The Evolution of Astronomical Observatory

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Astronomical Observatory Journal of the Korean Astronomical Society https://doi.org/10.5303/JKAS.2019.52.4.99 52: 99 ∼ 108, 2019 August pISSN: 1225-4614 · eISSN: 2288-890X Published under Creative Commons license CC BY-SA 4.0 http://jkas.kas.org THE EVOLUTION OF ASTRONOMICAL OBSERVATORY DESIGN Miguel Angel´ Castro Tirado1,2 and Alberto J. Castro-Tirado1,2 1Instituto de Astrof´ısicade Andaluc´ıa(IAA-CSIC), Glorieta de la Astronom´ıas/n, 18008 Granada, Spain; [email protected] 2Unidad Asociada al CSIC Departamento de Ingenier´ıade Sistemas y Autom´atica,Escuela de Ingenier´ıaIndustrial, Universidad de M´alaga, Arquitecto Francisco Pe~nalosa,29071 M´alaga,Spain; [email protected] Received May 4, 2019; accepted June 11, 2019 Abstract: This work addresses the development of the astronomical observatory all through history, from an architectural point of view, as a building in relation to the observing instruments and their functioning as a heterogeneous work center. We focused on 32 observatories (in the period 1259{2007) and carefully analyzed the architectures. Considering the impact of the construction itself or its facilities on the results of the research (thermal or structural stability, poor weather protection, turbulence, etc.), there is little attention paid to theories or studies of the architectural or construction aspects of the observatories. Therefore, this work aims to present a theoretical-critical contribution that, at least, invites the reflection of those involved in the development of astronomical observatories in the future. Key words: history and philosophy of astronomy | telescopes 1.I NTRODUCTION tro Tirado 2019a), starting from the examination of plans, ruins and the buildings themselves, this study The theoretical approach to astronomical observato- goes back to the genesis of the observatories trying to ries has its origin in the roots of the modern observa- illustrate the reciprocal relationship that exists between tory (Brahe 1602; Caramuel de Lobkowitz 1678). How- the design strategies of the building and the practice of ever, historical-descriptive works that consider a par- its astronomical function, with the goal of theorizing ticular project are the most common during the next about their future development. We have focused on centuries. In addition, some studies appeared focused 32 observatories which we consider to be representative on specific periods (Sayili 1960; Kwan 2012; Levering- ones in the period 1259{2007, deeply analyzing the ar- ton 2017), others with a more general retrospective chitectural drafts. nature (Donnelly 1971; Krisciunas 1999; Wolfschmidt 2008) and only a few works focused on the architectural- 2.O RIGINS constructive aspects of the observatories (Dumitrache & Dumitrache 2009; Waumans 2013). Astronomy is one of the oldest scientific disciplines of The concept of astronomical observatory it- mankind. Since man raised his gaze to the sky and self lacks a precise and globally accepted definition contemplated the stars with his own eyes, a relationship given that historically there has not been a critical- of fascination and devotion was established. This would intellectual movement that theorized about its nature be reflected in one way or another in different cultures or conception. Although it may seem obvious, what that would arise across the planet. And even without is understood by an observatory has changed over the having tools of precision or a basic understanding of the years, and, in addition, it depends on the perspective physical laws that rule the functioning of the universe, from which it is valued. In this paper, the intention is the first civilizations already had certain notions of the to present an approach from the point of view of the main astronomical facts. All based, always, on mere architecture of the building itself, so that other aspects observations. such as its astronomical equipment or its possible sci- In any case, it is not possible to determine the date entific usage will be set aside. That is to say, we will on which astronomy arises, although its roots probably study the particularities related to the construction in extend to the origins of the human societies. What does which the instruments are located and whose purpose seem clear is that, regardless of a spiritual or pseudo- is the astronomical function. The analysis will also be religious sense, the beginnings of this science point to- limited to optical observatories. wards an instrumentalization of the sky as a system for Talking about evolution necessarily implies the ex- measuring periods of time and as a mean of orienta- tension of the study over time to analyze and assess tion. Beyond the numerous artistic representations of how, when and why the changes that have defined the Sun, the Moon and the stars that have been found the development of these astronomical centers have oc- (Pannekoek 1961; Pasztor & Roslund 2007), sometimes curred. For this reason, following an earlier work (Cas- more realistic and others more allegorical or figurative, or of the written testimonies that have lasted over time, Corresponding author: M. A. Castro-Tirado this astronomical predilection remains through the in- 99 100 M. A. Castro Tirado & A. J. Castro-Tirado cidence of some celestial phenomena in the disposition 3.T HE MEDIEVAL ISLAMIC OBSERVATORY of certain archaeological sets. Coinciding with the beginning of the Middle Ages, a Although certain remains of ancient civilizations period of cultural darkness began in the Western world show an impact of astronomy on their culture, it will from which astronomy would not escape. During this be the proto-observatories that stand out as points of period, Islamic culture came to play an essential role in interest to know the way in which these peoples ap- the history of astronomy by preserving the vast Greek proached the practice of this science. In these spaces knowledge of this subject and incorporating its own the astronomical observatories have their deepest an- findings. All this would be recovered for the West by tecedents and roots. Although the astronomical princi- the School of Translators of Toledo of Alfonso X, during ples that underlie the constitution of these assemblies the thirteenth century (Gargatagli 1999). are undoubted, there is no evidence to support the ex- The medieval Islamic observing sites can indeed be istence of research or scientific work in these places. called observatories because of two main reasons: i) the The oldest site that has been recorded so far is the fact that they were spaces dedicated specifically to the Goseck Circle, in Germany, a solar proto-observatory collective and prolonged study of celestial phenomena with an annular plan that consists of a Neolithic struc- and ii) to the exchange of scientific knowledge. It can ture dating back almost 7000 years (Brown 2016; Scher- be said that the observatory, as such, appears for the rer 2018). Of a similar period is the megalithic group of first time in this civilization. This is not a coincidence; Nabta Playa, in Egypt. There are many other cases of the features of the Islamic culture as a society link with lesser antiquity, among which the temple of Mnajdra, in the observatory as a scientific institution (Sayili 1960). Malta, or the famed Stonehenge, in England (Scherrer However, although this permanence is implemented in 2018). All these sites belong to ancient societies, with the Islamic observatory, they would have a reduced life a low degree of technology and even, frequently, of no- (Sayili 1960). madic habits. These facts propitiate relatively simple Two singularities that would ultimately be deci- identifications of their constructions. In addition, the sive for the relevance of the Islamic observatory as an scale and materials of these structures favor their dura- institution were the size of the observing tools and its bility up to the present, allowing them to be studied patronage. The fact that the tools of observation and and identified, where relevant, as proto-observatories. study reached a dimension such as to prevent their However, the evolution towards more advanced civ- portability led to a necessary settlement. Royal or state ilizations tend to create settlements of multiple build- support meant the formation of institutions larger and ings that do not reach the precise degree of special- longer lived than an individual scientist (Sayili 1980). ization for the observation function as such. Since no Although several observing posts, more or less tem- scientific instruments had been developed that required porary, had previously been established, it is difficult demanding conditions, systematic surveying of the sky to speak of observatories as an institution before Al could be carried out with the naked eye in almost any Mam^un(ninth century). The numerous observations construction or, even, in the vicinity of these out in the collected by different authors allow us to recognize cen- open. ters established in Shammasiya, Baghdad and Mount Qasiyun, Damascus (Mujani et al. 2012). However, the The oldest building strictly dedicated to astronomy fact that there are no remains, descriptions or illustra- of which there is evidence is Cheomseongdae, in South tions of observatories could mean that no specific space Korea. It was designed as a small bottle-shaped hollow was devoted to this use. This lack of material legacy tower made of masonry. Its function was to enable the makes it extremely difficult to distinguish between the use of astronomical instruments from an elevated posi- observatories of this period and the specific observing tion to avoid surrounding obstacles. It dates from the posts established for an ephemeral study. The main dif- seventh century and remains in a great state of preser- ferences amongst medieval islamic observatories were in vation (Park 2010) and its square top and round body the number of personnel dedicated to them, the qual- reflect the astronomical concept of the time (i.e. the ity of observing equipment and the life span of these Earth was considered a square and the sky was consid- centers.
Recommended publications
  • Manastash Ridge Observatory History by Julie Lutz
    Manastash Ridge Observatory History by Julie Lutz MRO Site Survey: Western Washington has a well-deserved reputation for clouds and rainy weather. Hence, the desirability of an observatory for professional astronomers in Washington state was not instantly obvious. However, a drive to the east side of the Cascade mountains yields much better weather. Long time University of Washington (UW) astronomer Theodor Jacobson started thinking about convenient telescope access for faculty and students when the university decided to expand astronomy dramatically in the mid-1960s. When the first UW astronomy department chair George Wallerstein arrived in 1965, he immediately started a campaign to get a research telescope. Wallerstein came to UW from Berkeley where faculty and Ph.D. students had ready access to telescopes, including a productive 20-inch. He felt strongly that a high-quality research telescope in Washington state would help create a high-quality astronomy department. A grant from the National Science Foundation (NSF) provided enough money to purchase automated cameras for a site survey and a 16-inch Boller and Chivens telescope. The eastern side of the Cascade mountains was the obvious region to survey for the best telescope location. The site had to be within reasonable driving distance of the UW Seattle campus and have road access on at least a dirt/gravel track. Founding telescope engineer and jack-of-all-trades Ed Mannery surveyed severall locations during 1965/66. The best site turned out to be Manastash Ridge on US Forest Service land southwest of Ellensberg. However, Rattlesnake Mountain on the Hanford Reservation (owned by the US Department of Energy) outside of Richland had a developed road and readily-available electricity.
    [Show full text]
  • The 100-Inch Telescope of the Mount Wilson Observatory
    The 100-Inch Telescope of the Mount Wilson Observatory An International Historical Mechanical Engineering Landmark The American Society of Mechanical Engineers June 20, 1981 Mount Wilson Observatory Mount Wilson, California BACKGROUND THE MOUNT WILSON OBSERVATORY was founded in 1904 by the CARNEGIE INSTITUTION OF WASH- INGTON, a private foundation for scientific research supported largely from endowments provided by Andrew Carnegie. Within a few years, the Observatory became the world center of research in the new science of astrophysics, which is the application of principles of physics to astronomical objects beyond the earth. These include the sun, the planets of our solar system, the stars in our galaxy, and the system of galaxies that reaches to the limits of the The completed facility. visible universe. SCIENTIFIC ACHIEVEMENTS The Mount Wilson 100-inch reflector dominated dis- coveries in astronomy from its beginning in 1918 until the dedication of the Palomar 200-inch reflector in 1948. (Both telescopes are primarily the result of the lifework of one man — George Ellery Hale.) Many of the foundations of modern astrophysics were set down by work with this telescope. One of the most important results was the discovery that the intrinsic luminosities (total light output) of the stars could be found by inspection of the record made when starlight is dispersed into a spectrum by a prism or a grating. These so-called spectroscopic absolute lumi- nosities, discovered at Mount Wilson and developed for over forty years, opened the way to an understanding of the evolution of the stars and eventually to their ages. Perhaps the most important scientific discovery of the 20th century is that we live in an expanding Universe.
    [Show full text]
  • A Needs Analysis Study of Amateur Astronomers for the National Virtual Observatory : Aaron Price1 Lou Cohen1 Janet Mattei1 Nahide Craig2
    A Needs Analysis Study of Amateur Astronomers For the National Virtual Observatory : Aaron Price1 Lou Cohen1 Janet Mattei1 Nahide Craig2 1Clinton B. Ford Astronomical Data & Research Center American Association of Variable Star Observers 25 Birch St, Cambridge MA 02138 2Space Sciences Laboratory University of California, Berkeley 7 Gauss Way Berkeley, CA 94720-7450 Abstract Through a combination of qualitative and quantitative processes, a survey was con- ducted of the amateur astronomy community to identify outstanding needs which the National Virtual Observatory (NVO) could fulfill. This is the final report of that project, which was conducted by The American Association of Variable Star Observers (AAVSO) on behalf of the SEGway Project at the Center for Science Educations @ Space Sci- ences Laboratory, UC Berkeley. Background The American Association of Variable Star Observers (AAVSO) has worked on behalf of the SEGway Project at the Center for Science Educations @ Space Sciences Labo- ratory, UC Berkeley, to conduct a needs analysis study of the amateur astronomy com- munity. The goal of the study is to identify outstanding needs in the amateur community which the National Virtual Observatory (NVO) project can fulfill. The AAVSO is a non-profit, independent organization dedicated to the study of vari- able stars. It was founded in 1911 and currently has a database of over 11 million vari- able star observations, the vast majority of which were made by amateur astronomers. The AAVSO has a rich history and extensive experience working with amateur astrono- mers and specifically in fostering amateur-professional collaboration. AAVSO Director Dr. Janet Mattei headed the team assembled by the AAVSO.
    [Show full text]
  • 50 Years of Existence of the European Southern Observatory (ESO) 30 Years of Swiss Membership with the ESO
    Federal Department for Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI 50 years of existence of the European Southern Observatory (ESO) 30 years of Swiss membership with the ESO The European Southern Observatory (ESO) was founded in Paris on 5 October 1962. Exactly half a century later, on 5 October 2012, Switzerland organised a com- memoration ceremony at the University of Bern to mark ESO’s 50 years of existence and 30 years of Swiss membership with the ESO. This article provides a brief summary of the history and milestones of Swiss member- ship with the ESO as well as an overview of the most important achievements and challenges. Switzerland’s route to ESO membership Nearly twenty years after the ESO was founded, the time was ripe for Switzerland to apply for membership with the ESO. The driving forces on the academic side included the Universi- ty of Geneva and the University of Basel, which wanted to gain access to the most advanced astronomical research available. In 1980, the Federal Council submitted its Dispatch on Swiss membership with the ESO to the Federal Assembly. In 1981, the Federal Assembly adopted a federal decree endorsing Swiss membership with the ESO. In 1982, the Swiss Confederation filed the official documents for ESO membership in Paris. In 1982, Switzerland paid the initial membership fee and, in 1983, the first year’s member- ship contributions. High points of Swiss participation In 1987, the Federal Council issued a federal decree on Swiss participation in the ESO’s Very Large Telescope (VLT) to be built at the Paranal Observatory in the Chilean Atacama Desert.
    [Show full text]
  • Sirius - Wikipedia Coordinates: 06 H 4 5 M 08.9 1 7 3 S, −1 6 ° 4 2 ′ 5 8.01 7 ″
    12/2/2018 Sirius - Wikipedia Coordinates: 06 h 4 5 m 08.9 1 7 3 s, −1 6 ° 4 2 ′ 5 8.01 7 ″ Sirius Sirius (/ˈsɪriəs/, a romanization of Greek Σείριος, Seirios, lit. "glowing" or "scorching") is a star system Sirius A and B and the brightest star in the Earth's night sky. With a visual apparent magnitude of −1.46, it is almost twice as bright as Canopus, the next brightest star. The system has the Bayer designation Alpha Canis Majoris (α CMa). What the naked eye perceives as a single star is a binary star system, consisting of a white main-sequence star of spectral type A0 or A1, termed Sirius A, and a faint white dwarf companion of spectral type DA2, called Sirius B. The distance separating Sirius A from its companion varies between 8.2 and 31.5 AU.[24] Sirius appears bright because of its intrinsic luminosity and its proximity to Earth. At a distance of 2.6 parsecs (8.6 ly), as determined by the Hipparcos astrometry satellite,[2][25][26] the Sirius system is one of Earth's near neighbours. Sirius is gradually moving closer to the Solar System, so it will slightly increase in brightness over the next 60,000 years. After that time its distance will begin to increase and it will become fainter, but it will continue to be the brightest star in the Earth's night sky for the next 210,000 years.[27] The position of Sirius (circled). Sirius A is about twice as massive as the Sun (M☉) and has an absolute visual magnitude of 1.42.
    [Show full text]
  • Thestargazer
    The StarGazer http://www.raclub.org/ Newsletter of the Rappahannock Astronomy Club No. 2 Vol. 7 August 2018–October 2018 Pilgrimage to the Great Refractor By Scott Busby “Time always takes from us those things we hold most dear” The Yerkes Observatory belongs to the Department of Astronomy and Astrophysics of the University of Chicago (UChicago). Established in 1897 on Lake Geneva in Williams Bay, Wisconsin, the observatory, situated on a 78-acre park site, houses all the Department’s activities. Most of the important history of Yerkes Observatory can be found at astro.uchicago.edu. I won’t elaborate too much on its history here; suffice it to say that this great observatory was the result of the hard work and dedication of George Ellery Hale (1868– 1938). Hale had a unique ability to talk wealthy tycoons into funding his astronomical endeavors—pun intended. We can thank him for some of the great telescopes of our time. Some of the more familiar are the 60- and 100-inch Hooker reflecting telescopes on Mount Wilson near Pasadena and his namesake, the Great 200-inch Hale reflecting telescope at Mount Palomar observatory near San Diego. On March 7, 2018, UChicago announced plans to wind down its activities at Yerkes Observatory. As a result, the observatory will close its doors to visitors and researchers on October 1, 2018, with no prospects and no immediate plans to reopen In the last month, my wife Debbie and I decided to take a trip to Williams Bay to visit the Yerkes Observatory and its great 40- The 40-Inch Alvan Clark & Sons Refractor Credit: inch refractor telescope.
    [Show full text]
  • Lick Observatory Records: Photographs UA.036.Ser.07
    http://oac.cdlib.org/findaid/ark:/13030/c81z4932 Online items available Lick Observatory Records: Photographs UA.036.Ser.07 Kate Dundon, Alix Norton, Maureen Carey, Christine Turk, Alex Moore University of California, Santa Cruz 2016 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Lick Observatory Records: UA.036.Ser.07 1 Photographs UA.036.Ser.07 Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Photographs Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.07 Physical Description: 101.62 Linear Feet127 boxes Date (inclusive): circa 1870-2002 Language of Material: English . https://n2t.net/ark:/38305/f19c6wg4 Conditions Governing Access Collection is open for research. Conditions Governing Use Property rights for this collection reside with the University of California. Literary rights, including copyright, are retained by the creators and their heirs. The publication or use of any work protected by copyright beyond that allowed by fair use for research or educational purposes requires written permission from the copyright owner. Responsibility for obtaining permissions, and for any use rests exclusively with the user. Preferred Citation Lick Observatory Records: Photographs. UA36 Ser.7. Special Collections and Archives, University Library, University of California, Santa Cruz. Alternative Format Available Images from this collection are available through UCSC Library Digital Collections. Historical note These photographs were produced or collected by Lick observatory staff and faculty, as well as UCSC Library personnel. Many of the early photographs of the major instruments and Observatory buildings were taken by Henry E. Matthews, who served as secretary to the Lick Trust during the planning and construction of the Observatory.
    [Show full text]
  • THE ARECIBO OBSERVATORY PLANETARY RADAR SYSTEM. P. A. Taylor 1, M. C. Nolan2, E. G. Rivera-Valentın1, J. E. Richardson1, L. A
    47th Lunar and Planetary Science Conference (2016) 2534.pdf THE ARECIBO OBSERVATORY PLANETARY RADAR SYSTEM. P. A. Taylor1, M. C. Nolan2, E. G. Rivera-Valent´ın1, J. E. Richardson1, L. A. Rodriguez-Ford1, L. F. Zambrano-Marin1, E. S. Howell2, and J. T. Schmelz1; 1Arecibo Observatory, Universities Space Research Association, HC 3 Box 53995, Arecibo, PR 00612 ([email protected]); 2Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721. Introduction: The William E. Gordon telescope at of Solar System objects at radio wavelengths. The Arecibo Observatory in Puerto Rico is the largest and unmatched sensitivity of Arecibo allows for detection most sensitive single-dish radio telescope and the most of any potentially hazardous asteroid (PHA; absolute active and powerful planetary radar facility in the world. magnitude H < 22) that comes within ∼0.05 AU of Since opening in 1963, Arecibo has made significant Earth (∼20 lunar distances) and most any asteroid scientific contributions in the fields of planetary science, larger than ∼10 meters (H < 27) within ∼0.015 AU radio astronomy, and space and atmospheric sciences. (∼6 lunar distances) in the Arecibo declination window Arecibo is a facility of the National Science Founda- (0◦ to +38◦), as well as objects as far away as Saturn. tion (NSF) operated under cooperative agreement with In terms of near-Earth objects, Arecibo observations SRI International along with Universities Space Re- are critical for identifying those objects that may be on search Association and Universidad Metropolitana, part a collision course with Earth in addition to providing of the Ana G.
    [Show full text]
  • George Willis Ritchey: Astrophotographer by Robert Anderson
    S P R I N G Q U A R T E R / M A R C H 2 0 1 9 George Willis Ritchey: Astrophotographer By Robert Anderson A century ago, Mount Wilson Observatory lost a brilliant astronomer — George Willis Ritchey. When George Ellery Hale left Yerkes Observatory in 1904 to create Mount Wilson, Ritchey was one of four staff members he brought with him. Hale knew he would be indispensable to the new endeavor. And Ritchey was. He designed and built almost every early telescope and optical component on the mountain. Yet for all his contributions, a clash of egos with Hale and charges of disloyalty lead to his dismissal on October 31, 1919. The story of this unpleasant affair is well told by astronomer Donald Osterbrock in his 1993 book, Pauper & Prince: Ritchey, Hale, and Big American Telescopes. It is also the best account of the master optician and his genius (from which much of the information in this article is derived). On the centennial of Ritchey’s On ecember th, , eorge itchey took his rst departure, let’s celebrate his amazing work instead. photograph with the new 60-inch Telescope on Mount Wilson. He chose the Orion Nebula. Perhaps the most Ritchey wore many hats. He was an astronomer, a photographed object in the night sky, recording details of telescope designer, and an expert optician. He took the its glowing gases is a true test of an astrophotographer’s technology of mirror grinding to new levels of perfection equipment and skills. Credit: Carnegie Observatories. —such that his 60-inch mirror grinding machine now rests in the Smithsonian.
    [Show full text]
  • Historyofthetelescope
    HISTORY OF THE TELESCOPE Pedro Ré http://pedroreastrophotography.com/ Contents Joseph von Fraunhofer (1787 - 1826) and the Great Dorpat refractor .................................................. 3 Alvan Clark (1804-1887), George Bassett Clark (1827-1891) and Alvan Graham Clark (1832-1897): American makers of telescope optics. .................................................................................................. 13 William Parsons (1800-1867) e o Leviatã de Parsonstown (in Portuguese) ......................................... 21 O Telescópio de Craig (1852) (in Portuguese) ...................................................................................... 29 The 25-inch Newall Refractor ............................................................................................................... 37 The Kew Photoheliograph ..................................................................................................................... 43 O Grande Telescópio de Melbourne (in Portuguese) ........................................................................... 51 O Grande Refractor da Exposição de Paris (1900) (in Portuguese) ...................................................... 61 William Lassell’s (1799-1880) Telescopes and the discovery of Triton ................................................ 71 James Nasmyth’s (1808-1890) telescopes ............................................................................................ 77 The 36-inch Crosley Reflector ..............................................................................................................
    [Show full text]
  • Observational Astronomy Introduction
    Observational Astronomy Introduction Ast 401/Phy 580 Fall 2015 Dr. Philip Massey Photo by Kathryn Neugent Phil Photo by Kathryn Neugent Astronomer at Lowell Observatory since 2000 Photo by Kathryn Neugent Lowell Observatory Astronomer at Kitt Peak National Observatory (1984-2000) Photo by Kathryn Neugent Kitt Peak 4-meter Mayall telescope Adjunct at NAU (1993-present) Taught AST 180/181 various times Teaching AST 401/PHY 580 since Fall 2013 Photo by Kathryn Neugent Research Interests: Massive Stars Most luminous Hottest (on MS) Coolest (red supergiants) Weirdest Photo by Kathryn Neugent M31: the Andromeda Galaxy SMC LMC The 6.5-meter MMT Observatory Photo by Kathryn Neugent 6.5-meter Clay Magellan telescope Photo by Yuri Beletsky Photo by Yuri Beletsky How does it work? • Two 75-minute traditional lectures per week (T, Th 9:35-10:50am), going a bit deeper than the text. Instructor: me (Philip Massey) • Lab every Wednesday afternoon 3:00-5:30pm with telescope reserved Wednesday evenings (7:00-9:30pm). Instructor: Ed Anderson • Single grade (60% class, 40% lab) How does it work? • Ast 401/401L is “advanced” class for astronomy majors. • Phy 580 students will also give a short presentation. • Study some of techniques of research astronomy. • Much more computer analysis than observing. • Use campus 20-in to collect data for analysis. • Field trip to the 4.3-meter DCT---pretty pictures! Overview 1. The Basics A. Celestial sphere and coordinates--Chapter 1+suppl. B. Time--Chapter 2+suppl. C. Spherical triangles—Chapter 4 D. Catalogs (Guest lecture: Brian Skiff)—Chapter 3. E.
    [Show full text]
  • Astronomical Observations: a Guide for Allied Researchers
    Astronomical observations: a guide for allied researchers P. Barmby Department of Physics & Astronomy University of Western Ontario London, Canada N6A 3K7 March 13, 2019 Abstract Observational astrophysics uses sophisticated technology to collect and measure electro- magnetic and other radiation from beyond the Earth. Modern observatories produce large, complex datasets and extracting the maximum possible information from them requires the expertise of specialists in many fields beyond physics and astronomy, from civil engineers to statisticians and software engineers. This article introduces the essentials of professional astronomical observations to colleagues in allied fields, to provide context and relevant back- ground for both facility construction and data analysis. It covers the path of electromagnetic radiation through telescopes, optics, detectors, and instruments, its transformation through processing into measurements and information, and the use of that information to improve our understanding of the physics of the cosmos and its history. 1 What do astronomers do? Everyone knows that astronomers study the sky. But what sorts of measurements do they make, and how do these translate into data that can be analyzed to understand the universe? This article introduces astronomical observations to colleagues in related fields (e.g., engineering, statistics, computer science) who are assumed to be familiar with quantitative measurements and computing but not necessarily with astronomy itself.1 Specialized terms which may be unfamiliar to the reader are italicized on first use. The references in this article include a mix of technical papers and less- technical descriptive works. Shorter introductions to astronomical observations, data and statistics are given by [29, 33]. Comprehensive technical introductions to astronomical observations are found in several recent textbooks [12, 45, 50].
    [Show full text]