Power Savings in Mpsoc
Total Page:16
File Type:pdf, Size:1020Kb
DEGREE PROJECT, IN , SECOND LEVEL STOCKHOLM, SWEDEN 2009 Power Savings in MPSoC IOANNIS SAVVIDIS KTH ROYAL INSTITUTE OF TECHNOLOGY ICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY TRITA TRITA-ICT-EX-2009:158 www.kth.se Power Savings in MPSoC Ioannis T. Savvidis Master of Science Thesis Stockholm, Sweden 2009 TRITA -ICT -EX -2009:158 PPOOWWEERR SSAAVVIINNGGSS IINN MMPPSSOOCC by Ioannis T. Savvidis [email protected] , [email protected] A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Master of Science Supervisors: Industry: Tume Wihamre KTH: Johnny Öberg Examiner: Prof. Ahmed Hemani Ericsson AB Royal Institute of Technology (KTH) Stockholm, September 2009 This page has been intentionally left blank. ii “For the things we have to learn before we can do, we learn by doing” Aristotle, 384BC (Stageira) - 322BC (Chalcis) Ioannis Savvidis: Power Savings in MPSoC MSc dissertation project, ©September 2009 This thesis report is submitted in partial fulfillment of the requirements for the degree of Master of Science at the Royal Institute of Technology (KTH), Stockholm, Sweden. Content is based on the work carried out in the Department of Digital ASIC, Signal Processing HW at Ericsson AB, Kista, Stockholm, Sweden. Copyright and similar legal issues are regulated by employment contracts established between ERICSSON AB and the author. iii This page has been intentionally left blank. iv Abstract High performance integrated circuits suffer from a permanent increase of the dissipated power per square millimeter of silicon, over the past years. This phenomenon is driven by the miniaturization of CMOS processes, increasing packing density of transistors and increasing clock frequencies of microchips, thus pushing heat removal and power distribution to the forefront of the problems confronting the advance of microelectronics. In the opposite direction is the market growth of mainstream portable devices, which require extremely low power consumption. These evolving factors brought power dissipation into play and transformed it into a major design metric. This thesis comprises those knowledge and methodological tools that can offer a preliminary safe path toward less power-hungry SoC and MPSoC designs, thus contributing towards a holistic approach of power-related effects. This is accomplished by providing the essential theoretical background of CMOS power dissipation, investigating a vast range of power saving techniques and plotting their classifications, according to the power components each technique is meant to suppress and the level of abstraction that it can be applied at, thus facilitating proper decision making about which power saving techniques to apply on a certain design. Moreover, this thesis implements, demonstrates and evaluates generic power analysis and optimization flows that are based on the ASIC industry’s de facto standard Synopsys tools. The tools’ actual capabilities are contrasted to the theoretical expectations and the chief tradeoffs that are involved in terms of speed versus accuracy and attainable power savings versus abstraction level are stressed. Our extracted power results, for an Ericsson’s large ASIC block, show that by putting emphasis on coping with power early, thus enhancing typical synthesis flows with an appropriate set of techniques, significant savings can be achieved for both dynamic and static power components in the front-end synthesis domain. v This page has been intentionally left blank. vi Table of Contents PREFACE ........................................................................................................................ XIII CHAPTER 1........................................................................................................................1 INTRODUCTION .................................................................................................................1 1.1 Problem description ................................................................................................1 1.2 Contributions ..........................................................................................................2 1.3 Organization ...........................................................................................................3 1.4 References ..............................................................................................................3 CHAPTER 2........................................................................................................................5 AN OVERVIEW OF POWER DISSIPATION IN CMOS C IRCUITS .............................................5 2.1 Components of power dissipation in CMOS circuits................................................5 2.1.1 Dynamic power dissipation ..............................................................................6 2.1.2 Short-circuit power dissipation.........................................................................8 2.1.3 Static power dissipation....................................................................................8 2.1.4 Leakage power dissipation ...............................................................................8 2.2 Principles for power reduction............................................................................... 12 2.3 Synopsys terms used for power dissipation components ........................................14 2.4 References ............................................................................................................ 14 CHAPTER 3...................................................................................................................... 17 POWER REDUCTION TECHNIQUES ....................................................................................17 3.1 Categorization of power reduction techniques........................................................17 3.2 Transient power component reduction techniques..................................................18 3.2.1 Operator selection for low power....................................................................19 3.2.2 Precomputation .............................................................................................. 19 3.2.3 Guarded evaluation ........................................................................................ 20 3.2.4 Operand Isolation........................................................................................... 21 3.2.5 Operator Reduction ........................................................................................ 22 3.2.6 Data Representation ....................................................................................... 22 3.2.7 Pipelining and Parallelism.............................................................................. 23 3.2.8 Register Retiming .......................................................................................... 24 3.2.9 Clock Gating.................................................................................................. 24 3.2.10 Gated-clock FSM......................................................................................... 25 3.2.11 FSM state encoding...................................................................................... 26 3.2.12 FSM partitioning.......................................................................................... 27 3.2.13 Bus encoding ............................................................................................... 28 3.2.14 Multi-VDD Design.........................................................................................29 3.2.15 Dynamic Voltage and Frequency Scaling .....................................................30 3.3 Static power component reduction techniques........................................................31 vii 3.3.1 Power Gating ................................................................................................. 32 3.3.2 Body Bias Control.......................................................................................... 33 3.3.3 Minimum Leakage Vector.............................................................................. 34 3.3.4 Stack Effect-based technique.......................................................................... 35 3.3.5 Dual and Multiple Threshold Cells .................................................................36 3.3.6 Long Channel Devices ................................................................................... 36 3.3.7 Summary of the presented power reduction techniques ...................................37 3.4 The importance of early decisions ......................................................................... 37 3.5 Alternative classification of power reduction techniques........................................39 3.6 References ............................................................................................................ 40 CHAPTER 4...................................................................................................................... 47 POWER ANALYSIS FLOWS ...............................................................................................47 4.1 Estimation of power consumption .........................................................................47 4.2 A brief introduction to PrimeTime ® PX................................................................. 50 4.3 Implemented power analysis flows ........................................................................ 51 4.3.1 RTL power analysis flow ..............................................................................