Effect of COVID-19 on Lungs: Focusing on Prospective

Total Page:16

File Type:pdf, Size:1020Kb

Effect of COVID-19 on Lungs: Focusing on Prospective cancers Review Effect of COVID-19 on Lungs: Focusing on Prospective Malignant Phenotypes 1, 1, 1,2,3, Pritam Sadhukhan y , M. Talha Ugurlu y and Mohammad O. Hoque * 1 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; [email protected] (P.S.); [email protected] (M.T.U.) 2 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA 3 Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA * Correspondence: [email protected]; Tel.: +1-410-502-8778; Fax: +1-410-614-1411 Authors have contributed equally. y Received: 11 November 2020; Accepted: 15 December 2020; Published: 18 December 2020 Simple Summary: According to the coronavirus virus resource center of Johns Hopkins Medicine, more than 75 million people are presently affected worldwide, including 1.7 million deaths due to severe acute respiratory syndrome since December 2019. Apart from the common symptoms similar to the common flu, a characteristic computed tomography (CT) feature i.e., Ground Glass Opacity (GGO) is highlighted in this article. GGOs have been observed in COVID-19 patients with severe symptoms including pneumonia in both lungs. It is important to reflect that GGO may indicate the onset of lung fibrosis and may be an indicative feature of high-risk subjects for developing lung cancer. In this article, the causes of the appearance of GGOs and their effects are mainly discussed, along with the brief immunopathogenesis of COVID-19 in comparison with other oncogenic viruses. In this pandemic situation, it is also important to consider the long-term effects of coronavirus infection and the ways to follow-up the patients who recovered from this disease. Abstract: Currently, the healthcare management systems are shattered throughout the world, even in the developed nations due to the COVID-19 viral outbreak. A substantial number of patients infected with SARS-CoV2 develop acute respiratory distress syndrome (ARDS) and need advanced healthcare facilities, including invasive mechanical ventilation. Intracellular infiltration of the SARS-CoV2 virus particles into the epithelial cells in lungs are facilitated by the spike glycoprotein (S Protein) on the outer side of the virus envelope, a membrane protein ACE2 (angiotensin-converting enzyme 2) and two proteases (TMPRSS2 and Furin) in the host cell. This virus has unprecedented effects on the immune system and induces a sudden upregulation of the levels of different pro-inflammatory cytokines. This can be a cause for the onset of pulmonary fibrosis in the lungs. Existence of a high concentration of inflammatory cytokines and viral load can also lead to numerous pathophysiological conditions. Although it is well established that cancer patients are among the high-risk population due to COVID-19-associated mortality, it is still unknown whether survivors of COVID-19-infected subjects are at high-risk population for developing cancer and whether any biologic and clinical features exist in post-COVID-19 individuals that might be related to carcinogenesis. Keywords: COVID-19; lungs; acute respiratory distress syndrome; ground glass opacity; inflammation 1. Introduction The outbreak of COVID-19 infection was first reported in a Chinese city (Wuhan, Hubei province) and since then, this viral infection has been spreading throughout the world [1] The symptoms of COVID-19 infection were related to the previously known SARS (Severe Acute Respiratory Syndrome), Cancers 2020, 12, 3822; doi:10.3390/cancers12123822 www.mdpi.com/journal/cancers Cancers 2020, 12, x FOR PEER REVIEW 1 of 17 Cancers 2020, 12, 3822 2 of 17 COVID-19 infection were related to the previously known SARS (Severe Acute Respiratory Syndrome), MERSMERS (Middle (Middle East East Respiratory Respiratory Syndrome), Syndrome), and and influenza influenza infections, infections, which which present present with with fever, fever, sore throat,sore throat, nasal congestion, nasal congestion, body ache, body and ache, dry cough. and dry Some cough. of the SomeCOVID-19 of the patients COVID-19 also develop patients severe also clinicaldevelop disorders severe clinical such as disorders breathlessness, such as chest breathlessness, pain, and diarrhea. chest pain, As of and November diarrhea. 2020, As of United November States has2020, reported United the States greatest has number reported of the infected greatest patients number followed of infected by India, patients Brazil, followed Russia, byand India, many Brazil, others withRussia, over and 75 million many others infected with individuals over 75 million and more infected than individuals 1.7 million deaths. and more According than 1.7 to million the reports deaths. of WorldAccording Health to theOrganization reports of World(WHO), Health Centers Organization for Disease (WHO), Control Centers and Prevention for Disease (CDC), Control Johns and Hopkins,Prevention Mayo (CDC), Clinic, Johns and Hopkins, other medical Mayo institutions Clinic, and and other organizations, medical institutions older adults, and organizations,males, and the patientsolder adults, with comorbid males, and conditions the patients such with as comorbidcardiovascular conditions disorders, such asdiab cardiovascularetes, chronic respiratory disorders, disease,diabetes, and chronic cancer respiratory are more likely disease, to andhave cancer life-threatening are more likely conditions to have including life-threatening pneumonia conditions in both lungs,including multi-organ pneumonia failure, in both and lungs, various multi-organ neurological failure, disorders and various than others. neurological disorders than others. SARS-CoV2SARS-CoV2 is is a a member member of of the coronaviridae family virusvirus andand hashas beenbeen reportedreported to to be be associated associated withwith numerous numerous coronavirus-associated coronavirus-associated diseases diseases [2]. [2 ].It Itis isa single a single stranded stranded RNA RNA virus virus with with a 5′ a cap 50 cap and 3and′ poly 30 Apoly tail A(30–32 tail (30–32 kb). According kb). According to the toNational the National Cancer Cancer Institute Institute (NCI),(NCI), this virus this can virus affect can almost affect allalmost organs all and, organs most and, importantly, most importantly, it causes it acute causes respiratory acute respiratory disorder, disorder, as depicted as depicted in Figure in 1. Figure It is well1. establishedIt is well established that numerous that numerous viral infections viral infections are causative are causative to carcinogenesis to carcinogenesis [3] and [3previous] and previous reports suggestreports suggestthat viral that infection-associated viral infection-associated inflammation inflammation can can initiate initiate cellular cellular transformation transformation throughthrough activating/modulatingactivating/modulating several several oncogenic oncogenic signal transductiontransduction pathwayspathways [[4].4]. Therefore,Therefore, thethe association association betweenbetween COVID-19 COVID-19 survivals andand cancercancer incidenceincidence in in di differentfferent organs organs may may be be a major a major point point of concern of concern to tothe the cancer cancer research research community. community. Although Although no clinical no cl andinical experimental and experimental data yet available,data yet weavailable, speculate we speculatethat SARS-CoV2 that SARS-CoV2 infection mayinfection activate may some activate oncogenic some oncogenic pathways thatpathways may remain that may active remain even active after eventhe infection after the subsided.infection subsided. FigureFigure 1. 1. EffectEffect of of SARS-CoV-2 SARS-CoV-2 infection infection on on the the alveolar alveolar cells cells depending depending the the severity severity of of the the infection. infection. AA group group of of scientists scientists performed performed complete complete genome genome sequencing sequencing of a novel of a novelcoronavirus coronavirus strain (SARS- strain CoV2)(SARS-CoV2) in the first in the week first of week January of January 2020. Since 2020. then Since, 1000 then, more 1000 moresequences sequences (complete (complete and partial) and partial) have beenhave submitted been submitted to the to NCBI the NCBI database database by bydifferent different scientists scientists from from several several countries [[5,6].5,6]. TheThe viralviral genomegenome typically consistsconsists of of 6 open6 open reading reading frames fram (ORFs).es (ORFs). Although Although very few very functional few functional data available data Cancers 2020, 12, 3822 3 of 17 of these ORFs, ORF1a and ORF1b are comparatively more virulent [7]. These two ORFs transcribe and ultimately produce two polypeptides, pp1a and pp1b, respectively. Subsequently, these polypeptides are further processed by viral proteases to form 16 non-structural proteins (NSPs) [7,8]. The remaining ORFs are found to regulate the synthesis of different structural proteins of the viral capsid, including the spike, envelop, accessory protein chains etc. [9]. The structural proteins of the virus are very critical for the pathogenesis of the virus, and the NSPs are also known to blocking the host immune response [8]. In this review article, we have focused on the oncogenic viruses, the effect of COVID-19 on the immune system, ground glass opacity (GGO) and the potential neoplastic changes in the lungs due to SARS-CoV2 infection. Since the lungs are one of the most affected organs,
Recommended publications
  • Identification of an Overprinting Gene in Merkel Cell Polyomavirus Provides Evolutionary Insight Into the Birth of Viral Genes
    Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes Joseph J. Cartera,b,1,2, Matthew D. Daughertyc,1, Xiaojie Qia, Anjali Bheda-Malgea,3, Gregory C. Wipfa, Kristin Robinsona, Ann Romana, Harmit S. Malikc,d, and Denise A. Gallowaya,b,2 Divisions of aHuman Biology, bPublic Health Sciences, and cBasic Sciences and dHoward Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 Edited by Peter M. Howley, Harvard Medical School, Boston, MA, and approved June 17, 2013 (received for review February 24, 2013) Many viruses use overprinting (alternate reading frame utiliza- mammals and birds (7, 8). Polyomaviruses leverage alternative tion) as a means to increase protein diversity in genomes severely splicing of the early region (ER) of the genome to generate pro- constrained by size. However, the evolutionary steps that facili- tein diversity, including the large and small T antigens (LT and ST, tate the de novo generation of a novel protein within an ancestral respectively) and the middle T antigen (MT) of murine poly- ORF have remained poorly characterized. Here, we describe the omavirus (MPyV), which is generated by a novel splicing event and identification of an overprinting gene, expressed from an Alter- overprinting of the second exon of LT. Some polyomaviruses can nate frame of the Large T Open reading frame (ALTO) in the early drive tumorigenicity, and gene products from the ER, especially region of Merkel cell polyomavirus (MCPyV), the causative agent SV40 LT and MPyV MT, have been extraordinarily useful models of most Merkel cell carcinomas.
    [Show full text]
  • The Role of Hepatitis C Virus in Hepatocellular Carcinoma U
    Viruses in cancer cell plasticity: the role of hepatitis C virus in hepatocellular carcinoma U. Hibner, D. Gregoire To cite this version: U. Hibner, D. Gregoire. Viruses in cancer cell plasticity: the role of hepatitis C virus in hepato- cellular carcinoma. Contemporary Oncology, Termedia Publishing House, 2015, 19 (1A), pp.A62–7. 10.5114/wo.2014.47132. hal-02187396 HAL Id: hal-02187396 https://hal.archives-ouvertes.fr/hal-02187396 Submitted on 2 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License Review Viruses are considered as causative agents of a significant proportion of human cancers. While the very Viruses in cancer cell plasticity: stringent criteria used for their clas- sification probably lead to an under- estimation, only six human viruses the role of hepatitis C virus are currently classified as oncogenic. In this review we give a brief histor- in hepatocellular carcinoma ical account of the discovery of on- cogenic viruses and then analyse the mechanisms underlying the infectious causes of cancer. We discuss viral strategies that evolved to ensure vi- Urszula Hibner1,2,3, Damien Grégoire1,2,3 rus propagation and spread can alter cellular homeostasis in a way that increases the probability of oncogen- 1Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Montpellier, France ic transformation and acquisition of 2Université Montpellier 2, Montpellier, France stem cell phenotype.
    [Show full text]
  • Merkel Cell Polyomavirus DNA in Immunocompetent and Immunocompromised Patients with Respiratory Disease
    Journal of Medical Virology 83:2220–2224 (2011) Merkel Cell Polyomavirus DNA in Immunocompetent and Immunocompromised Patients With Respiratory Disease Bahman Abedi Kiasari,1,3* Pamela J. Vallely,1 and Paul E. Klapper1,2 1Department of Virology, Genomic Epidemiology Research Group, School of Translational Medicine, University of Manchester, Manchester, United Kingdom 2Clinical Virology, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Oxford Road, Manchester, United Kingdom 3Human Viral Vaccine Department, Razi Vaccine & Serum Research Institute, Hesarak, Karaj, Iran Merkel cell polyomavirus (MCPyV) was identi- INTRODUCTION fied originally in association with a rare but aggressive skin cancer, Merkel cell carcinoma. In the past few years, a number of new human poly- The virus has since been found in the respirato- omaviruses, KI, WU, human polyomavirus 6 (HPyV6), ry tract of some patients with respiratory human polyomavirus 7 (HPyV7), trichodysplasia spi- disease. However, the role of MCPyV in the nulosa virus (TSV), human polyomavirus 9 (HPyV9), causation of respiratory disease has not been and Merkel cell polyomavirus (MCPyV) have been established. To determine the prevalence of discovered [Allander et al., 2007; Gaynor et al., 2007; MCPyV in 305 respiratory samples from Feng et al., 2008; Schowalter et al., 2010; van der immunocompetent and immunocompromised Meijden et al., 2010; Scuda et al., 2011]. MCPyV was patients and evaluate their contribution to re- discovered by digital transcriptome subtraction from a spiratory diseases, specimens were screened human skin cancer, Merkel cell carcinoma [Feng for MCPyV using single, multiplex, or real-time et al., 2008]. The finding of MCPyV in human Merkel PCR; co-infection with other viruses was exam- cell carcinoma suggests a role for this virus in the ined.
    [Show full text]
  • An Overview on Human Polyomaviruses Developing Cancer
    The Journal of Medical Research 2020; 6(4): 125-127 Review Article An overview on human polyomaviruses developing cancer in JMR 2020; 6(4): 125-127 humans July- August ISSN: 2395-7565 Mohammad Salim1, Mohammad Shahid Masroor2, Shagufta parween3, I.P. Prajapati1 © 2020, All rights reserved 1 Sanjay Gandhi Smriti Govt. Autonomous P.G. College, Sidhi, (affiliated to APS University, Rewa), Madhya Pradesh- www.medicinearticle.com 486661, India Received: 22-06-2020 2 People’s College of Dental Sciences & Research Center, People's University, Bhopal, Madhya Pradesh- 462037, Accepted: 14-07-2020 India 3 All India Institute of Medical sciences (AIIMS), Bhopal, Madhya Pradesh-462020, India Abstract The family Polyomaviridae included about a dozen of human polyomaviruses (HPyVs), of which MCPyV, SV-40, JCV and BKV viruses have been reported to cause cancer in human. Merkel cell carcinoma is a very aggressive type of skin cancer caused by the MCPyV5. Similarly, while SV-40 and JCV viruses developed brain tumor cancer, the BK virus has been linked to renal transplantations and nephropathy producing urinary bladder tumor and prostate cancer in human. In this paper we have tried to summarize the recent information gained in the field of human polyomaviruses causing cancer in human. Keywords: Human polyomaviruses, Cancer, Virus. INTRODUCTION Viruses are among the few causes of cancer contributing to a variety of malignancies. In 1966, when Peyton Rous was awarded a Nobel prize in physiology and medicine for his discovery of Rous chicken sarcoma virus as a cause of cancer, a renewed interest came in the field of microbial origin of cancer.
    [Show full text]
  • Viruses in Transplantation - Not Always Enemies
    Viruses in transplantation - not always enemies Virome and transplantation ECCMID 2018 - Madrid Prof. Laurent Kaiser Head Division of Infectious Diseases Laboratory of Virology Geneva Center for Emerging Viral Diseases University Hospital of Geneva ESCMID eLibrary © by author Conflict of interest None ESCMID eLibrary © by author The human virome: definition? Repertoire of viruses found on the surface of/inside any body fluid/tissue • Eukaryotic DNA and RNA viruses • Prokaryotic DNA and RNA viruses (phages) 25 • The “main” viral community (up to 10 bacteriophages in humans) Haynes M. 2011, Metagenomic of the human body • Endogenous viral elements integrated into host chromosomes (8% of the human genome) • NGS is shaping the definition Rascovan N et al. Annu Rev Microbiol 2016;70:125-41 Popgeorgiev N et al. Intervirology 2013;56:395-412 Norman JM et al. Cell 2015;160:447-60 ESCMID eLibraryFoxman EF et al. Nat Rev Microbiol 2011;9:254-64 © by author Viruses routinely known to cause diseases (non exhaustive) Upper resp./oropharyngeal HSV 1 Influenza CNS Mumps virus Rhinovirus JC virus RSV Eye Herpes viruses Parainfluenza HSV Measles Coronavirus Adenovirus LCM virus Cytomegalovirus Flaviviruses Rabies HHV6 Poliovirus Heart Lower respiratory HTLV-1 Coxsackie B virus Rhinoviruses Parainfluenza virus HIV Coronaviruses Respiratory syncytial virus Parainfluenza virus Adenovirus Respiratory syncytial virus Coronaviruses Gastro-intestinal Influenza virus type A and B Human Bocavirus 1 Adenovirus Hepatitis virus type A, B, C, D, E Those that cause
    [Show full text]
  • Sensitive Detection of Oncoviruses Integrated Into a Comprehensive Tumor Immuno-Genomics Platform #3788
    Sensitive detection of oncoviruses integrated into a comprehensive tumor immuno-genomics platform #3788 Gábor Bartha, Robin Li, Shujun Luo, John West, Richard Chen Personalis, Inc. | 1330 O’Brien Dr., Menlo Park, CA 94025 Contact: [email protected] Introduction Results Mixed Oncoviral Cell Lines We obtained 22 cell lines from ATCC containing HPV16, HPV18, HPV45, HPV68, HBV, EBV, KSHV, HTLV1 and HTLV2 in which the oncoviruses HPV, HBV, HCV and EBV viruses are causally EBV Cell Lines were known to be in the tumors from which the cell lines were created. In the ATCC samples we detected 23 out of 23 oncoviruses expected in linked to over 11% of cancers worldwide while both the DNA and RNA. We detected all the different types of oncoviruses that we targeted except for HCV because it wasn’t in any sample. In all KSHV, HTLV and MCV are linked to an additional To test the ability of the platform to detect oncoviruses, we identified a set of 11 EBV cell lines from but one case the signals were strong. 1%. As use of immunotherapy expands to a Coriell in which EBV was used as a transformant. We detected EBV in all the Coriell cell lines in both broader variety of cancers, it is important to DNA and RNA indicating strong sensitivity of the platform. Wide dynamic ranGe suggests quantification Detected in DNA Detected in RNA Virus Tissue Notes understand how these oncoviruses may be may be possible as well. In the DNA and RNA there were no detections of any other oncovirus EBV EBV EBV HodGkin’s lymphoma Per ATCC : “The cells are EBNA positive" indicating high specificity.
    [Show full text]
  • Nucleotide Sequences in Mouse DNA and RNA Specific for Moloney Sarcoma Virus
    Proc. Nati. Acad. Sci. USA Vol. 73, No. 10, pp. 3705-3709, October 1976 Microbiology Nucleotide sequences in mouse DNA and RNA specific for Moloney sarcoma virus (murine sarcoma virus/RNA tumor virus/nucleic acid hybridization/gene evolution/sarcoma-specific nucleotide sequence) ARTHUR E. FRANKEL AND PETER J. FISCHINGER Laboratory of Viral Carcinogenesis, National Cancer Institute, Bethesda, Maryland 20014 Communicated by Howard M. Temin, July 12,1976 ABSTRACT Complementary DNA (cDNA) synthesized (3). Laboratory strains of oncoviruses do contain information by Moloney murine sarcoma virus (M-MSV) was separated into that is different from the spontaneously released oncovirus of two parts, the first, termed MSV-specific cDNA, composed of the species Of nucleotide sequences found only in M-MSV viral RNA, and the (6, 7). these, the sarcomagenic oncoviruses gen- second, termed MSV-MuLV common cDNA, composed of nu- erally contain both a set of nucleotide sequences shared with cleotide sequences that were found in both M-MSV and murine leukosis-leukemia viruses, and another set of sequences that are leukemia virus (MuLV) viral RNAs. RNA complementary to the dissimilar from those of other oncoviruses of the species (6-10). MSV-specific cDNA was not found in several other MSV iso- Complementary DNA (cDNA) can be transcribed from sar- lates, nor in ecotropic MuLV, mouse mammary tumor virus, or coma virus RNA by the viral endogenous DNA polymerase. several murine xenotropic oncoviruses. Cellular DNA of several The cDNA represents both the "shared" and the species was examined for the presence of nucleotide sequences "specific" complementary to MSV-specific cDNA. Cells transformed by moieties of the sarcoma virus genome.
    [Show full text]
  • Detection and Quantification of Classic and Emerging Viruses by Skimmed
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital water research xxx (2013) 1e14 Available online at www.sciencedirect.com journal homepage: www.elsevier.com/locate/watres Detection and quantification of classic and emerging viruses by skimmed-milk flocculation and PCR in river water from two geographical areas Byron Calgua a, Tulio Fumian b, Marta Rusin˜ola, Jesus Rodriguez-Manzano a, Viviana A. Mbayed c, Silvia Bofill-Mas a, Marize Miagostovich b, Rosina Girones a,* a Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain b Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Avenida Brasil 4365, Rio de Janeiro, Brazil c Laboratory of Virology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junı´n 956, Buenos Aires, Argentina article info abstract Article history: Molecular techniques and virus concentration methods have shown that previously un- Received 24 September 2012 known viruses are shed by humans and animals, and may be transmitted by sewage- Received in revised form contaminated water. In the present study, 10-L river-water samples from urban areas in 16 February 2013 Barcelona, Spain and Rio Janeiro, Brazil, have been analyzed to evaluate the viral Accepted 21 February 2013 dissemination of human viruses, validating also a low-cost concentration method for virus Available online xxx quantification in fresh water. Three viral groups were analyzed: (i) recently reported vi- ruses, klassevirus (KV), asfarvirus-like virus (ASFLV), and the polyomaviruses Merkel cell Keywords: (MCPyV), KI (KIPyV) and WU (WUPyV); (ii) the gastroenteritis agents noroviruses (NoV) and Emerging virus rotaviruses (RV); and (iii) the human fecal viral indicators in water, human adenoviruses Polyomavirus (HAdV) and JC polyomaviruses (JCPyV).
    [Show full text]
  • Cancer Patients Have a Higher Risk Regarding COVID-19–And Vice Versa?
    pharmaceuticals Opinion Cancer Patients Have a Higher Risk Regarding COVID-19–and Vice Versa? Franz Geisslinger, Angelika M. Vollmar and Karin Bartel * Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; [email protected] (F.G.); [email protected] (A.M.V.) * Correspondence: [email protected] Received: 29 May 2020; Accepted: 3 July 2020; Published: 6 July 2020 Abstract: The world is currently suffering from a pandemic which has claimed the lives of over 230,000 people to date. The responsible virus is called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and causes the coronavirus disease 2019 (COVID-19), which is mainly characterized by fever, cough and shortness of breath. In severe cases, the disease can lead to respiratory distress syndrome and septic shock, which are mostly fatal for the patient. The severity of disease progression was hypothesized to be related to an overshooting immune response and was correlated with age and comorbidities, including cancer. A lot of research has lately been focused on the pathogenesis and acute consequences of COVID-19. However, the possibility of long-term consequences caused by viral infections which has been shown for other viruses are not to be neglected. In this regard, this opinion discusses the interplay of SARS-CoV-2 infection and cancer with special focus on the inflammatory immune response and tissue damage caused by infection. We summarize the available literature on COVID-19 suggesting an increased risk for severe disease progression in cancer patients, and we discuss the possibility that SARS-CoV-2 could contribute to cancer development.
    [Show full text]
  • The Mirna World of Polyomaviruses Ole Lagatie1*, Luc Tritsmans2 and Lieven J Stuyver1
    Lagatie et al. Virology Journal 2013, 10:268 http://www.virologyj.com/content/10/1/268 REVIEW Open Access The miRNA world of polyomaviruses Ole Lagatie1*, Luc Tritsmans2 and Lieven J Stuyver1 Abstract Polyomaviruses are a family of non-enveloped DNA viruses infecting several species, including humans, primates, birds, rodents, bats, horse, cattle, raccoon and sea lion. They typically cause asymptomatic infection and establish latency but can be reactivated under certain conditions causing severe diseases. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in several cellular processes by binding to and inhibiting the translation of specific mRNA transcripts. In this review, we summarize the current knowledge of microRNAs involved in polyomavirus infection. We review in detail the different viral miRNAs that have been discovered and the role they play in controlling both host and viral protein expression. We also give an overview of the current understanding on how host miRNAs may function in controlling polyomavirus replication, immune evasion and pathogenesis. Keywords: Polyomaviruses, microRNAs, Virus-host interaction, Immune evasion Review for BKPyV, Merkel cell carcinoma (MCC) for Merkel General overview of polyomaviruses Cell Virus (MCPyV) and trichodysplasia spinulosa for Polyomaviruses comprise a family of DNA tumor vi- Trichodysplasia spinulosa-associated Polyomavirus (TSPyV) ruses. They are non-enveloped and have a circular, [4,10,11,14-20]. One of the most striking observations is the double stranded DNA genome of around 5,100 bp [1]. fact that asymptomatic infection occurs during childhood The virion consists of 72 pentamers of the capsid pro- which is followed ordinarily by life-long asymptomatic tein VP1 with a single copy of VP2 and VP3 associated persistence [21].
    [Show full text]
  • Human Papillomaviruses and Epstein–Barr Virus Interactions in Colorectal Cancer: a Brief Review
    pathogens Review Human Papillomaviruses and Epstein–Barr Virus Interactions in Colorectal Cancer: A Brief Review 1,2, 1,2, 1, 1,2, Queenie Fernandes y, Ishita Gupta y, Semir Vranic * and Ala-Eddin Al Moustafa * 1 College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; [email protected] (Q.F.); [email protected] (I.G.) 2 Biomedical Research Centre, Qatar University, Doha 2713, Qatar * Correspondence: [email protected] (S.V.); [email protected] (A.-E.A.M.); Tel.:+974-4403-7873 (S.V.); +974-4403-7817 (A.-E.A.M.) Both authors contributed equally to this review. y Received: 9 March 2020; Accepted: 7 April 2020; Published: 20 April 2020 Abstract: Human papillomaviruses (HPVs) and the Epstein–Barr virus (EBV) are the most common oncoviruses, contributing to approximately 10%–15% of all malignancies. Oncoproteins of high-risk HPVs (E5 and E6/E7), as well as EBV (LMP1, LMP2A and EBNA1), play a principal role in the onset and progression of several human carcinomas, including head and neck, cervical and colorectal. Oncoproteins of high-risk HPVs and EBV can cooperate to initiate and/or enhance epithelial-mesenchymal transition (EMT) events, which represents one of the hallmarks of cancer progression and metastasis. Although the role of these oncoviruses in several cancers is well established, their role in the pathogenesis of colorectal cancer is still nascent. This review presents an overview of the most recent advances related to the presence and role of high-risk HPVs and EBV in colorectal cancer, with an emphasis on their cooperation in colorectal carcinogenesis.
    [Show full text]
  • Human Merkel Cell Polyomavirus Small T Antigen Is an Oncoprotein
    Research article Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator Masahiro Shuda, Hyun Jin Kwun, Huichen Feng, Yuan Chang, and Patrick S. Moore Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. Merkel cell polyomavirus (MCV) is the recently discovered cause of most Merkel cell carcinomas (MCCs), an aggressive form of nonmelanoma skin cancer. Although MCV is known to integrate into the tumor cell genome and to undergo mutation, the molecular mechanisms used by this virus to cause cancer are unknown. Here, we show that MCV small T (sT) antigen is expressed in most MCC tumors, where it is required for tumor cell growth. Unlike the closely related SV40 sT, MCV sT transformed rodent fibroblasts to anchorage- and contact-independent growth and promoted serum-free proliferation of human cells. These effects did not involve protein phosphatase 2A (PP2A) inhibition. MCV sT was found to act downstream in the mam- malian target of rapamycin (mTOR) signaling pathway to preserve eukaryotic translation initiation factor 4E–binding protein 1 (4E-BP1) hyperphosphorylation, resulting in dysregulated cap-dependent translation. MCV sT–associated 4E-BP1 serine 65 hyperphosphorylation was resistant to mTOR complex (mTORC1) and mTORC2 inhibitors. Steady-state phosphorylation of other downstream Akt-mTOR targets, including S6K and 4E-BP2, was also increased by MCV sT. Expression of a constitutively active 4E-BP1 that could not be phosphorylated antagonized the cell transformation activity of MCV sT. Taken together, these experiments showed that 4E-BP1 inhibition is required for MCV transformation. Thus, MCV sT is an oncoprotein, and its effects on dysregulated cap-dependent translation have clinical implications for the prevention, diagnosis, and treatment of MCV-related cancers.
    [Show full text]