Protein-Mediated Viral Latency Is a Novel Mechanism for Merkel Cell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of an Overprinting Gene in Merkel Cell Polyomavirus Provides Evolutionary Insight Into the Birth of Viral Genes
Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes Joseph J. Cartera,b,1,2, Matthew D. Daughertyc,1, Xiaojie Qia, Anjali Bheda-Malgea,3, Gregory C. Wipfa, Kristin Robinsona, Ann Romana, Harmit S. Malikc,d, and Denise A. Gallowaya,b,2 Divisions of aHuman Biology, bPublic Health Sciences, and cBasic Sciences and dHoward Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 Edited by Peter M. Howley, Harvard Medical School, Boston, MA, and approved June 17, 2013 (received for review February 24, 2013) Many viruses use overprinting (alternate reading frame utiliza- mammals and birds (7, 8). Polyomaviruses leverage alternative tion) as a means to increase protein diversity in genomes severely splicing of the early region (ER) of the genome to generate pro- constrained by size. However, the evolutionary steps that facili- tein diversity, including the large and small T antigens (LT and ST, tate the de novo generation of a novel protein within an ancestral respectively) and the middle T antigen (MT) of murine poly- ORF have remained poorly characterized. Here, we describe the omavirus (MPyV), which is generated by a novel splicing event and identification of an overprinting gene, expressed from an Alter- overprinting of the second exon of LT. Some polyomaviruses can nate frame of the Large T Open reading frame (ALTO) in the early drive tumorigenicity, and gene products from the ER, especially region of Merkel cell polyomavirus (MCPyV), the causative agent SV40 LT and MPyV MT, have been extraordinarily useful models of most Merkel cell carcinomas. -
The Polyomavirus Major Capsid Protein VP1 Interacts with the Nuclear Matrix Regulatory Protein
FEBS 23316 FEBS Letters 467 (2000) 359^364 View metadata, citation and similar papers at core.ac.uk brought to you by CORE The polyomavirus major capsid protein VP1 interacts with theprovided nuclearby Elsevier - Publisher Connector matrix regulatory protein YY1 Zdena Palkova¨a;b, Hana Sípanielova¨b, Vanesa Gottifredia;1, Dana Hollanderova¨b, Jitka Forstova¨b, Paolo Amatia;* aInstituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Universita© di Roma La Sapienza, Viale Regina Elena 324, 00161 Rome, Italy bDepartment of Genetics and Microbiology, Faculty of Natural Sciences, Charles University, Vinie©na¨ 5, 12844 Prague 2, Czech Republic Received 17 December 1999 Edited by Hans-Dieter Klenk The external loops are likely to be the structures involved in Abstract Polyomavirus reaches the nucleus in a still encapsi- dated form, and the viral genome is readily found in association cell receptor recognition by virions [4] and, therefore, to be with the nuclear matrix. This association is thought to be the main antigenic determinants. The £exible C-terminal arms essential for viral replication. In order to identify the protein(s) form interpentameric contacts and the basic amino acids of involved in the virus-nuclear matrix interaction, we focused on the N terminal arm are responsible for the non-speci¢c DNA- the possible roles exerted by the multifunctional cellular nuclear binding activity of VP1 [6,7]. matrix protein Yin Yang 1 (YY1) and by the viral major capsid The necessity for viral genomes to associate to the nuclear protein VP1. In the present work we report on the in vivo matrix (NM) in order to be expressed, has been demonstrated association between YY1 and VP1. -
Cryptic Inoviruses Revealed As Pervasive in Bacteria and Archaea Across Earth’S Biomes
ARTICLES https://doi.org/10.1038/s41564-019-0510-x Corrected: Author Correction Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes Simon Roux 1*, Mart Krupovic 2, Rebecca A. Daly3, Adair L. Borges4, Stephen Nayfach1, Frederik Schulz 1, Allison Sharrar5, Paula B. Matheus Carnevali 5, Jan-Fang Cheng1, Natalia N. Ivanova 1, Joseph Bondy-Denomy4,6, Kelly C. Wrighton3, Tanja Woyke 1, Axel Visel 1, Nikos C. Kyrpides1 and Emiley A. Eloe-Fadrosh 1* Bacteriophages from the Inoviridae family (inoviruses) are characterized by their unique morphology, genome content and infection cycle. One of the most striking features of inoviruses is their ability to establish a chronic infection whereby the viral genome resides within the cell in either an exclusively episomal state or integrated into the host chromosome and virions are continuously released without killing the host. To date, a relatively small number of inovirus isolates have been extensively studied, either for biotechnological applications, such as phage display, or because of their effect on the toxicity of known bacterial pathogens including Vibrio cholerae and Neisseria meningitidis. Here, we show that the current 56 members of the Inoviridae family represent a minute fraction of a highly diverse group of inoviruses. Using a machine learning approach lever- aging a combination of marker gene and genome features, we identified 10,295 inovirus-like sequences from microbial genomes and metagenomes. Collectively, our results call for reclassification of the current Inoviridae family into a viral order including six distinct proposed families associated with nearly all bacterial phyla across virtually every ecosystem. -
Merkel Cell Polyomavirus DNA in Immunocompetent and Immunocompromised Patients with Respiratory Disease
Journal of Medical Virology 83:2220–2224 (2011) Merkel Cell Polyomavirus DNA in Immunocompetent and Immunocompromised Patients With Respiratory Disease Bahman Abedi Kiasari,1,3* Pamela J. Vallely,1 and Paul E. Klapper1,2 1Department of Virology, Genomic Epidemiology Research Group, School of Translational Medicine, University of Manchester, Manchester, United Kingdom 2Clinical Virology, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Oxford Road, Manchester, United Kingdom 3Human Viral Vaccine Department, Razi Vaccine & Serum Research Institute, Hesarak, Karaj, Iran Merkel cell polyomavirus (MCPyV) was identi- INTRODUCTION fied originally in association with a rare but aggressive skin cancer, Merkel cell carcinoma. In the past few years, a number of new human poly- The virus has since been found in the respirato- omaviruses, KI, WU, human polyomavirus 6 (HPyV6), ry tract of some patients with respiratory human polyomavirus 7 (HPyV7), trichodysplasia spi- disease. However, the role of MCPyV in the nulosa virus (TSV), human polyomavirus 9 (HPyV9), causation of respiratory disease has not been and Merkel cell polyomavirus (MCPyV) have been established. To determine the prevalence of discovered [Allander et al., 2007; Gaynor et al., 2007; MCPyV in 305 respiratory samples from Feng et al., 2008; Schowalter et al., 2010; van der immunocompetent and immunocompromised Meijden et al., 2010; Scuda et al., 2011]. MCPyV was patients and evaluate their contribution to re- discovered by digital transcriptome subtraction from a spiratory diseases, specimens were screened human skin cancer, Merkel cell carcinoma [Feng for MCPyV using single, multiplex, or real-time et al., 2008]. The finding of MCPyV in human Merkel PCR; co-infection with other viruses was exam- cell carcinoma suggests a role for this virus in the ined. -
Opportunistic Intruders: How Viruses Orchestrate ER Functions to Infect Cells
REVIEWS Opportunistic intruders: how viruses orchestrate ER functions to infect cells Madhu Sudhan Ravindran*, Parikshit Bagchi*, Corey Nathaniel Cunningham and Billy Tsai Abstract | Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co‑opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus–ER interactions has become available, these insights may lead to the development of crucial therapeutic agents. Morphogenesis Viruses have evolved sophisticated strategies to establish The ER is a membranous system consisting of the The process by which a virus infection. Some viruses bind to cellular receptors and outer nuclear envelope that is contiguous with an intri‑ particle changes its shape and initiate entry, whereas others hijack cellular factors that cate network of tubules and sheets1, which are shaped by structure. disassemble the virus particle to facilitate entry. After resident factors in the ER2–4. The morphology of the ER SEC61 translocation delivering the viral genetic material into the host cell and is highly dynamic and experiences constant structural channel the translation of the viral genes, the resulting proteins rearrangements, enabling the ER to carry out a myriad An endoplasmic reticulum either become part of a new virus particle (or particles) of functions5. -
An Overview on Human Polyomaviruses Developing Cancer
The Journal of Medical Research 2020; 6(4): 125-127 Review Article An overview on human polyomaviruses developing cancer in JMR 2020; 6(4): 125-127 humans July- August ISSN: 2395-7565 Mohammad Salim1, Mohammad Shahid Masroor2, Shagufta parween3, I.P. Prajapati1 © 2020, All rights reserved 1 Sanjay Gandhi Smriti Govt. Autonomous P.G. College, Sidhi, (affiliated to APS University, Rewa), Madhya Pradesh- www.medicinearticle.com 486661, India Received: 22-06-2020 2 People’s College of Dental Sciences & Research Center, People's University, Bhopal, Madhya Pradesh- 462037, Accepted: 14-07-2020 India 3 All India Institute of Medical sciences (AIIMS), Bhopal, Madhya Pradesh-462020, India Abstract The family Polyomaviridae included about a dozen of human polyomaviruses (HPyVs), of which MCPyV, SV-40, JCV and BKV viruses have been reported to cause cancer in human. Merkel cell carcinoma is a very aggressive type of skin cancer caused by the MCPyV5. Similarly, while SV-40 and JCV viruses developed brain tumor cancer, the BK virus has been linked to renal transplantations and nephropathy producing urinary bladder tumor and prostate cancer in human. In this paper we have tried to summarize the recent information gained in the field of human polyomaviruses causing cancer in human. Keywords: Human polyomaviruses, Cancer, Virus. INTRODUCTION Viruses are among the few causes of cancer contributing to a variety of malignancies. In 1966, when Peyton Rous was awarded a Nobel prize in physiology and medicine for his discovery of Rous chicken sarcoma virus as a cause of cancer, a renewed interest came in the field of microbial origin of cancer. -
Viruses in Transplantation - Not Always Enemies
Viruses in transplantation - not always enemies Virome and transplantation ECCMID 2018 - Madrid Prof. Laurent Kaiser Head Division of Infectious Diseases Laboratory of Virology Geneva Center for Emerging Viral Diseases University Hospital of Geneva ESCMID eLibrary © by author Conflict of interest None ESCMID eLibrary © by author The human virome: definition? Repertoire of viruses found on the surface of/inside any body fluid/tissue • Eukaryotic DNA and RNA viruses • Prokaryotic DNA and RNA viruses (phages) 25 • The “main” viral community (up to 10 bacteriophages in humans) Haynes M. 2011, Metagenomic of the human body • Endogenous viral elements integrated into host chromosomes (8% of the human genome) • NGS is shaping the definition Rascovan N et al. Annu Rev Microbiol 2016;70:125-41 Popgeorgiev N et al. Intervirology 2013;56:395-412 Norman JM et al. Cell 2015;160:447-60 ESCMID eLibraryFoxman EF et al. Nat Rev Microbiol 2011;9:254-64 © by author Viruses routinely known to cause diseases (non exhaustive) Upper resp./oropharyngeal HSV 1 Influenza CNS Mumps virus Rhinovirus JC virus RSV Eye Herpes viruses Parainfluenza HSV Measles Coronavirus Adenovirus LCM virus Cytomegalovirus Flaviviruses Rabies HHV6 Poliovirus Heart Lower respiratory HTLV-1 Coxsackie B virus Rhinoviruses Parainfluenza virus HIV Coronaviruses Respiratory syncytial virus Parainfluenza virus Adenovirus Respiratory syncytial virus Coronaviruses Gastro-intestinal Influenza virus type A and B Human Bocavirus 1 Adenovirus Hepatitis virus type A, B, C, D, E Those that cause -
Detection and Quantification of Classic and Emerging Viruses by Skimmed
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital water research xxx (2013) 1e14 Available online at www.sciencedirect.com journal homepage: www.elsevier.com/locate/watres Detection and quantification of classic and emerging viruses by skimmed-milk flocculation and PCR in river water from two geographical areas Byron Calgua a, Tulio Fumian b, Marta Rusin˜ola, Jesus Rodriguez-Manzano a, Viviana A. Mbayed c, Silvia Bofill-Mas a, Marize Miagostovich b, Rosina Girones a,* a Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain b Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Avenida Brasil 4365, Rio de Janeiro, Brazil c Laboratory of Virology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junı´n 956, Buenos Aires, Argentina article info abstract Article history: Molecular techniques and virus concentration methods have shown that previously un- Received 24 September 2012 known viruses are shed by humans and animals, and may be transmitted by sewage- Received in revised form contaminated water. In the present study, 10-L river-water samples from urban areas in 16 February 2013 Barcelona, Spain and Rio Janeiro, Brazil, have been analyzed to evaluate the viral Accepted 21 February 2013 dissemination of human viruses, validating also a low-cost concentration method for virus Available online xxx quantification in fresh water. Three viral groups were analyzed: (i) recently reported vi- ruses, klassevirus (KV), asfarvirus-like virus (ASFLV), and the polyomaviruses Merkel cell Keywords: (MCPyV), KI (KIPyV) and WU (WUPyV); (ii) the gastroenteritis agents noroviruses (NoV) and Emerging virus rotaviruses (RV); and (iii) the human fecal viral indicators in water, human adenoviruses Polyomavirus (HAdV) and JC polyomaviruses (JCPyV). -
Receptor-Binding and Oncogenic Properties of Polyoma Viruses Isolated from Feral Mice
Receptor-Binding and Oncogenic Properties of Polyoma Viruses Isolated from Feral Mice John Carroll1[, Dilip Dey1[, Lori Kreisman1[, Palanivel Velupillai1, Jean Dahl1, Samuel Telford2, Roderick Bronson1, Thomas Benjamin1* 1 Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Department of Tropical Public Health, Harvard School of Public Health, Boston, Massachusetts, United States of America Laboratory strains of the mouse polyoma virus differ markedly in their abilities to replicate and induce tumors in newborn mice. Major determinants of pathogenicity lie in the sialic binding pocket of the major capsid protein Vp1 and dictate receptor-binding properties of the virus. Substitutions at two sites in Vp1 define three prototype strains, which vary greatly in pathogenicity. These strains replicate in a limited fashion and induce few or no tumors, cause a disseminated infection leading to the development of multiple solid tumors, or replicate and spread acutely causing early death. This investigation was undertaken to determine the Vp1 type(s) of new virus isolates from naturally infected mice. Compared with laboratory strains, truly wild-type viruses are constrained with respect to their selectivity and avidity of binding to cell receptors. Fifteen of 15 new isolates carried the Vp1 type identical to that of highly tumorigenic laboratory strains. Upon injection into newborn laboratory mice, the new isolates induced a broad spectrum of tumors, including ones of epithelial as well as mesenchymal origin. Though invariant in their Vp1 coding sequences, these isolates showed considerable variation in their regulatory sequences. The common Vp1 type has two essential features: 1) failure to recognize ‘‘pseudoreceptors’’ with branched chain sialic acids binding to which would attenuate virus spread, and 2) maintenance of a hydrophobic contact with true receptors bearing a single sialic acid, which retards virus spread and avoids acute and potentially lethal infection of the host. -
REVIEW Hepatitis C Virus
DOI:http://dx.doi.org/10.7314/APJCP.2012.13.12.5917 Hepatitis C Virus -Proteins, Diagnosis, Treatment and New Approaches for Vaccine Development REVIEW Hepatitis C Virus - Proteins, Diagnosis, Treatment and New Approaches for Vaccine Development Hossein Keyvani1, Mehdi Fazlalipour2*, Seyed Hamid Reza Monavari1, Hamid Reza Mollaie2 Abstract Background: Hepatitis C virus (HCV) causes acute and chronic human hepatitis infection and as such is an important global health problem. The virus was discovered in the USA in 1989 and it is now known that three to four million people are infected every year, WHO estimating that 3 percent of the 7 billion people worldwide being chronically infected. Humans are the natural hosts of HCV and this virus can eventually lead to permanent liver damage and carcinoma. HCV is a member of the Flaviviridae family and Hepacivirus genus. The diameter of the virus is about 50-60 nm and the virion contains a single-stranded positive RNA approximately 10,000 nucleotides in length and consisting of one ORF which is encapsulated by an external lipid envelope and icosahedral capsid. HCV is a heterogeneous virus, classified into 6 genotypes and more than 50 subtypes. Because of the genome variability, nucleotide sequences of genotypes differ by approximately 31-34%, and by 20-23% among subtypes. Quasi-species of mixed virus populations provide a survival advantage for the virus to create multiple variant genomes and a high rate of generation of variants to allow rapid selection of mutants for new environmental conditions. Direct contact with infected blood and blood products, sexual relationships and availability of injectable drugs have had remarkable effects on HCV epidemiology. -
Cancer Patients Have a Higher Risk Regarding COVID-19–And Vice Versa?
pharmaceuticals Opinion Cancer Patients Have a Higher Risk Regarding COVID-19–and Vice Versa? Franz Geisslinger, Angelika M. Vollmar and Karin Bartel * Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; [email protected] (F.G.); [email protected] (A.M.V.) * Correspondence: [email protected] Received: 29 May 2020; Accepted: 3 July 2020; Published: 6 July 2020 Abstract: The world is currently suffering from a pandemic which has claimed the lives of over 230,000 people to date. The responsible virus is called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and causes the coronavirus disease 2019 (COVID-19), which is mainly characterized by fever, cough and shortness of breath. In severe cases, the disease can lead to respiratory distress syndrome and septic shock, which are mostly fatal for the patient. The severity of disease progression was hypothesized to be related to an overshooting immune response and was correlated with age and comorbidities, including cancer. A lot of research has lately been focused on the pathogenesis and acute consequences of COVID-19. However, the possibility of long-term consequences caused by viral infections which has been shown for other viruses are not to be neglected. In this regard, this opinion discusses the interplay of SARS-CoV-2 infection and cancer with special focus on the inflammatory immune response and tissue damage caused by infection. We summarize the available literature on COVID-19 suggesting an increased risk for severe disease progression in cancer patients, and we discuss the possibility that SARS-CoV-2 could contribute to cancer development. -
The Mirna World of Polyomaviruses Ole Lagatie1*, Luc Tritsmans2 and Lieven J Stuyver1
Lagatie et al. Virology Journal 2013, 10:268 http://www.virologyj.com/content/10/1/268 REVIEW Open Access The miRNA world of polyomaviruses Ole Lagatie1*, Luc Tritsmans2 and Lieven J Stuyver1 Abstract Polyomaviruses are a family of non-enveloped DNA viruses infecting several species, including humans, primates, birds, rodents, bats, horse, cattle, raccoon and sea lion. They typically cause asymptomatic infection and establish latency but can be reactivated under certain conditions causing severe diseases. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in several cellular processes by binding to and inhibiting the translation of specific mRNA transcripts. In this review, we summarize the current knowledge of microRNAs involved in polyomavirus infection. We review in detail the different viral miRNAs that have been discovered and the role they play in controlling both host and viral protein expression. We also give an overview of the current understanding on how host miRNAs may function in controlling polyomavirus replication, immune evasion and pathogenesis. Keywords: Polyomaviruses, microRNAs, Virus-host interaction, Immune evasion Review for BKPyV, Merkel cell carcinoma (MCC) for Merkel General overview of polyomaviruses Cell Virus (MCPyV) and trichodysplasia spinulosa for Polyomaviruses comprise a family of DNA tumor vi- Trichodysplasia spinulosa-associated Polyomavirus (TSPyV) ruses. They are non-enveloped and have a circular, [4,10,11,14-20]. One of the most striking observations is the double stranded DNA genome of around 5,100 bp [1]. fact that asymptomatic infection occurs during childhood The virion consists of 72 pentamers of the capsid pro- which is followed ordinarily by life-long asymptomatic tein VP1 with a single copy of VP2 and VP3 associated persistence [21].