Eine Fields-Medaille Für Elon Lindenstrauss

Total Page:16

File Type:pdf, Size:1020Kb

Eine Fields-Medaille Für Elon Lindenstrauss Eine Fields-Medaille für Elon Lindenstrauss Manfred Einsiedler einfachste mathematische Modell eines dynamischen Sys- tems besteht aus dem halb-offenen Intervall X =[0, 1) und der Abbildung Rα(x)=x +α, die den Punkt x auf den Nachkommaanteil der Summe x + α für ein festes α ∈ R abbildet. Einer der grundlegendsten Sätze der Ergodentheorie ist der Ergodensatz von Birkhoff: In einem ergodischen Sys- tem, welches aus einer Abbildung T : X → X auf einem Raum X und einem invarianten Maß μ auf X (in ande- ren Worten einer stationären Integrationsmethode von Funktionen auf X) besteht, gilt, dass der Grenzwert Elon Lindenstrauss XN 1 n lim f (T (x)) (1) N→∞ N Elon Lindenstrauss hat vergangenen Sommer im Rahmen n=1 der Eröffnungszeremonie der ICM 2010 in Hyderabad In- f μ x ∈ X dien eine der vier Fields-Medaillen verliehen bekommen. für jede integrierbare Funktion und -fast jedem x Die Begründung des Preiskommittee für die Entschei- existiert. Hier sollte das „fast jedes “ so interpretiert dung war „. for his results on measure rigidity in er- werden: Es kann zwar sein, dass es Punkte gibt, an denen godic theory and their applications to number theory“. obiger Grenzwert nicht existiert, aber statistisch gese- Wir wollen hier kurz seine wichtigsten Arbeiten erläu- hen sind solche Punkte vernachlässigbar. Boltzmanns Er- tern und auch Elon Lindenstrauss als Person vorstellen. godenhypothese besagte ursprünglich, dass die Bahn ei- nes Punktes x, T (x), T 2(x), ... jeden anderen Punkt mit Elon ist in Jerusalem als Sohn von Joram Linden- derselben Energie erreicht. Dies ist aus mengentheore- strauss, Mathematik-Professor an der Hebrew Univer- tischen Gründen (und wenn man kontinuierliche Zeit sity, aufgewachsen. Man kann fast von einer modernen zulässt aus topologischen Gründen) nicht möglich, die Mathematiker-Dynastie sprechen: Eine seiner Schwes- mathematisch korrekte Formulierung dieses grundlegen- tern und ihr Mann sind Mathematiker an der Indiana Uni- den Konzeptes ist folgendermaßen: Falls es keine nicht- versity in Bloomington. trivialen invarianten Teilmengen gibt (d. h. alle messbaren Elon hat an der Hebrew University in Jerusalem studiert invarianten Teilmengen von X haben bezüglich μ Maß 0 μ μ und 1999 mit Benjamin Weiss als Betreuer promoviert. oder 1), dann sagt man, is ergodisch. FallsR ergodisch Elons erste Arbeiten beschäftigen sich mit dem Gebiet ist, dann ist der Grenzwert von (1) durch fdμ gegeben, der Ergodentheorie. und man erhält in diesem Sinn, dass das Mittel über die Zeit gleich dem Mittel über den Raum ist. Zum Beispiel In der Ergodentheorie geht es um statistische Fragen im ist die Abbildung Rα genau dann ergodisch bezüglich dem Gebiet der Dynamischen Systeme und unter anderem um Lebesgue-Maß falls α eine irrationale Zahl ist. die mathematischen Grundlagen (und korrekte Formulie- rung) von Boltzmanns Ergodenhypothese. Die einfachs- Obwohl dieser Satz sehr allgemein ist und sehr viele ver- te Form eines dynamischen Systems erhält man, indem schiedene Fälle für den Raum X, die Abbildung T oder man eine Abbildung T : X → X auf einem Raum X das Maß μ zulässt, gibt es doch Anwendungen (sowohl betrachtet. Eine typische Frage besteht dann darin, die in der Physik und der Zahlentheorie), die Verallgemeine- Bahn x, T (x), T 2(x), ... eines Punktes x ∈ X zu be- rungen benötigen. Eine verallgemeinerte Theorie erhält schreiben. Hier wird X der Zustandsraum (oder Pha- man, wenn man anstatt einer einzigen Transformation T senraum) genannt; z. B. könnte X aus der Menge aller eine ganze Gruppe G von Transformationen auf X zu- Positionen und Geschwindigkeiten von Sonne, Erde und lässt. Zum Beispiel könnte G =∼ Rd sein, und statt ein Mond bestehen. In einer ersten Näherung, ohne Eigenro- Zeitmittel von 1 bis N wie in (1) zu betrachten, könn- tationen einzubeziehen, ergibt sich in diesem Beispiel ein te man über einen d-dimensionalen Würfel [0, L]d der 18-dimensionaler Raum für X. Ein weiteres Beispiel für X Länge L mitteln. Der Ergodensatz von Birkhoff gilt auch besteht aus Positionen und Geschwindigkeiten von allen für G =∼ Rd und ist in diesem und auch anderen Spezial- Atomen in einem abgeschlossenen Raum. In beiden Bei- fällen seit Langem bekannt. Nicht in jeder Gruppe kann spielen ist die Abbildung durch die Zeitentwicklung ge- man solche Zeitmittel betrachten, aber eine sehr natür- geben: Für einen derzeitigen Zustand x ∈ X ist T (x) liche Klasse von Gruppen, auf denen man das Zeitmittel der Zustand nach einer (fest gewählten) Zeiteinheit. Das mit ähnlichen Eigenschaften definieren kann, ist die Klasse 22 FOKUS MDMV 19 / 2011 | 22–24 der mittelbaren Gruppen. Elon hat in einer seiner ersten wir zeigen, dass die Menge der Paare, die die Vermutung Arbeiten [8] den allgemeinen Ergodensatz für jede mit- nicht erfüllt, höchstens Hausdorff-Dimension null haben telbare Gruppe bewiesen. muss. Die leere Menge ist hier nicht ausgeschlossen, und Kurz nach seinem Studium ging Elon in die USA, wo die Vermutung ist trotz dieses Teilerfolges noch offen. er zuerst als Postdoc am Institute for Advanced Studies Das für mich beste Beispiel einer solchen Verknüpfung (IAS) in Princeton, dann in Stanford, am Courant Insti- von Ideen aus verschiedenen Gebieten der Mathema- tute an der NYU in New York, und schlussendlich von tik sind die Arbeiten von Elon und Jean Bourgain an 2004 bis 2009 an der Princeton University als Professor der Quantum Unique Ergodicity Vermutung von Rudnick tätig war. Am Institute for Advanced Studies begann Elon und Sarnak. Es geht hier um die elementaren Schwin- sich mit Quantum Chaos und Starrheitssätzen für invari- gungen auf hyperbolischen Flächen (die Verallmeinerun- ante Maße zu beschäftigen. Im gleichen Jahr ging ich auch gen der Sinus-Schwingungen auf einem Intervall), genauer in die USA, genauer gesagt an die Penn State, und auch gesagt die Eigenfunktionen des hyperbolischen Laplace- ich arbeitete gemeinsam mit Anatole Katok an derartigen Operators. In Sinne der Quantum Physik interpretiert Starrheitssätzen. Elon und ich haben uns dann an der ETH man |φ|2 für eine Eigenfunktion φ als die Dichteverteilung in Zürich während einer Konferenz erstmals getroffen, eines Quantum-Teilchens. Die Vermutung besagt, dass und er hat mich eingeladen, ihn in Stanford zu besuchen. die Verteilung gegen die Gleichverteilung auf der Fläche Dort haben wir unsere langjährige Zusammenarbeit be- strebt, wenn der Eigenwert (die Energie des Teilchens) gonnen. gegen unendlich strebt. Elon beweist diese Aussage in sei- Elon ist in der Mathematik sehr zielstrebig. In unserer Zu- ner Arbeit [9] unter der zusätzlichen Annahme, dass die sammenarbeit hält er oft hartnäckig an seinem Glauben Eigenfunktionen auch Eigenfunktionen der zahlentheore- fest, dass sich etwas Neues zu dem gegebenen Problem tischen Hecke-Operatoren sind. Er erreicht dies, indem beweisen lässt, selbst wenn wir uns schon wochenlang er die oben erwähnte („low entropy“) Form der Starr- (oder jahrelang) die Köpfe zerbrochen haben. Sein Be- heit der invarianten Maße zeigt und dann die notwen- weis für die Starrheit der invarianten Maße für den geo- digen Vorraussetzungen für diesen Satz beweist, eine der däsischen Fluss („low entropy“ method) in [9]ausseiner Vorrausetzungen ist in der gemeinsam Arbeit [2]mitJean Zeit am IAS kann nur aus dieser Hartnäckigkeit resul- Bourgain gezeigt. Hier spielt jedes der Gebiete Darstel- tieren. Ich kann mich gut errinnern, wie ich zum ersten lungstheorie, Zahlentheorie und eben Ergodentheorie ei- Mal diesen Beweis durchgelesen habe und es lange nicht ne entscheidende Rolle, siehe auch [7]. glauben konnte, dass sich am Ende der Knoten auflö- sen wird. Aber zu guter Letzt war ich überzeugt. Kurz Ich will noch zwei Beispiele für solche Verknüpfung von nach dieser Arbeit haben wir die Methode gemeinsam Ideen aufführen. In der gemeinsamen Arbeit [1]vonJean mit Anatole Katok von SL2(R) auf SLn(R) verallgemei- Bourgain, Alex Furman, Elon und Shahar Mozes verwen- nert, siehe [4]. Die endgültige Version der Methode (die den die Autoren Sätze aus Additiver Kombinatorik (sum- technisch nochmals anspruchsvoller war) erschien dann product-phenomenon), um einen Satz in Ergodentheorie 2008 in einer gemeinsamen Arbeit [5] von Elon und mir. zu beweisen. In der gemeinsamen Arbeit [6] von Elon, In diesen Arbeiten geht es darum, invariante Maße für Philippe Michel, Akshay Venkatesh und mir verwenden den geodäsischen Fluss oder allgemeineren Gruppen von wir wiederum den Starrheitssatz aus [4] und bekann- Transformationen auf homogenen Räumen zu beschrei- te Subkonvexitätssätze der Dedekind ζ-Funktionen eines ben. Idealerweise will man beweisen dass das untersuchte Zahlenkörpers, um die Gleichverteilung von Idealklassen invariante Maß das Volumenmaß ist. Siehe [3]fürweitere von kubischen Zahlenköpern zu beweisen. einführende Erläuterungen zu dem Thema Starrheit der In 2009 trat Elon eine Professur an der Hebrew Univer- invarianten Maße. sity in Jerusalem an. Er lebt jetzt dort gemeinsam mit sei- Ein weiteres Kennzeichen von Elons Arbeiten sind die ner Frau und drei Töchtern in seinem Haus in der Nähe zahlreichen Verknüpfungen von Ideen aus verschiedenen der Universität und nur wenige Gehminuten von seinem Teilgebieten der Mathematik. In unserer gemeinsamen Elternhaus entfernt. Arbeit [4] mit Anatole Katok haben wir zum Beispiel die Starrheit der invarianten Maße verwendet, um folgendes Resultat in dem Gebiet der Diophantischen Approxima- tion zu beweisen. Littlewood hat um 1930 vermutet, dass Literatur man für je zwei reelle Zahlen α1,α2 ∈ R rationale Ap- p p proximationen 1 , 2 finden kann, so dass das Produkt q q [1] J. Bourgain, A. Furman, E. Lindenstrauss, S. Mozes. Stationary p p measures and equidistribution for orbits of nonabelian semigroups q3 |α − 1 ||α − 2 | 1 q 2 q on the torus. J. Amer. Math. Soc. 24 (2011), no. 1, 231–280. [2] J. Bourgain, E. Lindenstrauss. Entropy of quantum limits. Comm. beliebig klein gemacht werden kann. Es ist relativ leicht Math. Phys. 233 (2003), no. 1, 153–171. (α ,α ) zu zeigen, dass (Lebesgue-)fast alle Paare 1 2 dies [3] M. Einsiedler. What is . measure rigidity? Notices Amer. Math. erfüllen. Mit der Starrheit der invarianten Maße konnten Soc.
Recommended publications
  • Homogeneous Flows, Moduli Spaces and Arithmetic
    CLAY MATHEMATICS INSTITUTE SUMMER SCHOOL 2007 Homogeneous Flows, Moduli Spaces and Arithmetic at the Centro di Ricerca Matematica Designed for graduate students and mathematicians within Ennio De Giorgi, Pisa, Italy five years of their PhD, the program is an introduction to the theory of flows on homogeneous spaces, moduli spaces and their many applications. These flows give concrete examples of dynamical systems with highly interesting behavior and a rich and powerful theory. They are also a source of many interesting problems and conjectures. Furthermore, understanding the dynamics of such a concrete system lends to numerous applications in number theory and geometry regarding equidistributions, diophantine approximations, rational billiards and automorphic forms. The school will consist of three weeks of foundational courses Photo: Peter Adams and one week of mini-courses focusing on more advanced topics. June 11th to July 6th 2007 Lecturers to include: Organizing Committee Nalini Anantharaman, Artur Avila, Manfred Einsiedler, Alex Eskin, Manfred Einsiedler, David Ellwood, Alex Eskin, Dmitry Kleinbock, Elon Svetlana Katok, Dmitry Kleinbock, Elon Lindenstrauss, Shahar Mozes, Lindenstrauss, Gregory Margulis, Stefano Marmi, Peter Sarnak, Hee Oh, Akshay Venkatesh, Jean-Christophe Yoccoz Jean-Christophe Yoccoz, Don Zagier Foundational Courses Graduate Postdoctoral Funding Unipotent flows and applications Funding is available to graduate students and postdoctoral fellows (within 5 Alex Eskin & Dmitry Kleinbock years of their PhD). Standard
    [Show full text]
  • Diagonalizable Flows on Locally Homogeneous Spaces and Number
    Diagonalizable flows on locally homogeneous spaces and number theory Manfred Einsiedler and Elon Lindenstrauss∗ Abstract.We discuss dynamical properties of actions of diagonalizable groups on locally homogeneous spaces, particularly their invariant measures, and present some number theoretic and spectral applications. Entropy plays a key role in the study of theses invariant measures and in the applications. Mathematics Subject Classification (2000). 37D40, 37A45, 11J13, 81Q50 Keywords. invariant measures, locally homogeneous spaces, Littlewood’s conjecture, quantum unique ergodicity, distribution of periodic orbits, ideal classes, entropy. 1. Introduction Flows on locally homogeneous spaces are a special kind of dynamical systems. The ergodic theory and dynamics of these flows are very rich and interesting, and their study has a long and distinguished history. What is more, this study has found numerous applications throughout mathematics. The spaces we consider are of the form Γ\G where G is a locally compact group and Γ a discrete subgroup of G. Typically one takes G to be either a Lie group, a linear algebraic group over a local field, or a product of such. Any subgroup H < G acts on Γ\G and this action is precisely the type of action we will consider here. One of the most important examples which features in numerous number theoretical applications is the space PGL(n, Z)\ PGL(n, R) which can be identified with the space of lattices in Rn up to homothety. Part of the beauty of the subject is that the study of very concrete actions can have meaningful implications. For example, in the late 1980s G.
    [Show full text]
  • Notices of the Ams 421
    people.qxp 2/27/01 4:00 PM Page 421 Mathematics People Bigelow and Lindenstrauss The Leonard M. and Eleanor B. Blumenthal Trust for the Advancement of Mathematics was created for the Receive Blumenthal Prize purpose of assisting the Department of Mathematics of the University of Missouri at Columbia, where Leonard The Leonard M. and Eleanor B. Blumenthal Award for the Blumenthal served as professor for many years. Its second Advancement of Research in Pure Mathematics has been awarded to STEPHEN J. BIGELOW of the University of Melbourne purpose is to recognize distinguished achievements and ELON B. LINDENSTRAUSS of Stanford University and the in the field of mathematics through the Leonard M. and Institute for Advanced Study. The awards were presented Eleanor B. Blumenthal Award for the Advancement of at the Joint Mathematics Meetings in New Orleans in January Research in Pure Mathematics, which was originally 2001. funded from the Eleanor B. Blumenthal Trust upon Mrs. Stephen Bigelow was born in September 1971 in Blumenthal’s death on July 12, 1987. Cambridge, England. He received his B.S. degree in 1992 and The Trust, which is administered by the Financial his M.S. degree in 1994, both from the University of Melbourne. He recently received his Ph.D. from the University Management and Trust Services Division of Boone County of California at Berkeley, where he wrote a dissertation National Bank in Columbia, Missouri, pays its net income solving a long-standing open problem in the area of braid to the recipient of the award each year for four years. An groups.
    [Show full text]
  • Child of Vietnam War Wins Top Maths Honour 19 August 2010, by P.S
    Child of Vietnam war wins top maths honour 19 August 2010, by P.S. Jayaram Vietnamese-born mathematician Ngo Bao Chau Presented every four years to two, three, or four on Thursday won the maths world's version of a mathematicians -- who must be under 40 years of Nobel Prize, the Fields Medal, cementing a journey age -- the medal comes with a cash prize of 15,000 that has taken him from war-torn Hanoi to the Canadian dollars (14,600 US dollars). pages of Time magazine. The only son of a physicist father and a mother who Ngo, 38, was awarded his medal in a ceremony at was a medical doctor, Ngo's mathematical abilities the International Congress of Mathematicians won him a place, aged 15, in a specialist class of meeting in the southern Indian city of Hyderabad. the Vietnam National University High School. The other three recipients were Israeli In 1988, he won a gold medal at the 29th mathematician Elon Lindenstrauss, Frenchman International Mathematical Olympiad and repeated Cedric Villani and Swiss-based Russian Stanislav the same feat the following year. Smirnov. After high school, he was offered a scholarship by Ngo, who was born in Hanoi in 1972 in the waning the French government to study in Paris. He years of the Vietnam war, was cited for his "brilliant obtained a PhD from the Universite Paris-Sud in proof" of a 30-year-old mathematical conundrum 1997 and became a professor there in 2005. known as the Fundamental Lemma. Earlier this year he became a naturalised French The proof offered a key stepping stone to citizen and accepted a professorship at the establishing and exploring a revolutionary theory University of Chicago.
    [Show full text]
  • 2004 Research Fellows
    I Institute News 2004 Research Fellows On February 23, 2004, the Clay Mathematics Institute announced the appointment of four Research Fellows: Ciprian Manolescu and Maryam Mirzakhani of Harvard University, and András Vasy and Akshay Venkatesh of MIT. These outstanding mathematicians were selected for their research achievements and their potential to make signifi cant future contributions. Ci ian Man lescu 1 a nati e R mania is c m letin his h at Ha a ni Ciprian Manolescu pr o (b. 978), v of o , o p g P .D. rv rd U - versity under the direction of Peter B. Kronheimer. In his undergraduate thesis he gave an elegant new construction of Seiberg-Witten Floer homology, and in his Ph.D. thesis he gave a remarkable gluing formula for the Bauer-Furuta invariants of four-manifolds. His research interests span the areas of gauge theory, low-dimensional topology, symplectic geometry and algebraic topology. Manolescu will begin his four-year appointment as a Research Fellow at Princeton University beginning July 1, 2004. Maryam Mirzakhani Maryam Mirzakhani (b. 1977), a native of Iran, is completing her Ph.D. at Harvard under the direction of Curtis T. McMullen. In her thesis she showed how to compute the Weil- Petersson volume of the moduli space of bordered Riemann surfaces. Her research interests include Teichmuller theory, hyperbolic geometry, ergodic theory and symplectic geometry. As a high school student, Mirzakhani entered and won the International Mathematical Olympiad on two occasions (in 1994 and 1995). Mirzakhani will conduct her research at Princeton University at the start of her four-year appointment as a Research Fellow beginning July 1, 2004.
    [Show full text]
  • ISRAEL MATTERS! MATTERS! Publication of the Israel Affairs Committee of Temple Beth Sholom
    ISRAELISRAEL MATTERS! MATTERS! Publication of the Israel Affairs Committee of Temple Beth Sholom Issue Number 40 October 2010 Israel Begins Peace Negotiations; Demands Palestinians Recognize Israel as Jewish State In remarks at the September relaunch of peace negotiations, Israeli Prime Minister Benjamin Netanyahu opened by saying, “I began with a Hebrew word for peace, “shalom.” Our goal is shalom. Our goal is to forge a secure and durable peace between Israelis and Palestinians. We don’t seek a brief interlude between two wars. We don’t seek a tempo- rary respite between outbursts of terror. We seek a peace that will end the conflict between us once and for all. We seek a peace that will last for generations -- our generation, our children’s generation, and the next.” Continuing, he said, “… a defensible peace requires security arrangements that can withstand the test of time and the many chal- lenges that are sure to confront us. … Let us not get bogged down by every dif- ference between us. Let us direct our courage, our thinking, and our decisions at those historic decisions that lie ahead.” Concluding, Netanyahu said, “President Abbas, we cannot erase the past, but it is within our power to change the future. Thousands of years ago, on these very hills where Israelis and Palestinians live today, the Jewish prophet Isaiah and the other prophets of my people envisaged a future of lasting peace for all mankind. Let today be an auspicious step in our joint effort to realize that ancient vision for a better future.” Israeli prime minister Benjamin Netanyahu, left, Against that background, Netanyahu has maintained the fundamental demand and Palestinian president Mahmoud Abbas, right, at that the Palestinians must recognize Israel as a Jewish state in his remarks the opening session of peace talks hosted by US secretary of state Hillary Clinton.
    [Show full text]
  • Random Walks on Locally Homogeneous Spaces
    RANDOM WALKS ON LOCALLY HOMOGENEOUS SPACES ALEX ESKIN AND ELON LINDENSTRAUSS Dedicated to the memory of Maryam Mirzakhani Abstract. Let G be real Lie group, and Γ a discrete subgroup of G. Let µ be a measure on G. Under a certain condition on µ, we classify the finite µ-stationary measures on G=Γ. We give an alternative argument (which bypasses the Local Limit Theorem) for some of the breakthrough results of Benoist and Quint in this area. Contents 1. Introduction1 2. General cocycle lemmas 15 3. The inert subspaces Ej(x) 30 4. Preliminary divergence estimates 37 5. The action of the cocycle on E 39 6. Bounded subspaces and synchronized exponents 44 7. Bilipshitz estimates 62 8. Conditional measures. 64 9. Equivalence relations on W + 67 10. The Eight Points 68 11. Case II 84 12. Proof of Theorem 1.2. 101 References 106 Index of Notation 109 1. Introduction 1.1. Random walks and stationary measures. Let G0 be a real algebraic Lie Group, let g0 denote the Lie algebra of G0, and let Γ0 be a discrete subgroup of G0. Let µ be a probablity measure on G0 with finite first moment. Let ν be an µ-stationary Research of the first author is partially supported by NSF grants DMS 1201422, DMS 1500702 and the Simons Foundation. Research of the second author is partially supported by the ISF (891/15). 1 2 ALEX ESKIN AND ELON LINDENSTRAUSS measure on G0=Γ0, i.e. Z µ ν = ν; where µ ν = gν dµ(g). ∗ ∗ G0 We assume ν(G0=Γ0) = 1, and also that ν is ergodic (i.e.
    [Show full text]
  • From Rational Billiards to Dynamics on Moduli Spaces
    FROM RATIONAL BILLIARDS TO DYNAMICS ON MODULI SPACES ALEX WRIGHT Abstract. This short expository note gives an elementary intro- duction to the study of dynamics on certain moduli spaces, and in particular the recent breakthrough result of Eskin, Mirzakhani, and Mohammadi. We also discuss the context and applications of this result, and connections to other areas of mathematics such as algebraic geometry, Teichm¨ullertheory, and ergodic theory on homogeneous spaces. Contents 1. Rational billiards 1 2. Translation surfaces 3 3. The GL(2; R) action 7 4. Renormalization 9 5. Eskin-Mirzakhani-Mohammadi's breakthrough 10 6. Applications of Eskin-Mirzakhani-Mohammadi's Theorem 11 7. Context from homogeneous spaces 12 8. The structure of the proof 14 9. Relation to Teichm¨ullertheory and algebraic geometry 15 10. What to read next 17 References 17 1. Rational billiards Consider a point bouncing around in a polygon. Away from the edges, the point moves at unit speed. At the edges, the point bounces according to the usual rule that angle of incidence equals angle of re- flection. If the point hits a vertex, it stops moving. The path of the point is called a billiard trajectory. The study of billiard trajectories is a basic problem in dynamical systems and arises naturally in physics. For example, consider two points of different masses moving on a interval, making elastic collisions 2 WRIGHT with each other and with the endpoints. This system can be modeled by billiard trajectories in a right angled triangle [MT02]. A rational polygon is a polygon all of whose angles are rational mul- tiples of π.
    [Show full text]
  • Invariant Measures and Arithmetic Unique Ergodicity
    Annals of Mathematics, 163 (2006), 165–219 Invariant measures and arithmetic quantum unique ergodicity By Elon Lindenstrauss* Appendix with D. Rudolph Abstract We classify measures on the locally homogeneous space Γ\ SL(2, R) × L which are invariant and have positive entropy under the diagonal subgroup of SL(2, R) and recurrent under L. This classification can be used to show arithmetic quantum unique ergodicity for compact arithmetic surfaces, and a similar but slightly weaker result for the finite volume case. Other applications are also presented. In the appendix, joint with D. Rudolph, we present a maximal ergodic theorem, related to a theorem of Hurewicz, which is used in theproofofthe main result. 1. Introduction We recall that the group L is S-algebraic if it is a finite product of algebraic groups over R, C,orQp, where S stands for the set of fields that appear in this product. An S-algebraic homogeneous space is the quotient of an S-algebraic group by a compact subgroup. Let L be an S-algebraic group, K a compact subgroup of L, G = SL(2, R) × L and Γ a discrete subgroup of G (for example, Γ can be a lattice of G), and consider the quotient X =Γ\G/K. The diagonal subgroup et 0 A = : t ∈ R ⊂ SL(2, R) 0 e−t acts on X by right translation. In this paper we wish to study probablilty measures µ on X invariant under this action. Without further restrictions, one does not expect any meaningful classi- fication of such measures. For example, one may take L = SL(2, Qp), K = *The author acknowledges support of NSF grant DMS-0196124.
    [Show full text]
  • MATHEMATICS Catalogue7
    2 0 1 MATHEMATICS Catalogue7 Connecting Great Minds HighlightsHighlights Mathematics Catalogue 2017 page 5 page 6 page 8 page 9 by Tianxin Cai by Jean-Pierre Tignol by E Jack Chen by Michel Marie Chipot (Zhejiang University, China) & (Université Catholique de Louvain, (BASF Corporation, USA) (University of Zurich, Switzerland) translated by Jiu Ding Belgium) (University of Southern Mississippi, USA) page 12 page 13 page 15 page 18 by Shaun Bullett by Sir Michael Atiyah (University of by Yi-Bing Shen (Zhejiang University, by Niels Jacob & Kristian P Evans (Queen Mary University of Edinburgh, UK), Daniel Iagolnitzer China) & Zhongmin Shen (Swansea University, UK) London, UK), (CEA-Saclay, France) & Chitat Chong (Indiana University – Purdue University Tom Fearn & Frank Smith (NUS, Singapore) Indianapolis, USA) (University College London, UK) page 19 page 20 page 24 page 24 by Gregory Baker by Michał Walicki by Kai S Lam (California State by Matthew Inglis & Nina Attridge (The Ohio State University, USA) (University of Bergen, Norway) Polytechnic University, Pomona, USA) (Loughborough University, UK) page 27 page 27 page 30 page 31 by Roe W Goodman by Gregory Fasshauer by Jiming Jiang (UC Davis) & by Paulo Ribenboim (Rutgers University, USA) (Illinois Institute of Technology, USA) & Thuan Nguyen (Queen's University, Canada) Michael McCourt (Oregon Health & Science (University of Colorado Denver, USA) University, USA) c o n t e n t s About World Scientific Publishing World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 130 Algebra & Number Theory ..................................
    [Show full text]
  • From Rational Billiards to Dynamics on Moduli Spaces
    FROM RATIONAL BILLIARDS TO DYNAMICS ON MODULI SPACES ALEX WRIGHT Abstract. This short expository note gives an elementary intro- duction to the study of dynamics on certain moduli spaces, and in particular the recent breakthrough result of Eskin, Mirzakhani, and Mohammadi. We also discuss the context and applications of this result, and connections to other areas of mathematics such as algebraic geometry, Teichm¨ullertheory, and ergodic theory on homogeneous spaces. Contents 1. Rational billiards 1 2. Translation surfaces 3 3. The GL(2; R) action 7 4. Renormalization 9 5. Eskin-Mirzakhani-Mohammadi's breakthrough 10 6. Applications of Eskin-Mirzakhani-Mohammadi's Theorem 11 7. Context from homogeneous spaces 12 8. The structure of the proof 14 9. Relation to Teichm¨ullertheory and algebraic geometry 15 10. What to read next 17 References 17 arXiv:1504.08290v2 [math.DS] 26 Jul 2015 1. Rational billiards Consider a point bouncing around in a polygon. Away from the edges, the point moves at unit speed. At the edges, the point bounces according to the usual rule that angle of incidence equals angle of re- flection. If the point hits a vertex, it stops moving. The path of the point is called a billiard trajectory. The study of billiard trajectories is a basic problem in dynamical systems and arises naturally in physics. For example, consider two points of different masses moving on a interval, making elastic collisions 2 WRIGHT with each other and with the endpoints. This system can be modeled by billiard trajectories in a right angled triangle [MT02]. A rational polygon is a polygon all of whose angles are rational mul- tiples of π.
    [Show full text]
  • Equidistribution in Homogeneous Spaces and Number Theory
    Proceedings of the International Congress of Mathematicians Hyderabad, India, 2010 Equidistribution in homogeneous spaces and number theory Elon Lindenstrauss∗ Abstract. We survey some aspects of homogeneous dynamics | the study of alge- braic group actions on quotient spaces of locally compact groups by discrete subgroups. We give special emphasis to results pertaining to the distribution of orbits of explicitly describable points, especially results valid for the orbits of all points, in contrast to re- sults that characterize the behavior of orbits of typical points. Such results have many number theoretic applications, a few of which are presented in this note. Quantitative equidistribution results are also discussed. Mathematics Subject Classification (2000). Primary 37A17; Secondary 37A45, 11J13, 11B30, 11J71 Keywords. invariant measures, homogeneous spaces, geometry of numbers, quantitative equidistribution, arithmetic combinatorics, quantum unique ergodicity, entropy. 1. Introduction 1.1. In this note we discuss a certain very special class of dynamical systems of algebraic origin, in which the space is the quotient of a locally compact group G by a discrete subgroup Γ and the dynamics is given by the action of some closed subgroup H < G on G=Γ by left translations, or more generally by the action of a subgroup of the group of affine transformations on G that descends to an action on G=Γ. There are several natural classes of locally compact groups one may consider | connected Lie groups, linear algebraic groups (over R, or Qp, or perhaps general local field of arbitrary characteristic), finite products of linear algebraic groups over different fields, or the closely related case of linear algebraic groups over adeles of a global field such as Q.
    [Show full text]