Equidistribution in Homogeneous Spaces and Number Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diagonalizable Flows on Locally Homogeneous Spaces and Number
Diagonalizable flows on locally homogeneous spaces and number theory Manfred Einsiedler and Elon Lindenstrauss∗ Abstract.We discuss dynamical properties of actions of diagonalizable groups on locally homogeneous spaces, particularly their invariant measures, and present some number theoretic and spectral applications. Entropy plays a key role in the study of theses invariant measures and in the applications. Mathematics Subject Classification (2000). 37D40, 37A45, 11J13, 81Q50 Keywords. invariant measures, locally homogeneous spaces, Littlewood’s conjecture, quantum unique ergodicity, distribution of periodic orbits, ideal classes, entropy. 1. Introduction Flows on locally homogeneous spaces are a special kind of dynamical systems. The ergodic theory and dynamics of these flows are very rich and interesting, and their study has a long and distinguished history. What is more, this study has found numerous applications throughout mathematics. The spaces we consider are of the form Γ\G where G is a locally compact group and Γ a discrete subgroup of G. Typically one takes G to be either a Lie group, a linear algebraic group over a local field, or a product of such. Any subgroup H < G acts on Γ\G and this action is precisely the type of action we will consider here. One of the most important examples which features in numerous number theoretical applications is the space PGL(n, Z)\ PGL(n, R) which can be identified with the space of lattices in Rn up to homothety. Part of the beauty of the subject is that the study of very concrete actions can have meaningful implications. For example, in the late 1980s G. -
Bounded Orbits of Homogeneous Dynamics
BOUNDED ORBITS OF HOMOGENEOUS DYNAMICS JINPENG AN AND LIFAN GUAN Abstract. Homogeneous dynamics is a special kind of dynamics given by Lie groups, and is closely related to Diophantine approximation and other areas in number theory. In this paper, we survey main problems and results concerning bounded orbits of homogeneous dynamics, and discuss their relations with Diophantine approximation problems including the Oppenheim conjecture, the Littlewood conjecture, and the Schmidt conjecture. 1. Introduction Homogeneous dynamics is a special kind of dynamics. Its phase space is a homogeneous space of a Lie group, and the dynamical system is induced by the group multiplication. More precisely, let G be a Lie group1,Γ ⊂ G be a closed subgroup, and consider the homogeneous space X = G=Γ. In homogeneous dynamics, one studies the natural translation action of another subgroup H ⊂ G on X, examines properties of orbits and invariant measures of the action, and investigates the asymptotic behavior of the action when elements in H tend to infinity. This kind of dynamical systems gives rise to several classical examples, including geodesic flows and horocycle flows on surfaces of constant negative curvature. By combining methods from dynamical systems and Lie theory, one is able to obtain stronger results in homogeneous dynamics than in more general dynamics. A typical example is Ratner's theorems for unipotent flows [63], which state that if the subgroup H is generated by unipotent elements, then the closures of H-orbits in X are algebraically defined submanifolds, and the H-invariant measures on X can be also classified in an algebraic way. -
Unipotent Flows and Applications
Clay Mathematics Proceedings Volume 10, 2010 Unipotent Flows and Applications Alex Eskin 1. General introduction 1.1. Values of indefinite quadratic forms at integral points. The Op- penheim Conjecture. Let X Q(x1; : : : ; xn) = aijxixj 1≤i≤j≤n be a quadratic form in n variables. We always assume that Q is indefinite so that (so that there exists p with 1 ≤ p < n so that after a linear change of variables, Q can be expresses as: Xp Xn ∗ 2 − 2 Qp(y1; : : : ; yn) = yi yi i=1 i=p+1 We should think of the coefficients aij of Q as real numbers (not necessarily rational or integer). One can still ask what will happen if one substitutes integers for the xi. It is easy to see that if Q is a multiple of a form with rational coefficients, then the set of values Q(Zn) is a discrete subset of R. Much deeper is the following conjecture: Conjecture 1.1 (Oppenheim, 1929). Suppose Q is not proportional to a ra- tional form and n ≥ 5. Then Q(Zn) is dense in the real line. This conjecture was extended by Davenport to n ≥ 3. Theorem 1.2 (Margulis, 1986). The Oppenheim Conjecture is true as long as n ≥ 3. Thus, if n ≥ 3 and Q is not proportional to a rational form, then Q(Zn) is dense in R. This theorem is a triumph of ergodic theory. Before Margulis, the Oppenheim Conjecture was attacked by analytic number theory methods. (In particular it was known for n ≥ 21, and for diagonal forms with n ≥ 5). -
On a Quantitative Version of the Oppenheim Conjecture
ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 1, Issue 3, 1995 ON A QUANTITATIVE VERSION OF THE OPPENHEIM CONJECTURE ALEX ESKIN, GREGORY MARGULIS, AND SHAHAR MOZES Abstract. The Oppenheim conjecture, proved by Margulis in 1986, states that the set of values at integral points of an indefinite quadratic form in three or more variables is dense, provided the form is not proportional to a rational form. In this paper we study the distribution of values of such a form. We show that if the signature of the form is not (2, 1) or (2, 2), then the values are uniformly distributed on the real line, provided the form is not proportional to a rational form. In the cases where the signature is (2, 1) or (2, 2) we show that no such universal formula exists, and give asymptotic upper bounds which are in general best possible. Let Q be an indefinite nondegenerate quadratic form in n variables. Let Q = L Q(Zn)denotethesetofvaluesofQat integral points. The Oppenheim conjecture, proved by Margulis (cf. [Mar]) states that if n 3, and Q is not proportional ≥ to a form with rational coefficients, then Q is dense. The Oppenheim conjecture enjoyed attention and many studies sinceL it was conjectured in 1929 mostly using analytic number theory methods. In this paper1 we study some finer questions related to the distribution the values of Q at integral points. 1. Let ν be a continuous positive function on the sphere v Rn v =1 ,and { ∈ |k k } let Ω = v Rn v <ν(v/ v ) .WedenotebyTΩthedilateofΩbyT. -
On Small Values of Indefinite Diagonal Quadratic Forms at Integer Points In
ON SMALL VALUES OF INDEFINITE DIAGONAL QUADRATIC FORMS AT INTEGER POINTS IN AT LEAST FIVE VARIABLES P. BUTERUS, F. GOTZE,¨ AND T. HILLE Abstract. For any ε > 0 we derive effective estimates for the size of a non-zero integral point m ∈ d 2 2 Z \ {0} solving the Diophantine inequality |Q[m]| <ε, where Q[m]= q1m1 + ... + qdmd denotes a non- singular indefinite diagonal quadratic form in d ≥ 5 variables. In order to prove our quantitative variant of the Oppenheim conjecture, we extend the approach developed by Birch and Davenport [BD58b] to higher dimensions combined with a theorem of Schlickewei [Sch85]. Our result is an optimal extension of Schlickewei’s result, giving bounds on small zeros of integral quadratic forms depending on the signature (r, s), to diagonal forms up to a negligible growth factor. 1. Introduction The study of the size of the least non-trivial integral solution to homogeneous quadratic Diophantine inequalities is often referred to as the quantitative Oppenheim conjecture; it has undergone significant developments over the past twenty years, arguably going back to the seminal works of Bentkus and G¨otze [BG97] and Eskin, Margulis and Mozes [EMM98]. Still, at present the classical result of Birch and Davenport [BD58b] provides the sharpest known bounds within the class of diagonal forms. In the present 2 2 paper we shall consider non-singular, indefinite, diagonal quadratic forms Q[m] := q1m1 + ... + qdmd of signature (r, s) with d = r + s ≥ 5 variables and generalize the result of Birch and Davenport to this class: We significantly improve the explicit bounds, established by Birch and Davenport, in terms of the signature (r, s) by means of Schlickewei’s work [Sch85] on the size of small zeros of integral quadratic forms (see Theorem 1.3). -
The Work of Einsiedler, Katok and Lindenstrauss on the Littlewood Conjecture
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 45, Number 1, January 2008, Pages 117–134 S 0273-0979(07)01194-9 Article electronically published on October 29, 2007 THE WORK OF EINSIEDLER, KATOK AND LINDENSTRAUSS ON THE LITTLEWOOD CONJECTURE AKSHAY VENKATESH Contents 1. The Littlewood conjecture 118 1.1. Statement of the theorem 118 1.2. This document 119 1.3. Symmetry 119 2. The Oppenheim conjecture 120 2.1. Statement of the Oppenheim conjecture 120 2.2. Symmetry 121 2.3. Lattices 121 2.4. Background on the space of lattices 121 3. Unipotents acting on lattices 122 3.1. Unipotents from Margulis to Ratner 122 3.2. Ratner’s theorems 122 3.3. An idea from the proof of Theorem 3.1: Measures not sets 123 4. The dynamics of coordinate dilations on lattices, I: Conjectures and analogies 123 4.1. Reduction to dynamics 123 4.2. An analogy with × 2 × 3onS1 124 4.3. A short detour on entropy 125 4.4. Conjectures and results for × 2 × 3andforAn 126 5. Coordinate dilations acting on lattices, II: The product lemma of Einsiedler-Katok 128 5.1. Some ideas in the general proof 128 5.2. Closed sets 128 5.3. What comes next 130 ij 5.4. Conditional measures: the analogue of the σx for measures 130 5.5. From product lemma to unipotent invariance 130 5.6. Back to Theorem 1.1 132 5.7. Conditional measures and entropy 132 Received by the editors May 11, 2007, and, in revised form, May 28, 2007. 2000 Mathematics Subject Classification. -
Dynamics on Homogeneous Spaces and Applications to Simultaneous Diophantine Approximation
DYNAMICS ON HOMOGENEOUS SPACES AND APPLICATIONS TO SIMULTANEOUS DIOPHANTINE APPROXIMATION A thesis submitted to the School of Mathematics of the University of East Anglia in partial fulfilment of the requirements for the degree of Doctor of Philosophy Youssef Lazar March 2013 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. Acknowledgements. First of all I want to thank the University of East Anglia for providing me excellent working conditions from all the points of view. Among all of that I want to thank my supervisor Anish Ghosh who guided me during all my research studies, for introducing me to a rich and exciting topic. I also thank him for his support and for the confidence he has shown in me. I am very grateful to Shaun Stevens for his encouragement and all the advices I received from him. I also want to thank Thomas Ward for being part of this thesis by accepting to be the examiner for the MPhil exam. I thank Stephan Baier for accepting to be the internal examiner and for his interest in my work. It is a great honour for me to have Sanju Velani as an external examiner and I warmly thank him for accepting this duty. I wish to thank all the postgrad students for making a pleasant atmosphere in the office and for their help sometimes crucial in all parts of the usual student life. -
Elon Lindenstrass
Elon Lindenstrauss Citation: “For his results on measure rigidity in ergodic theory, and their applications to number theory.” Elon Lindenstrauss has developed extraordinarily powerful theoretical tools in ergodic theory, a field of mathematics initially developed to understand celestial mechanics. He then used them, together with his deep understanding of ergodic theory, to solve a series of striking problems in areas of mathematics that are seemingly far afield. His methods are expected to continue to yield rich insights throughout mathematics for decades to come. Ergodic theory studies dynamical systems, which are simply mathematical rules that describe how a system changes over time. So, for example, a dynamical system might describe a billiard ball ricocheting around a frictionless, pocketless billiard table. The ball will travel in a straight line until it hits the side of the table, which it will bounce off of as if from a mirror. If the table is rectangular, this dynamical system is pretty simple and predictable, because a ball sent any direction will end up bouncing off each of the four walls at a consistent angle. But suppose, on the other hand, that the billiard table has rounded ends like a stadium. In that case, a ball from almost any starting position headed in almost any direction will shoot all over the entire stadium at endlessly varying angles. Systems with this kind of complicated behavior are called “ergodic.” The way that mathematicians pin down this notion that the trajectories spread out all over the space is through the notion of “measure invariance.” A measure can be thought of as a more flexible way to compute area, and having an invariant measure essentially assures that if two regions of the space in some sense have equal areas, points will travel into them the same percentage of the time. -
On the Work of Margulis on Diophantine Approximation
On the work of Margulis on Diophantine approximation S.G. Dani Tata Institute of Fundamental Research 25 February 2006 §1. The Oppenheim conjecture Oppenheim conjecture - proved by Margulis 1.1. Theorem Let n X Q(x1,..., xn) = aij xi xj i,j=1 be a nondegenerate indefinite quadratic form in n ≥ 3 variables. Suppose that it is not a multiple of a rational form. Then n min{Q(x) | x ∈ Z \(0)} = 0. Some history of the problem The conjecture goes back to a 1929-paper of Oppenheim (for n ≥ 5). Extensive work was done by methods of analytic number theory: In the 1930s (Chowla, Oppenheim), 40s (Davenport-Heilbronn), 50s (Oppenheim, Cassels-Swinnerton-Dyer, Davenport, Birch-Davenport, Davenport-Ridout) ... Papers of Birch-Davenport, Davenport-Ridout, and one of Ridout in 1968 together confirm the validity of the conjecture for n ≥ 21, and various classes of quadratic forms in fewer variables, satisfying certain conditions on signature, diagonalisability etc.. Partial results continued to be obtained in the 70s and 80s (Iwaniech, Baker-Schlickewei) by number-theoretic methods, ... Dynamical approach Margulis proved the following: 1.2. Theorem Let G = SL(3, R), Γ = SL(3, Z). Let H = the group of elements of G preserving the form 2 x1x3 − x2 . If z ∈ G/Γ is such that the orbit Hz is relatively compact in G/Γ, then H/Hz is compact, where Hz is the stabiliser {g ∈ G | gz = z} of z; (the conclusion is equivalent to the orbit Hz being compact). By the Mahler criterion this implies the OC for n = 3, and then by a simple restriction argument for all n ≥ 3. -
Diagonalizable Flows on Locally Homogeneous Spaces and Number
Diagonalizable flows on locally homogeneous spaces and number theory Manfred Einsiedler and Elon Lindenstrauss∗ Abstract. We discuss dynamical properties of actions of diagonalizable groups on locally ho- mogeneous spaces, particularly their invariant measures, and present some number theoretic and spectral applications. Entropy plays a key role in the study of theses invariant measures and in the applications. Mathematics Subject Classification (2000). 37D40, 37A45, 11J13, 81Q50. Keywords. Invariant measures, locally homogeneous spaces, Littlewood’s conjecture, quantum unique ergodicity, distribution of periodic orbits, ideal classes, entropy. 1. Introduction Flows on locally homogeneous spaces are a special kind of dynamical systems. The ergodic theory and dynamics of these flows are very rich and interesting, and their study has a long and distinguished history. What is more, this study has found nu- merous applications throughout mathematics. The spaces we consider are of the form \G where G is a locally compact group and a discrete subgroup of G. Typically one takes G to be either a Lie group, a linear algebraic group over a local field, or a product of such. Any subgroup H<Gacts on \G and this action is precisely the type of action we will consider here. One of the most important examples which features in numerous number theoretical applications is the space PGL(n, Z)\ PGL(n, R) which can be identified with the space of lattices in Rn up to homothety. Part of the beauty of the subject is that the study of very concrete actions can have meaningful implications. For example, in the late 1980s G. A. Margulis proved the long-standing Oppenheim conjecture by classifying the closed orbits of the group of matrices preserving an indefinite quadratic form in three variables in PGL(3, Z)\ PGL(3, R) – a concrete action of a three-dimensional group on an eight- dimensional space. -
HOMOGENEOUS DYNAMICS and NUMBER THEORY Gregory
HOMOGENEOUS DYNAMICS AND NUMBER THEORY Gregory Margulis Homogeneous dynamics is another name for the theory of flows on homogeneous spaces, or homogeneous flows. The study of homogeneous flows has been attracting considerable attention for the last 40-50 years. During the last three decades, it has been realized that some problems in number theory and, in particular, in Diophan- tine approximation, can be solved using methods from the theory of homogeneous flows. The purpose of these lecture notes is to demonstrate this approach on sev- eral examples rather than to give a survey of the subject. In particular, recent very important work by M.Einsiedler, E.Lindenstrauss, P.Michel and A.Venkatesh on application of diagonalizable flows to number theory will not be discussed. (This work was the subject of two invited addresses at ICM 2006). We will start with the Oppenheim conjecture proved in the mid 1980’s and the Littlewood conjecture, still not settled. The next topic is quantitative generaliza- tions of the Oppenheim conjecture and counting lattice points on homogeneous varieties. After that, we will go to Diophantine approximation on manifolds where, in particular, we will very briefly describe the proof of Baker-Sprindzuk conjectures. We will also discuss results on translates of submanifolds and unipotent flows which are used in applications to number theory. But before all that, let us mention the following observation which was originally made by D.Zagier about 20 years ago. Let G = SL(2, R), let Γ = SL(2, Z)andlet 1 t U = {u : t ∈ R} where u = .Foreacht>0, there is a unique closed t t 00 orbit of U in G/Γofperiodt,callitCt(utx = x and ut x = x for x ∈ Ct and 0 <t <t). -
Manfred Einsiedler: Eine Fields-Medaille Für Elon Lindenstrauss
Eine Fields-Medaille für Elon Lindenstrauss Manfred Einsiedler einfachste mathematische Modell eines dynamischen Sys- tems besteht aus dem halb-offenen Intervall X =[0, 1) und der Abbildung Rα(x)=x +α, die den Punkt x auf den Nachkommaanteil der Summe x + α für ein festes α ∈ R abbildet. Einer der grundlegendsten Sätze der Ergodentheorie ist der Ergodensatz von Birkhoff: In einem ergodischen Sys- tem, welches aus einer Abbildung T : X → X auf einem Raum X und einem invarianten Maß μ auf X (in ande- ren Worten einer stationären Integrationsmethode von Funktionen auf X) besteht, gilt, dass der Grenzwert Elon Lindenstrauss XN 1 n lim f (T (x)) (1) N→∞ N Elon Lindenstrauss hat vergangenen Sommer im Rahmen n=1 der Eröffnungszeremonie der ICM 2010 in Hyderabad In- f μ x ∈ X dien eine der vier Fields-Medaillen verliehen bekommen. für jede integrierbare Funktion und -fast jedem x Die Begründung des Preiskommittee für die Entschei- existiert. Hier sollte das „fast jedes “ so interpretiert dung war „. for his results on measure rigidity in er- werden: Es kann zwar sein, dass es Punkte gibt, an denen godic theory and their applications to number theory“. obiger Grenzwert nicht existiert, aber statistisch gese- Wir wollen hier kurz seine wichtigsten Arbeiten erläu- hen sind solche Punkte vernachlässigbar. Boltzmanns Er- tern und auch Elon Lindenstrauss als Person vorstellen. godenhypothese besagte ursprünglich, dass die Bahn ei- nes Punktes x, T (x), T 2(x), ... jeden anderen Punkt mit Elon ist in Jerusalem als Sohn von Joram Linden- derselben Energie erreicht. Dies ist aus mengentheore- strauss, Mathematik-Professor an der Hebrew Univer- tischen Gründen (und wenn man kontinuierliche Zeit sity, aufgewachsen.