a marginal, high-latitude province that is characterized by coral communities with limited framework development. Although there is growing awareness of regional patterns of coral accretion, the role of bioerosion in offsetting accretion is largely unknown. For the first part of the study we estimated levels of bioerosion in two regionally common and widely distributed reef building corals, Platygyra daedalea and Cyphastrea microphthalma. Bioerosion percentages were calculated using images of cross-sectioned slices cut from center of corals collected from four reefs across >500 km of coastline in the thermally extreme and hypersaline southern Arabian Gulf (Delma, Saadiyat, Ras Ghanada; SST annual range: 18.4-35.7°C, salinity: 40-46 psu) and in the more benign Sea of Oman (Dibba; SST range: 21.5-34.0 °C, salinity: 36-39 psu). Internal bioerosion varied across species and sites. Bioerosion was consistently higher in Cyphastrea than Platygyra at all sites, with Cyphastrea having three times higher erosion overall (mean: 26.7% vs. 8.8% skeletal area eroded, respectively). The second part of the study aims to find the rates of bioerosion in five sites along the southern Arabian Gulf by deploying standardized experimental coral blocks onto the reefs and retrieve them after 12 months to measure the rates of bioerosion by calculating the loss of calcium carbonate. The results of the rates can then be contrasted to rates of bioerosion measured in other reefs in other regions around the world, this will help us understand where the future lies of reefs in the Arabian Gulf. Bleaching causes carbonate budget collapse and threatens reef structural integrity on Bahraini reefs AlMealla, R.; Edullantes, B.; Smith, DJ. and Hepburn, LJ. Coral reefs have been in the forefront of climate change threats, with rising sea surface temperatures (SST) contributing to intense and increasing episodes of global bleaching events. These episodes have impacted carbonate budget dynamics, contributing to reef framework degradation and influencing reefs ability to keep pace with sea level rise (SLR). Reefs in the Persian-Arabian Gulf (PAG) exist in harsh environmental conditions with temperatures ranging between 16-36◦C. Despite the high thermal thresholds (~35◦C) of corals in this region, extensive bleaching and high coral mortality has been reported regionally in 2017. In this study we quantify carbonate budgets on Bahraini reefs and the impact of the 2017 severe bleaching on their budgetary state. Results indicate an overall drop from 14.2±5.5% to 8.4±1.4% in hard coral cover. This is contributing to an alarming budgetary shift from a net positive to a negative state. We attribute this to the severe bleaching, which took place between June – September 2017, resulting in high coral mortality rates and subsequent reduced framework accretion. Predicted warming trends present a threat to the structural integrity of Bahraini reefs and their ability to keep pace with future SLR. A revision of the Genus Montipora (F. Acroporidae) in the Red Sea Baird, A, Cumbo, V.; Beruman, M. Regions on the periphery of the Indo-Pacific Ocean, in particular the Red Sea, are thought to be a potentially important point of coral species origination and export of novel lineages into surrounding regions. However, molecular approaches have revealed that the traditional taxonomy of the Scleractinia is fundamentally flawed and in urgent need of revision using modern integrated approaches. For example, the ecologically important and species–rich genus Montipora was last revised in the 1980’s. Here, I revisit species boundaries in the genus Montipora using molecular and morphological techniques. The results suggest reasonable concordance between molecular and morphological groups and identifies morphological traits useful for species delimitation. This integrated approach offers great promise for a much needed revision of the entire genus. Changes in reef fish assemblages following multiple bleaching events: A case study in the northern Persian Gulf (Kish Island) Bargahi, H.R., Mohammad Reza Shokri, Farhad Kaymaram, Mohammad Reza Fatemi Despite numerous incidents of coral bleaching in the Persian Gulf, no study has investigated the changes in reef fish communities after bleaching events in this region. Accordingly, the present study examined the changes in density, species richness, assemblage structure, species composition and trophic groups of reef fish during the years 2003 to 2019 in Kish Island in the northern Persian Gulf. During this time period, two mass coral bleaching events occurred in Kish Island. Using fish belt transect method, reef fish were counted in six stations with the highest coral density within four periods including two periods before the occurrence of bleaching (2008-2003 and 2017-2014) and two periods after bleaching (2009-Winter and 2018-Winter). No significant difference was found in total fish abundance from summer 2003 and winter 2004 (pre-bleaching) towards summer 2007 and winter 2008 (post-bleaching). Likewise, no significant difference was found in total fish abundance from winter 2015 (pre-bleaching) towards summer 2017, winter 2018 and winter 2019 (post-bleaching). Variation in Margalef index, diversity (Shannon index) and evenness (Pielou index) demonstrated clear fluctuation across pre-bleaching and post-bleaching periods with an overall decrease after bleaching events. No significant difference was detected in the assemblage structure of reef fish between pre-bleaching and post-bleaching periods. The result showed no significant difference in assemblage structure of trophic groups between pre-bleaching and
Recommended publications
  • Genetic Variation in Heat Tolerance of the Coral Platygyra Daedalea Offers the Potential for 2 Adaptation to Ocean Warming
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.13.337089; this version posted October 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Genetic variation in heat tolerance of the coral Platygyra daedalea offers the potential for 2 adaptation to ocean warming. 3 4 Running head: Genetics of corals’ heat tolerance 5 6 Holland Elder1* 7 Virginia Weis1 8 Jose Montalvo-Proano2,3 9 Veronique J.L Mocellin2 10 Andrew H. Baird3 11 Eli Meyer1, 4 12 Line K. Bay2, 4 13 14 1. Oregon State University, Corvallis, OR, USA. 97331 15 2. Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 16 4810, Queensland, Australia 17 AIMS@JCU 18 3. ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook 19 Dr, Douglas QLD 4814, Australia 20 4. These authors contributed equally 21 22 *corresponding author 23 760-622-9116 24 [email protected] 25 26 Keywords: coral reefs; resilience, heritability, genomic markers, allele frequency change 27 28 Paper type: Primary research article. 29 Global Change Biology 30 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.13.337089; this version posted October 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 31 Abstract 32 Reef-building corals are foundational species in coral reef ecosystems and are threatened 33 by many stressors including rising ocean temperatures.
    [Show full text]
  • Taxonomic Checklist of CITES Listed Coral Species Part II
    CoP16 Doc. 43.1 (Rev. 1) Annex 5.2 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of CITES listed Coral Species Part II CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families Family Name Accepted Name Species Author Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Madrepora crassa Milne Edwards & Haime, 1860; ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) Madrepora abrotanoides Lamarck, 1816; Acropora mangarevensis Vaughan, 1906 ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Dana, 1846 Madrepora acuminata Verrill, 1864; Madrepora diffusa ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Verrill, 1864; Acropora diffusa (Verrill, 1864); Madrepora nigra Brook, 1892 ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora coronata Brook, 1892; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) anthocercis Brook, 1893 ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Madrepora aspera Dana, 1846; Acropora cribripora (Dana, 1846); Madrepora cribripora Dana, 1846; Acropora manni (Quelch, 1886); Madrepora manni ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Quelch, 1886; Acropora hebes (Dana, 1846); Madrepora hebes Dana, 1846; Acropora yaeyamaensis Eguchi & Shirai, 1977 ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera Dana, 1846 ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace, 1997 Veron (2000) ACROPORIDAE Acropora bifurcata Nemenzo, 1971 Veron (2000) ACROPORIDAE Acropora branchi Riegl, 1995 Veron (2000) Madrepora brueggemanni Brook, 1891; Isopora ACROPORIDAE Acropora brueggemanni (Brook, 1891) Veron (2000) brueggemanni (Brook, 1891) ACROPORIDAE Acropora bushyensis Veron & Wallace, 1984 Veron (2000) Acropora fasciculare Latypov, 1992 ACROPORIDAE Acropora cardenae Wells, 1985 Veron (2000) CoP16 Doc.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
    www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Ecological Volume of Transplanted Coral Speciesof Family Acroporidae in the Northern Red Sea, Egypt
    IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399.Volume 14, Issue 5Ser. II (May 2020), PP 43-49 www.iosrjournals.org Ecological volume of transplanted coral speciesof family Acroporidae in the northern Red Sea, Egypt. Mohammed A. Abdo*1, Muhammad M. Hegazi2, and Emad A. Ghazala1 1(EEAA,Ras Muhammad National Park, South Sinai, Egypt) 2(Marine Science Department, Faculty of Science, Suez Canal University, Egypt) Abstract: Family Acroporidae (seven coral species) were studied in the northern Red Sea (Ras Muhammad National Park, South Sinai) to know their suitability for transplantation and to determine the fragments growth rate and to know the space that colonies occupied in the structure. Coral fragments were collected and transplanted onto a Fixed modular tray nursery made from PVC connected to rectangular frame-tables. Survival and growth rates were assessed; more than 58% of the fragments survived after 14 months. The overall growth rate was 0.940 ± 0.049 mm/month. The Acroporidae showed a significant positive relationship between growth rate and colony size. Some species showed more than duplicate in ecological volume after 14 months of transplantation. Keywords:Coral species, Transplantation, Ecological volume, Ras Mohammed, Red Sea, Egypt. ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 11-05-2020 Date of Acceptance: 23-05-2020 ----------------------------------------------------------------------------------------------------------------------------- ---------- I. Introduction Coral reefs are biogenic, three-dimensional marine habitats composed of carbonate structures that are deposited by hermatypic Scleractinian corals and are generally found in areas where water temperature does not fall below 18°C for extended periods of time (Ladd 1977, Achituv and Dubinsky 1990).
    [Show full text]
  • Coral Bacterial Community Structure Responds to Environmental Change in a Host-Specific Manner
    ARTICLE https://doi.org/10.1038/s41467-019-10969-5 OPEN Coral bacterial community structure responds to environmental change in a host-specific manner Maren Ziegler 1,2,8, Carsten G. B. Grupstra1,3,8, Marcelle M. Barreto1, Martin Eaton4, Jaafar BaOmar5,6, Khalid Zubier5, Abdulmohsin Al-Sofyani5, Adnan J. Turki5, Rupert Ormond 4,5 & Christian R. Voolstra 1,7 The global decline of coral reefs heightens the need to understand how corals respond to changing environmental conditions. Corals are metaorganisms, so-called holobionts, and 1234567890():,; restructuring of the associated bacterial community has been suggested as a means of holobiont adaptation. However, the potential for restructuring of bacterial communities across coral species in different environments has not been systematically investigated. Here we show that bacterial community structure responds in a coral host-specific manner upon cross-transplantation between reef sites with differing levels of anthropogenic impact. The coral Acropora hemprichii harbors a highly flexible microbiome that differs between each level of anthropogenic impact to which the corals had been transplanted. In contrast, the micro- biome of the coral Pocillopora verrucosa remains remarkably stable. Interestingly, upon cross- transplantation to unaffected sites, we find that microbiomes become indistinguishable from back-transplanted controls, suggesting the ability of microbiomes to recover. It remains unclear whether differences to associate with bacteria flexibly reflects different holobiont adaptation mechanisms to respond to environmental change. Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-ulp96534pyqs1 1 Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
    [Show full text]
  • Complete Mitochondrial Genome of Echinophyllia Aspera (Scleractinia
    A peer-reviewed open-access journal ZooKeys 793: 1–14 (2018) Complete mitochondrial genome of Echinophyllia aspera... 1 doi: 10.3897/zookeys.793.28977 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Complete mitochondrial genome of Echinophyllia aspera (Scleractinia, Lobophylliidae): Mitogenome characterization and phylogenetic positioning Wentao Niu1, Shuangen Yu1, Peng Tian1, Jiaguang Xiao1 1 Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China Corresponding author: Wentao Niu ([email protected]) Academic editor: B.W. Hoeksema | Received 9 August 2018 | Accepted 20 September 2018 | Published 29 October 2018 http://zoobank.org/8CAEC589-89C7-4D1D-BD69-1DB2416E2371 Citation: Niu W, Yu S, Tian P, Xiao J (2018) Complete mitochondrial genome of Echinophyllia aspera (Scleractinia, Lobophylliidae): Mitogenome characterization and phylogenetic positioning. ZooKeys 793: 1–14. https://doi. org/10.3897/zookeys.793.28977 Abstract Lack of mitochondrial genome data of Scleractinia is hampering progress across genetic, systematic, phy- logenetic, and evolutionary studies concerning this taxon. Therefore, in this study, the complete mitog- enome sequence of the stony coral Echinophyllia aspera (Ellis & Solander, 1786), has been decoded for the first time by next generation sequencing and genome assembly. The assembled mitogenome is 17,697 bp in length, containing 13 protein coding genes (PCGs), two transfer RNAs and two ribosomal RNAs. It has the same gene content and gene arrangement as in other Scleractinia. All genes are encoded on the same strand. Most of the PCGs use ATG as the start codon except for ND2, which uses ATT as the start codon. The A+T content of the mitochondrial genome is 65.92% (25.35% A, 40.57% T, 20.65% G, and 13.43% for C).
    [Show full text]
  • Contrasting Patterns of Changes in Abundance Following a Bleaching Event Between Juvenile and Adult Scleractinian Corals
    Coral Reefs (2018) 37:527–532 https://doi.org/10.1007/s00338-018-1677-y NOTE Contrasting patterns of changes in abundance following a bleaching event between juvenile and adult scleractinian corals 1,2 2 2,3 Mariana A´ lvarez-Noriega • Andrew H. Baird • Tom C. L. Bridge • 4 5 6 5 Maria Dornelas • Luisa Fontoura • Oscar Pizarro • Kristin Precoda • 5 5 4,5 5 Damaris Torres-Pulliza • Rachael M. Woods • Kyle Zawada • Joshua S. Madin Received: 21 September 2017 / Accepted: 14 March 2018 / Published online: 19 March 2018 Ó Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Coral bleaching events have caused extensive Acropora and Goniastrea were less susceptible to bleach- mortality on reefs around the world. Juvenile corals are ing than adults, but the opposite was true for Pocillopora generally less affected by bleaching than their conspecific spp. and taxa in the family Merulinidae. Our results indi- adults and therefore have the potential to buffer population cate that the potential of the juvenile life stage to act as a declines and seed recovery. Here, we use juvenile and adult buffer during bleaching events is taxon-dependent. abundance data at 20 sites encircling Lizard Island, Great Barrier Reef, before and after the 2016 bleaching event to Keywords Coral reefs Á Climate change Á Ecology Á quantify: (1) correlates of changes in juvenile abundance Thermal stress Á Juvenile corals following a bleaching event; (2) differences in suscepti- bility to extreme thermal stress between juveniles and adults. Declines in juvenile abundance were lower at sites Introduction closer to the 20-m-depth contour and higher for Acropora and Pocillopora juveniles than for other taxa.
    [Show full text]
  • Characterization of the Complete Mitochondrial Genome Sequences of Three Merulinidae Corals and Novel Insights Into the Phylogenetics
    Characterization of the complete mitochondrial genome sequences of three Merulinidae corals and novel insights into the phylogenetics Wentao Niu*, Jiaguang Xiao*, Peng Tian, Shuangen Yu, Feng Guo, Jianjia Wang and Dingyong Huang Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China * These authors contributed equally to this work. ABSTRACT Over the past few decades, modern coral taxonomy, combining morphology and molecular sequence data, has resolved many long-standing questions about sclerac- tinian corals. In this study, we sequenced the complete mitochondrial genomes of three Merulinidae corals (Dipsastraea rotumana, Favites pentagona, and Hydnophora exesa) for the first time using next-generation sequencing. The obtained mitogenome sequences ranged from 16,466 bp (D. rotumana) to 18,006 bp (F. pentagona) in length, and included 13 unique protein-coding genes (PCGs), two transfer RNA genes, and two ribosomal RNA genes . Gene arrangement, nucleotide composition, and nucleotide bias of the three Merulinidae corals were canonically identical to each other and consistent with other scleractinian corals. We performed a Bayesian phylogenetic reconstruction based on 13 protein-coding sequences of 86 Scleractinia species. The results showed that the family Merulinidae was conventionally nested within the robust branch, with H. exesa clustered closely with F. pentagona and D. rotumana clustered closely with Favites abdita. This study provides novel insight into the phylogenetics
    [Show full text]
  • Survival and Growth of Re-Attached Storm-Generated Coral Fragments Post Super-Typhoon Haiyan (A.K.A
    SCIENCE DILIMAN (JULY-DECEMBER 2018) 30:2, 5-31 J.A. Anticamara and B.C.A. Tan Survival and Growth of Re-attached Storm-generated Coral Fragments Post Super-typhoon Haiyan (a.k.a. Yolanda) Jonathan A. Anticamara* Institute of Biology Natural Science Research Institute University of the Philippines Diliman Barron Cedric A. Tan Institute of Biology University of the Philippines Diliman ABSTRACT Coral reefs in Eastern Samar, Philippines were badly damaged by super typhoon Haiyan, which left many reefs in a fragmented state – with many branching corals and other coral forms scattered in loose pieces. As part of the efforts to address this problem, we tested the re-attachment of 43 species of coral fragments to sturdy natural substrates in three reef sites in Eastern Samar (Can-usod and Monbon in Lawaan, and Panaloytoyon in Quinapondan). The results revealed that 88% of re-attached coral fragments survived (45% showed positive growth, and 43% survived with partial tissue mortality). Those that showed positive growth exhibited high growth rates. We also found that fragments of some coral species are more fast-growing (e.g., Cyphastrea decadia, Echinopora pacificus, and Millepora tenella) than others (e.g., Porites lobata or Pectinia paeonia). Overall, our results suggest that if Local Government Units (LGUs) invest in the re-attachment of fragmented corals (e.g., reefs damaged by super typhoons or by various human activities such as fishing), then coral reef degradation in the Philippines would have a better chance of recovering. Keywords: Coastal management, conservation, Leyte Gulf, reef restoration, super typhoon _______________ *Corresponding Author ISSN 0115-7809 Print / ISSN 2012-0818 Online 5 Survival and Growth of a Re-attached Storm-generated Coral Fragments INTRODUCTION Philippine coral reefs have been experiencing degradation since the 1980s – caused mainly by exploitative activities, such as fishing, including destructive fishing (e.g., dynamite and cyanide fishing) (Gomez et al.
    [Show full text]
  • Brain Corals
    OPEN ACCESS Freely available online e t Poultry, Fisheries & Wildlife Sciences ISSN: 2375-446X Editorial Brain Corals * Arsalan Egbal Department of Zoology, University of Inuka, Jacmel, Haiti ABOUT THE STUDY WHITE BAND DISEASE Brain coral may be a common name given to varied corals White band disease was discovered when biologists observed the within the families Mussidae and Merulinidae, so called thanks to peeling of tissue from colonies of elkhorn and staghorn (Acropora their generally spheroid shape and grooved surface which spp.) corals in waters of the U.S. Virgin Islands. This tissue loss resembles a brain. Usually they are found in shallow warm water resulted during a distinct line of bare white skeleton, after which coral reefs altogether the world's oceans. They’re a part of the this disease is named. Although scientists are unsure about the Cnidaria, in a class called Anthozoa or "flower animals. Life span explanation for this disease, it's suspected that algal overgrowth of of these interesting looking organisms is 900 years and may grow the coral maybe the first cause. White band disease progresses as tall as six feet. Each stony coral is made by genetically identical from the bottom of the colony up towards the ideas of the polyps which secrete a tough exoskeleton of carbonate. This branches. Bare, white coral skeleton is left behind, colonized by makes stony coral one among the foremost important reef filamentous algae. White band disease has had a devastating builders. In feeding, these brainy corals extend their tentacles in impact on the corals within the Caribbean, with the infection of the dark, which rope in small drifting organisms.
    [Show full text]