Mountain Chicken Live Food Manual.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(2007) a Photographic Field Guide to the Reptiles and Amphibians Of
A Photographic Field Guide to the Reptiles and Amphibians of Dominica, West Indies Kristen Alexander Texas A&M University Dominica Study Abroad 2007 Dr. James Woolley Dr. Robert Wharton Abstract: A photographic reference is provided to the 21 reptiles and 4 amphibians reported from the island of Dominica. Descriptions and distribution data are provided for each species observed during this study. For those species that were not captured, a brief description compiled from various sources is included. Introduction: The island of Dominica is located in the Lesser Antilles and is one of the largest Eastern Caribbean islands at 45 km long and 16 km at its widest point (Malhotra and Thorpe, 1999). It is very mountainous which results in extremely varied distribution of habitats on the island ranging from elfin forest in the highest elevations, to rainforest in the mountains, to dry forest near the coast. The greatest density of reptiles is known to occur in these dry coastal areas (Evans and James, 1997). Dominica is home to 4 amphibian species and 21 (previously 20) reptile species. Five of these are endemic to the Lesser Antilles and 4 are endemic to the island of Dominica itself (Evans and James, 1997). The addition of Anolis cristatellus to species lists of Dominica has made many guides and species lists outdated. Evans and James (1997) provides a brief description of many of the species and their habitats, but this booklet is inadequate for easy, accurate identification. Previous student projects have documented the reptiles and amphibians of Dominica (Quick, 2001), but there is no good source for students to refer to for identification of these species. -
Evolution of Oviductal Gestation in Amphibians MARVALEE H
THE JOURNAL OF EXPERIMENTAL ZOOLOGY 266394-413 (1993) Evolution of Oviductal Gestation in Amphibians MARVALEE H. WAKE Department of Integrative Biology and Museum of Vertebrate Zoology, University of California,Berkeley, California 94720 ABSTRACT Oviductal retention of developing embryos, with provision for maternal nutrition after yolk is exhausted (viviparity) and maintenance through metamorphosis, has evolved indepen- dently in each of the three living orders of amphibians, the Anura (frogs and toads), the Urodela (salamanders and newts), and the Gymnophiona (caecilians). In anurans and urodeles obligate vivi- parity is very rare (less than 1%of species); a few additional species retain the developing young, but nutrition is yolk-dependent (ovoviviparity) and, at least in salamanders, the young may be born be- fore metamorphosis is complete. However, in caecilians probably the majority of the approximately 170 species are viviparous, and none are ovoviviparous. All of the amphibians that retain their young oviductally practice internal fertilization; the mechanism is cloaca1 apposition in frogs, spermato- phore reception in salamanders, and intromission in caecilians. Internal fertilization is a necessary but not sufficient exaptation (sensu Gould and Vrba: Paleobiology 8:4-15, ’82) for viviparity. The sala- manders and all but one of the frogs that are oviductal developers live at high altitudes and are subject to rigorous climatic variables; hence, it has been suggested that cold might be a “selection pressure” for the evolution of egg retention. However, one frog and all the live-bearing caecilians are tropical low to middle elevation inhabitants, so factors other than cold are implicated in the evolu- tion of live-bearing. -
Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus Opercularis)
animals Article Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus opercularis) Anita Rácz 1,* ,Gábor Adorján 2, Erika Fodor 1, Boglárka Sellyei 3, Mohammed Tolba 4, Ádám Miklósi 5 and Máté Varga 1,* 1 Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] 2 Budapest Zoo, Állatkerti krt. 6-12, H-1146 Budapest, Hungary; [email protected] 3 Fish Pathology and Parasitology Team, Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; [email protected] 4 Department of Zoology, Faculty of Science, Helwan University, Helwan 11795, Egypt; [email protected] 5 Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] * Correspondence: [email protected] (A.R.); [email protected] (M.V.) Simple Summary: Paradise fish (Macropodus opercularis) has been a favored subject of behavioral research during the last decades of the 20th century. Lately, however, with a massively expanding genetic toolkit and a well annotated, fully sequenced genome, zebrafish (Danio rerio) became a central model of recent behavioral research. But, as the zebrafish behavioral repertoire is less complex than that of the paradise fish, the focus on zebrafish is a compromise. With the advent of novel methodologies, we think it is time to bring back paradise fish and develop it into a modern model of Citation: Rácz, A.; Adorján, G.; behavioral and evolutionary developmental biology (evo-devo) studies. The first step is to define the Fodor, E.; Sellyei, B.; Tolba, M.; housing and husbandry conditions that can make a paradise fish a relevant and trustworthy model. -
Veganism: a New Approach to Health Miljana Z
Chapter Veganism: A New Approach to Health Miljana Z. Jovandaric Abstract The word vegan was given by Donald Watson in 1944 in Leicester, England, who, together with several other members of the Vegetarian Society, wanted to establish a group of vegetarians who did not consume milk or dairy products. When the proposal was rejected, Watson and like-minded people founded The Vegan Society, which advocated a complete plant-based diet, excluding meat, fish, eggs, milk and dairy products (cheese, butter) and honey. Vegans do not wear fur items, wool, bone, goat, coral, pearl or any other material of animal origin. According to surveys, vegans make up between 0.2% and 1.3% of the US population and between 0.25% and 7% of the UK population. Vegan foods contain lower levels of cholesterol and fat than the usual diet. Keywords: veganism, health, supplements 1. Introduction Veganism is a philosophy and lifestyle that seeks to exclude the use of animals for food or clothing and includes all other forms of diet of non-animal origin. Vegan diet is based on cereals, legumes, fruits and vegetables. Vegans do not eat meat, fish, seafood, eggs, milk, dairy products, honey threads carry things made of fur, wool, bones, leather, coral, pearls or any other materials of animal origin. Within the commitment to a vegan lifestyle, there is a group of people who eat exclusively fresh raw fruits, vegetables without heat treatment. This group of vegans is called a row food diet. Veganism differs from vegetarianism in that it is reduced entirely to a plant-based diet, while vegetarians also eat some products of animal origin, when animals are not killed when obtaining these products, e.g. -
State-Of-The-Art on Use of Insects As Animal Feed
State-of-the-art on use of insects as animal feed Harinder P.S. Makkar1, Gilles Tran2, Valérie Heuzé2 and Philippe Ankers1 1 Animal Production and Health Division, FAO, Rome 2 Association Française de Zootechnie, Paris, France Full reference of the paper: Animal Feed Science and Technology, Volume 197, November 2014, pages 1-33 Link: http://www.animalfeedscience.com/article/S0377-8401(14)00232-6/abstract http://dx.doi.org/10.1016/j.anifeedsci.2014.07.008 Abstract A 60-70% increase in consumption of animal products is expected by 2050. This increase in the consumption will demand enormous resources, the feed being the most challenging because of the limited availability of natural resources, ongoing climatic changes and food-feed-fuel competition. The costs of conventional feed resources such as soymeal and fishmeal are very high and moreover their availability in the future will be limited. Insect rearing could be a part of the solutions. Although some studies have been conducted on evaluation of insects, insect larvae or insect meals as an ingredient in the diets of some animal species, this field is in infancy. Here we collate, synthesize and discuss the available information on five major insect species studied with respect to evaluation of their products as animal feed. The nutritional quality of black soldier fly larvae, the house fly maggots, mealworm, locusts- grasshoppers-crickets, and silkworm meal and their use as a replacement of soymeal and fishmeal in the diets of poultry, pigs, fish species and ruminants are discussed. The crude protein contents of these alternate resources are high: 42 to 63% and so are the lipid contents (up to 36% oil), which could possibly be extracted and used for various applications including biodiesel production. -
Identifying Lethal Temperatures Targeting Immature Life Stage Control of Spotted Wing Drosophila
AGRICULTURAL RESEARCH FOUNDATION FINAL REPORT FUNDING CYCLE 2015 – 2017 TITLE: Identifying Lethal Temperatures Targeting Immature Life Stage Control of Spotted Wing Drosophila RESEARCH LEADER: Vaughn Walton COOPERATORS: Daniel Dalton, Riki York SUMMARY: Survival of spotted wing drosophila (D. suzukii, SWD) larvae to adulthood was evaluated after exposure to temperatures ranging 29-49°C in a laboratory thermal gradient bench for 60 minutes. Vials filled with pre-made fly diet up to approximately 1.5 cm from the bottom were used as oviposition media inside the gradient wells. Forty-three vials were prepared each day for 4 consecutive days. Five adult females were placed in each of 36 vials for 24 hours for oviposition to occur, seven vials were held as controls without flies. Upon removal, adult flies were placed in ethanol. Four ages were tested between 1-4-day old egg/larvae (i.e. 1 day old, 2 days old, 3 days old, and four days old). Sample vials were examined for oviposition success. Immature flies exposed temperatures of 32-35°C had the highest survival to adulthood. Above 38°C survival to adulthood with no survival at 41°C and 49°C, and a few surviving to adulthood under 45°C. An additional trial was conducted to evaluate the potential for thermal conditioning to improve larval survival at higher temperatures. For this study, four-day-old larvae were subject to 30, 60, and 90 minutes at 35°C, then allowed to cool to room temperature (22°C) for 60 minutes prior to placement in the thermal bench. These trials were used to determine how heat may reduce successful development to adulthood, leading to better management practices in the field. -
Lovewisdom, Johnny. Modern Live Juice Therapy
MODERN LIVE JUICE THERAPY by Johnny Lovewisdom Note: The author and publisher are not responsible for any adverse effects or consequences occurring from the ideas, procedures or suggestions in this book. This book is not intended to replace the advice of a trained health professional. If you have a health problem you should consult a holistically and nutritionally inclined health professional. Copyright 1964 by Johnny Lovewisdom FOREWORD This work was begun in 1962 and finished in 1964, which included my moving from the cool damp 8,000 foot altitude “temperate” climate at my place on the river near Otavalo, north Ecuador, to the warm dry 6,800 foot “tropical” climate of my new home at “Paradise” Vilcabamba, south Ecuador. The first chapter begins with my mind drowned in diseased condition of body, fighting kidney failure constantly only 3 or 4 days from death, a lack of circulation in the lower extremities, pale and discouraged: Someone was saying “Physician, heal thyself”. Finishing this book, after a year at my new found Paradise I forgot to mention my own condition, praising the health work of others thru live juice therapy. When people ask me if it is true that Vilcabamba is an “Isle of Immunity”, I tell them, not only does it heal cardiovascular ailments, arthritis, rheumatism, asthma, etc. but I don’t know of a condi- tion that Vilcabamba’s location could not help! “But what about the plague of anemia and some kidney trouble the inhabitants complain about?” But look here, I reply, everyone is remarking how pale I arrived and how rosy and healthier appearance I have gained, healing my anemia. -
Proceedings of the 1 Australasian Regional Environmental
Proceedings of the 1st Australasian Regional Environmental Enrichment Conference. 1st -2nd November, 2006. The Royal Melbourne Zoological Gardens. Day 1 1 Wednesday 1 st November • Starting a training program for Sun Bear ( Helarctos malaynus ) at Perth Zoo: Incorporating animal management, medical management and behavioural enrichment. o Karen Rotherham- Perth Zoo • Life can be serious……but it can also be seriously good fun! o Michelle Whybrow- Auckland Zoo • (In)Valuable, Versatile Volunteers o Ray Wilton- Melbourne Zoo • Enrichment – a way of life, not just a novel object o Kerrie Haynes-Lovell- Queensland. • Evaluating enrichment: Why and how? o Margaret Hawkins- Zoological parks Board of NSW • Captivating Canids; Dingo enrichment at Healesville Sanctuary o Raegan Di Paolo and Adrian Mifsud- Healesville Sanctuary • Environmental Enrichment for shelter cats and dogs o Linda Marston - Anthrozoology Research Group, Monash University • A Behaviour Enrichment Plan for Tasmanian Devils Sarcophilus harrisii o Mandy Smith- Adelaide Zoo • Enriched Learning o Rick Hammond- Melbourne Zoo • The Challenges of enriching the birds and mammals of the Australian Bush Precinct at Melbourne Zoo o Megan Richardson and Karina Cartwright- Melbourne Zoo • When Enrichment Goes Bad o Dr Kate Bodley- Melbourne Zoo • Environmental Enrichment Plan for Elasmobranchs at Shark Bay o Sara Smith- Sea World, Gold Coast, Australia • Werribee’s Immobilisation Sling- Enrichment for all o Bev Drake & Joe Parsons- Werribee Open Range Zoo • Animal & Keeper Friendly Enrichment Toys o Joe Parsons- Aussie Dog 2 Starting a training program for Sun Bear ( Helarctos malaynus ) at Perth Zoo: Incorporating animal management, medical management and behavioural enrichment. Karen Rotherham Perth Zoo. Abstract We will soon be receiving two sun bears from Cambodia, 1.1. -
Wild Animal Welfare: Management of Wildlife Lecture Notes
Module 21 Wild Animal Welfare: Management of Wildlife Lecture Notes Slide 1: This lecture was first developed for World Animal Protection by Dr Christine Leeb (University of Bristol) in 2003 and updated by Dr Matt Leach (University of Bristol) in 2007. It was revised by World Animal Protection scientific advisors in 2012 using updates provided by Dr Caroline Hewson. Slide 2: Today’s lecture introduces you to some of the biggest welfare issues affecting wildlife. We will concentrate on the main issues affecting free-living wildlife, and then focus on the welfare of captive wildlife. We will also touch on some ways that the welfare issues concerned might be resolved. Slide 3: In this module, we define a wild animal as: a free-living or captive animal from a species that typically lives without human intervention, and whose parents and forebears were not selectively bred for docility or ease of handling. As with other species, our concern for the welfare of wild animals concerns their physical functioning, their mental state/feelings and the performance of behaviours that are important to them. Typically welfare concerns revolve around birds and terrestrial vertebrates. However, note that all vertebrates are sentient, including fish, and that many invertebrates are likely to be sentient too or, at least, to be able to suffer pain. When we consider wild animals within the common ethical frameworks, respect for nature is commonly invoked by conservationists. That framework places more emphasis on the continuing welfare of the species as a whole, such that the functioning, feelings and behavioural aspects of an individual’s experience may be subordinated to the collective feelings, functioning and continued natural behaviour of the species and, perhaps, the wider ecosystem. -
Saving the Mountain Chicken
Saving the mountain chicken Long-Term Recovery Strategy for the Critically Endangered mountain chicken 2014-2034 Adams, S L, Morton, M N, Terry, A, Young, R P, Dawson, J, Martin, L, Sulton, M, Hudson, M, Cunningham, A, Garcia, G, Goetz, M, Lopez, J, Tapley, B, Burton, M and Gray, G. Front cover photograph Male mountain chicken. Matthew Morton / Durrell (2012) Back cover photograph Credits All photographs in this plan are the copyright of the people credited; they must not be reproduced without prior permission. Recommended citation Adams, S L, Morton, M N, Terry, A, Young, R P, Dawson, J, Martin, L, Sulton, M, Cunningham, A, Garcia, G, Goetz, M, Lopez, J, Tapley, B, Burton, M, and Gray, G. (2014). Long-Term Recovery Strategy for the Critically Endangered mountain chicken 2014-2034. Mountain Chicken Recovery Programme. New Information To provide new information to update this Action Plan, or correct any errors, e-mail: Jeff Dawson, Amphibian Programme Coordinator, Durrell Wildlife Conservation Trust, [email protected] Gerard Gray, Director, Department of Environment, Ministry of Agriculture, Land, Housing and Environment, Government of Montserrat. [email protected] i Saving the mountain chicken A Long-Term Recovery Strategy for the Critically Endangered mountain chicken 2014-2034 Mountain Chicken Recovery Programme ii Forewords There are many mysteries about life and survival on Much and varied research and work needs continue however Montserrat for animals, plants and amphibians. In every case before our rescue mission is achieved. The chytrid fungus survival has been a common thread in the challenges to life remains on Montserrat and currently there is no known cure. -
German Cockroach, Blattella Germanica (Linnaeus) (Insecta: Blattodea: Blattellidae)1 S
EENY-002 doi.org/10.32473/edis-in1283-2020 German Cockroach, Blattella germanica (Linnaeus) (Insecta: Blattodea: Blattellidae)1 S. Valles2 The Featured Creatures collection provides in-depth profiles of Distribution insects, nematodes, arachnids and other organisms relevant The German cockroach is found throughout the world to Florida. These profiles are intended for the use of interested in association with humans. They are unable to survive laypersons with some knowledge of biology as well as in locations away from humans or human activity. The academic audiences. major factor limiting German cockroach survival appears to be cold temperatures. Studies have shown that German Introduction cockroaches were unable to colonize inactive ships during The German cockroach (Figure 1) is the cockroach of cool temperatures and could not survive in homes without concern, the species that gives all other cockroaches a bad central heating in northern climates. The availability name. It occurs in structures throughout Florida, and is of water, food, and harborage also govern the ability of the species that typically plagues multifamily dwellings. In German cockroaches to establish populations, and limit Florida, the German cockroach may be confused with the growth. Asian cockroach, Blattella asahinai Mizukubo. While these cockroaches are very similar, there are some differences that Description a practiced eye can discern. Egg Eggs are carried in an egg case, or ootheca, by the female until just before hatch occurs. The ootheca can be seen protruding from the posterior end (genital chamber) of the female. Nymphs will often hatch from the ootheca while the female is still carrying it (Figure 2). -
The Reproductive Biology of Pempheris Schwenkii (Pempheridae)
Zoological Studies 51(7): 1086-1093 (2012) The Reproductive Biology of Pempheris schwenkii (Pempheridae) on Okinawa Island, Southwestern Japan Keita Koeda1,*, Taiki Ishihara1, and Katsunori Tachihara2 1Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan 2Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan. E-mail:[email protected] (Accepted May 24, 2012) Keita Koeda, Taiki Ishihara, and Katsunori Tachihara (2012) The reproductive biology of Pempheris schwenkii (Pempheridae) on Okinawa Island, southwestern Japan. Zoological Studies 51(7): 1086-1093. The reproductive biology of Pempheris schwenkii, one of the most common nocturnal fishes in Okinawan waters, was studied using a total of 1834 specimens (3.1-125.9 mm standard length, SL) collected around Okinawa I. The spawning season was estimated to occur from Jan. to June, with a peak from Feb. to May, based on monthly changes in the gonadosomatic index and histological observations of the ovaries. The relationship between the SL and the appearance of mature females, and the monthly growth of the 0+ group suggested that maturity occurred at ca. 70 mm SL, corresponding to 1 yr after hatching. Spawning was not related to the lunar cycle. The batch fecundity of P. schwenkii was calculated as ca. 700-4100 eggs. Pempheris schwenkii appeared to spawn at night based on diurnal changes in the frequency of females exhibiting hydrated ovaries and postovulatory follicles. Such nighttime spawning seems to reduce the risk of predation of adults and eggs, which may be an adaptive characteristic of nocturnal fishes.