Panguite, (Ti ,Sc,Al,Mg,Zr,Ca)1.8O3, a New Ultra-Refractory Titania Mineral from the Allende Meteorite: Synchrotron Micro-Diffraction and EBSD

Total Page:16

File Type:pdf, Size:1020Kb

Panguite, (Ti ,Sc,Al,Mg,Zr,Ca)1.8O3, a New Ultra-Refractory Titania Mineral from the Allende Meteorite: Synchrotron Micro-Diffraction and EBSD American Mineralogist, Volume 97, pages 1219–1225, 2012 4+ Panguite, (Ti ,Sc,Al,Mg,Zr,Ca)1.8O3, a new ultra-refractory titania mineral from the Allende meteorite: Synchrotron micro-diffraction and EBSD CHI MA,1,* OLIVER TSCHAUNER,1,2 JOHN R. BECKETT,1 GEORGE R. ROSSMAN,1 AND WENJUN LIU3 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. 2High Pressure Science and Engineering Center and Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154, U.S.A. 3Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. ABSTRACT 4+ Panguite (IMA 2010-057), (Ti ,Sc,Al,Mg,Zr,Ca)1.8O3, is a new titania, occurring as fine-grained crystals with Ti-rich davisite in an ultra-refractory inclusion within an amoeboid olivine inclusion from the Allende CV3 carbonaceous chondrite. The phase was characterized by SEM, EBSD, synchrotron micro-diffraction, micro-Raman spectroscopy, and EPMA. The mean chemical composition of the type panguite is (wt%) TiO2 47.97, ZrO2 14.61, Sc2O3 10.67, Al2O3 7.58, MgO 5.54, Y2O3 5.38, CaO 3.34, SiO2 1.89, FeO 1.81, V2O3 0.95, Cr2O3 0.54, HfO2 0.28, sum 100.56 with a corresponding empirical 4+ 3+ formula calculated on the basis of 3 O atoms of [(Ti0.79Zr0.16Si0.04)Σ0.99(Sc0.20Al0.20Y0.06V0.02Cr0.01)Σ0.49 2+ (Mg0.18Ca0.08Fe0.03)Σ0.29]Σ1.77O3. Synchrotron micro-Laue diffraction (i.e., an energy scan by a high-flux X-ray monochromatic beam and white beam diffraction) on one type domain at sub-micrometer resolution revealed that panguite is an orthorhombic mineral in space group Pbca. The structure is a subgroup of the Ia3 bixbyite-type. The cell parameters are a = 9.781(1), b = 9.778(2), and c = 9.815(1) Å, yielding V = 938.7(1) Å3, Z = 16, and a calculated density of 3.746 g/cm3. Panguite is not only a new mineral, but also a new titania material, likely formed by condensation. It is one of the oldest minerals in the solar system. 4+ Keywords: Panguite, (Ti ,Sc,Al,Mg,Zr,Ca)1.8O3, new ultra-refractory mineral, new titania, Allende meteorite, CV3 carbonaceous chondrite, synchrotron micro-diffraction, EBSD INTRODUctION the first solid materials in the solar system. Holotype material During a nano-mineralogy investigation of the Allende mete- (Section MC2Q of Caltech specimen Allende12A) is deposited 4+ under catalog USNM 7602 in the Smithsonian Institution’s Na- orite at Caltech, a new titania mineral (Ti ,Sc,Al,Mg,Zr,Ca)1.8O3, named “panguite,” was identified in an ultra-refractory inclusion tional Museum of Natural History, Washington, D.C., U.S.A. within an amoeboid olivine inclusion (AOI). Electron probe OccURRENCE microanalysis (EPMA), high-resolution scanning electron micro- scope (SEM), electron backscatter diffraction (EBSD), synchro- The Allende meteorite fell in and near Pueblito de Allende, tron micro-Laue diffraction with subsequent energy scans, and Chihuahua, Mexico, on February 8, 1969 (Clarke et al. 1971). It micro-Raman spectroscopic analyses were used to determine its is a CV3 carbonaceous chondrite and the study of objects in this composition, physical properties, and structure and to character- meteorite has had a tremendous influence on current thinking about 4+ processes, timing, and chemistry in the primitive solar nebula and ize associated phases. Synthetic (Ti ,Sc,Al,Mg,Zr,Ca)1.8O3 is not known. Thus, panguite is not only a new mineral and a new small planetary bodies. The mineral panguite was found within one phase to meteoritics, but it is also a new material. In this work, irregular ultra-refractory inclusion in one polished section (USNM we describe the first occurrence of panguite in nature, as a new 7602), prepared from a ∼1 cm diameter Allende fragment (Caltech ultra-refractory oxide among the oldest solid materials in the Meteorite Collection No. Allende12A). The host refractory inclu- solar system. Preliminary results are given in Ma et al. (2011a). sion is about 30 × 20 µm in size in the section plane and resides within an AOI, surrounded by a matrix of mostly fine-grained MINERAL NAME AND TYPE MATERIAL olivine and troilite. Panguite occurs with Ti-rich davisite and The mineral and the mineral name (panguite) have been minor Sc-Ti-bearing diopside in the refractory inclusion (Figs. approved by the Commission on New Minerals, Nomenclature 1–2). Davisite appears to be the common thread for panguite. We and Classification (CNMNC) of the International Mineralogical have observed this phase in two additional inclusions, one from Association (IMA 2010-057). The name panguite is for Pan Gu, Allende and the other from the CM chondrite Murchison (Ma et the giant in ancient Chinese mythology, who created the world by al. 2011b). In both cases, panguite is invariably in contact with separating the heaven and earth from chaos in the beginning, in davisite. Moreover, Zhang and Hsu (2009) described a phase from allusion to the mineral with an ultra-refractory origin being among the CH chondrite SaU 290, which we have confirmed by EBSD and EPMA at Caltech to be another example of panguite (see their * E-mail: [email protected] Fig. 6c) and their grains are also in contact with davisite. Given 0003-004X/12/0007–1219$05.00/DOI: http://dx.doi.org/10.2138/am.2012.4027 1219 1220 MA ET AL.: PANGUITE, A NEW ULTRA-REFRACTORY MINERAL FIGURE 1. Backscatter electron image of the ultra-refractory FIGURE 2. Enlarged backscatter image showing the area where inclusion within an Allende AOI in section USNM 7602. panguite crystals (type material) occur with smaller Zr-rich panguite in davisite (Fig. 1). The cross marks where the EBSD pattern (shown in Fig. 3) and the synchrotron micro-diffraction data were collected. the occurrence in multiple meteorites of variable type (CH, CM, The mottled appearance of the davisite mostly reflects differences in CV), we conclude that panguite is a rare but widespread constituent Sc concentrations. of carbonaceous chondrites and, given the consistent association with davisite, we conclude that the origin of panguite is intimately 3+ 2+ connected to the origin and evolution of davisite. V0.02Cr0.01)Σ0.49(Mg0.18Ca0.08Fe0.03)Σ0.29]Σ1.77O3, where the oxidation states of Ti and Fe are assumed to be 4+ and 2+, respectively. 4+ APPEARANCE, PHYSICAL AND OPTICAL PROPERTIES The general formula is (Ti ,Sc,Al,Mg,Zr,Ca)1.8O3, expressed as 4+ 4+ Panguite occurs as irregular to subhedral grains, 500 nm to (Ti ,Sc,Al,Mg,Zr,Ca,o)2O3 or (Ti ,Sc,Al,Mg,Zr,Ca)3O5. 1.8 µm in size. In section, panguite is opaque. Color, streak, lus- Associated Zr-rich panguite has an empirical formula 4+ 3+ ter, hardness, tenacity, cleavage, fracture, density, and refractive [(Ti0.56 Zr0.31Si0.12) Σ0.99(Al0.17Sc0.13Y0.13V0.01) Σ0.44(Ca0.23Mg0.07 2+ index were not determined because of the small grain size. The Fe0.05) Σ0.35]Σ1.78O3 and coexisting davisite has a mean com- 3+ density, calculated from the empirical formula, is 3.746 g/cm3. It position of (Ca0.99Mg0.01)Σ1.00[(Sc0.35Ti0.25V0.01Y0.01Al0.01) Σ0.63 2+ 4+ is non-fluorescent under the electron beam of a scanning electron (Mg0.19Fe0.04)Σ0.23(Ti0.12Zr0.03)Σ0.15]Σ1.01(Si1.07Al0.93)Σ2.00O6, with par- 3+ 4+ microscope, and we observed no crystal forms or twinning. Two titioning of Ti and Ti based on a stoichiometric formula unit distinct chemistries are observed for panguite, and this is readily containing 4.00 cations and 6 O atoms. Note that about two thirds appreciated through atomic number (Z) contrast in BSE images. of the Ti is inferred to be trivalent in davisite that coexists with 3+ The larger panguite grains shown in Figure 2 (lighter gray), which panguite containing little if any Ti . Minor isolated Sc-Ti-rich constitute the type material, are much lower in the high-Z elements diopside (Table 1) occurs in the inclusion. Fine-grained (∼250 Zr and Y than are some of the smaller grains (white in Fig. 2). TABLE 1. The mean electron microprobe analytical result for type pan- HEMICAL comPOSITION C guite, Zr-rich panguite, davisite, diopside, and surrounding Chemical analyses of panguite (on the larger grains in Fig. olivine 2) and associated minerals were carried out using a JEOL 8200 Constituent Type Zr-rich Davisite Diopside Olivine electron microprobe (WDS mode, 10 kV, 5 nA beam in focused panguite panguite wt% n = 5* n = 4 n = 4 n = 3 n = 4 mode). Standards for the analysis were TiO2 (TiKα, OKα), zircon TiO2 47.97(1.09)† 30.68(31) 12.74(39) 7.04(95) 0.12(5) (ZrLα), ScPO4 (ScKα), synthetic anorthite (CaKα, AlKα, SiKα), ZrO2 14.61(86) 25.92(22) 1.53(27) 0.79(45) b.d. forsterite (MgKα), YPO4 (YLα), fayalite (FeKα), V2O3 (VKα), Sc2O3 10.67(25) 5.97(20) 10.16(97) 3.90(1.37) b.d. Al2O3 7.58(22) 5.94(38) 20.29(1.56) 11.53(1.74) 0.12(7) Cr2O3 (CrKα), and Hf metal (HfLα). Quantitative elemental mi- MgO 5.54(55) 1.98(7) 3.43(84) 11.15(1.74) 35.47(1.71) croanalyses were processed with the CITZAF correction procedure Y2O3 5.38(37) 10.16(28) 0.41(10) 0.50(23) b.d. (Armstrong 1995) and analytical results are given in Table 1. CaO 3.34(40) 8.73(47) 23.54(8) 24.72(49) 0.17(3) SiO2 1.89(18) 5.04(31) 27.34(1.49) 40.75(2.94) 37.99(21) Repeated electron probe analysis of panguite with and without O FeO 1.81(25) 2.21(29) 1.07(15) 1.25(4) 26.84(1.35) being explicitly measured gave similar results, implying that Ti V2O3 0.95(14) 0.27(6) 0.47(2) 0.18(8) b.d.
Recommended publications
  • George Robert Rossman Feb 15, 1995
    George Robert Rossman 20-Jun-2020 Present Position: Professor of Mineralogy Option Representative for Geochemistry Division of Geological and Planetary Sciences California Institute of Technology Pasadena, California 91125-2500 Office Telephone: (626)-395-6471 FAX: (626)-568-0935 E-mail: [email protected] Residence: Pasadena, California Birthdate: August 3, l944, LaCrosse, Wisconsin Education: B.S. (Chemistry and Mathematics), Wisconsin State University, Eau Claire, 1966, Summa cum Laude Ph.D. (Chemistry), California Institute of Technology, Pasadena, 1971 Experience: California Institute of Technology Division of Geological and Planetary Sciences a) 1971 Instructor in Mineralogy b) 1971-1974 Assistant Professor of Mineralogy and Chemistry c) 1974-1977 Assistant Professor of Mineralogy d) 1977-1984 Associate Professor of Mineralogy e) 1984-2008 Professor of Mineralogy f) 2008-2015 Eleanor and John R. McMillan Professor of Mineralogy e) 2015- Professor of Mineralogy Principal Research Interests: a) Spectroscopic studies of minerals. These studies include problems relating to the origin of color phenomena in minerals; site ordering in crystals; pleochroism; metal ions in distorted sites; analytical applications. b) The role of low concentrations of water and hydroxide in nominally anhydrous solids. Analytical methods for OH analysis, mode of incorporation, role of OH in modifying physical and chemical properties, and its relationship to conditions of formation in the natural environment. c) Long term radiation damage effects in minerals from background levels of natural radiation. The effects of high level ionizing radiation on minerals. d) X-ray amorphous minerals. These studies have involved the physical chemical study of bioinorganic hard parts of marine organisms and products of terrestrial surface weathering, and metamict minerals.
    [Show full text]
  • Extraterrestrial Mineral Harder Than Diamonds Discovered in Israel Jan 15, 2019 Helen Flatley
    Extraterrestrial Mineral Harder than Diamonds Discovered in Israel Jan 15, 2019 Helen Flatley A new discovery in the mountains of northern Israel has caused significant excitement for geologists around the world. While working in the Zevulun Valley, close to Mount Carmel, Israeli mining company Shefa Yamim found a new mineral never before discovered on earth. The International Mineralogical Association regularly approves new minerals for its official list, with up to 100 new substances added to the register each year. However, this latest discovery was hailed as a significant event, as it was previously believed that this type of mineral was only found on extraterrestrial material. The new mineral loosely resembles allendeite, a mineral previously seen on the Allende meteorite that fell to earth in February of 1969. However, this is the first time that such a substance has been found to naturally occur in rock on Earth itself. The CEO of Shefa Yamim, Abraham Taub, told Haaretz that the mineral had been named carmeltazite, after the place of its discovery and the minerals contained within its structure: titanium, aluminum and zirconium. While the majority of the new minerals approved by the International Mineralogical Association are unspectacular in appearance, carmeltazite offers considerable commercial opportunities, as it resembles other gemstones used in the making of jewelry. The crystal structure of carmeltazite. Photo by MDPI CC BY-SA 4.0 This strange new mineral was found embedded in cracks within sapphire, the second hardest mineral (after diamonds) found to occur naturally on earth. Carmeltazite closely resembles sapphire and ruby in its chemical composition, and is found in black, blue-green, or orange-brown colors, with a metallic hue.
    [Show full text]
  • Mineralogical and Oxygen Isotopic Study of a New Ultrarefractory Inclusion in the Northwest Africa 3118 CV3 Chondrite
    Meteoritics & Planetary Science 55, Nr 10, 2184–2205 (2020) doi: 10.1111/maps.13575 Mineralogical and oxygen isotopic study of a new ultrarefractory inclusion in the Northwest Africa 3118 CV3 chondrite Yong XIONG1, Ai-Cheng ZHANG *1,2, Noriyuki KAWASAKI3, Chi MA 4, Naoya SAKAMOTO5, Jia-Ni CHEN1, Li-Xin GU6, and Hisayoshi YURIMOTO3,5 1State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China 2CAS Center for Excellence in Comparative Planetology,Hefei, China 3Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA 5Isotope Imaging Laboratory, Creative Research Institution Sousei, Hokkaido University, Sapporo 001-0021, Japan 6Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China *Corresponding author. E-mail: [email protected] (Received 27 March 2020; revision accepted 09 September 2020) Abstract–Calcium-aluminum-rich inclusions (CAIs) are the first solid materials formed in the solar nebula. Among them, ultrarefractory inclusions are very rare. In this study, we report on the mineralogical features and oxygen isotopic compositions of minerals in a new ultrarefractory inclusion CAI 007 from the CV3 chondrite Northwest Africa (NWA) 3118. The CAI 007 inclusion is porous and has a layered (core–mantle–rim) texture. The core is dominant in area and mainly consists of Y-rich perovskite and Zr-rich davisite, with minor refractory metal nuggets, Zr,Sc-rich oxide minerals (calzirtite and tazheranite), and Fe-rich spinel. The calzirtite and tazheranite are closely intergrown, probably derived from a precursor phase due to thermal metamorphism on the parent body.
    [Show full text]
  • On the Nature and Significance of Rarity in Mineralogy
    1 1 REVISION #2—American Mineralogist—January 12, 2016 2 3 On the nature and significance of rarity in mineralogy 4 5 Robert M. Hazen1* and Jesse H. Ausubel2 6 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D. C. 20015, USA. 7 2Program for the Human Environment, Rockefeller University, 1230 York Ave., New York, New York 10021, USA. 8 9 ABSTRACT 10 More than half of the >5000 approved mineral species are known from 5 or fewer localities 11 and thus are rare. Mineralogical rarity arises from different circumstances, but all rare mineral 12 species conform to one or more of 4 criteria: (1) P-T-X range: minerals that form only under 13 highly restricted conditions in pressure-temperature-composition space; (2) Planetary constraints: 14 minerals that incorporate essential elements that are rare or that form at extreme conditions that 15 seldom occur in Earth’s near-surface environment; (3) Ephemeral phases: minerals that rapidly 16 break down under ambient conditions; and (4) Collection biases: phases that are difficult to 17 recognize because they lack crystal faces or are microscopic, or minerals that arise in lithological 18 contexts that are difficult to access. Minerals that conform to criterion (1), (2), or (3) are 19 inherently rare, whereas those matching criterion (4) may be much more common than 20 represented by reported occurences. 21 Rare minerals, though playing minimal roles in Earth’s bulk properties and dynamics, are 22 nevertheless of significance for varied reasons. Uncommon minerals are key to understanding 23 the diversity and disparity of Earth’s mineralogical environments, for example in the prediction 24 of as yet undescribed minerals.
    [Show full text]
  • A Review of the Structural Architecture of Tellurium Oxycompounds
    Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances.
    [Show full text]
  • Sc,Ti,Al,Zr,Mg,Ca,□)2O3, a NEW ULTRA-REFRACTORY MINERAL in ALLENDE Chi Ma1*, Oliver Tschauner1,2, John R
    75th Annual Meteoritical Society Meeting (2012) 5004.pdf DISCOVERY OF KANGITE, (Sc,Ti,Al,Zr,Mg,Ca,□)2O3, A NEW ULTRA-REFRACTORY MINERAL IN ALLENDE Chi Ma1*, Oliver Tschauner1,2, John R. Beckett1, George R. Rossman1, Wenjun Liu3. 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; 2High Pressure Science and Engineering Center and Department of Geoscience, University of Nevada, Las Vegas, NV 89154, USA; 3Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA. *[email protected] Introduction: During a nano-mineralogy investigation of the Allende CV3 carbonaceous chondrite, we identified a new scan- dia mineral named “kangite” in an irregular ultra-refractory in- clusion. It has a cubic Ia3 bixbyite-type structure and a formula unit (Sc,Ti,Al,Zr,Mg,Ca,□)2O3. Field-emission SEM with EDS and electron back-scatter diffraction, electron microprobe and synchrotron micro-Laue diffraction were used to characterize the composition and structure. We report here the first occurrence of kangite in nature, as a new ultra-refractory oxide among the ear- liest solids formed in the solar nebula, and discuss its origin and significance for nebular processes. The mineral and the mineral name (kangite) have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2011-092). Occurrence, Chemistry, and Crystallography: Kangite (26.6 wt% Sc2O3) appears as four irregular to subhedral grains, 1 to 4 μm in size, alone or in contact with REE-rich perovskite and MgAl-spinel in type davisite (up to 17.7 wt% Sc2O3) [1].
    [Show full text]
  • New Mineral Panguite - PSRD | a Cosmosparks Report
    New Mineral Panguite - PSRD | A CosmoSparks report Quick Views of Big Advances Olympic-caliber Mineral Finder Chi Ma, a senior scientist at Caltech's Division of Geological and Planetary Sciences, is an expert in nanometer-scale mineralogy with a particular interest in discovering new minerals. Teasing out the tinest of cosmochemical details, he and his colleagues have already discovered 14 new minerals in meteorites, nine from one meteorite alone—the Allende carbonaceous chondrite [Data link from the Meteoritical Bulletin]. The olympian efforts by this team and others to study some of the early solids that formed in our Solar System are helping to unravel the details of nebular evolution, the components that accreted into rocky bodies, and the chemical processing on those bodies. Most recently, Ma and collaborators at Caltech, University of Nevada-Las Vegas, and the Argonne National Laboratory discovered the first occurrence of a brand new type of titanium oxide, as reported online June 26, 2012 in the American Backscattered electron image of new mineral panguite inside an Mineralogist. Using an array of high-resolution, ultra-refractory inclusion within an amoeboid olivine inclusion in high-tech microscopic and spectroscopic the Allende meteorite. Panguite occurs in association with techniques the team discovered fine-grained titanium-bearing davisite. crystals, 500–1800 nanometers in size, of 4+ (Ti ,Sc,Al,Mg,Zr,Ca)1.8O3. These grains are inside an ultra-refractory inclusion (30x20 micrometers in size) within an olivine-rich inclusion (known as an amoeboid olivine inclusion) in Allende (see image). Looking like a cosmochemical set of nested Russian dolls with one chemically primitive component inside another, these refractory solids condensed from solar nebula gas before the planets formed, about 4.6 billion years ago.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 106, pages 1186–1191, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1 and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 10 new species, including huenite, laverovite, pandoraite-Ba, pandoraite- Ca, and six new species of pyrochlore supergroup: cesiokenomicrolite, hydrokenopyrochlore, hydroxyplumbo- pyrochlore, kenoplumbomicrolite, oxybismutomicrolite, and oxycalciomicrolite. Huenite* hkl)]: 6.786 (25; 100), 5.372 (25, 101), 3.810 (51; 110), 2.974 (100; 112), P. Vignola, N. Rotiroti, G.D. Gatta, A. Risplendente, F. Hatert, D. Bersani, 2.702 (41; 202), 2.497 (38; 210), 2.203 (24; 300), 1.712 (60; 312), 1.450 (37; 314). The crystal structure was solved by direct methods and refined and V. Mattioli (2019) Huenite, Cu4Mo3O12(OH)2, a new copper- molybdenum oxy-hydroxide mineral from the San Samuel Mine, to R1 = 3.4% using the synchrotron light source. Huenite is trigonal, 3 Carrera Pinto, Cachiyuyo de Llampos district, Copiapó Province, P31/c, a = 7.653(5), c = 9.411(6) Å, V = 477.4 Å , Z = 2. The structure Atacama Region, Chile. Canadian Mineralogist, 57(4), 467–474. is based on clusters of Mo3O12(OH) and Cu4O16(OH)2 units. Three edge- sharing Mo octahedra form the Mo3O12(OH) unit, and four edge-sharing Cu-octahedra form the Cu4O16(OH)2 units of a “U” shape, which are in Huenite (IMA 2015-122), ideally Cu4Mo3O12(OH)2, trigonal, is a new mineral discovered on lindgrenite specimens from the San Samuel turn share edges to form a sheet of Cu octahedra parallel to (001).
    [Show full text]
  • Panguite, (Ti4+,Sc,Al,Mg,Zr,Ca)
    American Mineralogist, Volume 97, pages 1219–1225, 2012 4+ Panguite, (Ti ,Sc,Al,Mg,Zr,Ca)1.8O3, a new ultra-refractory titania mineral from the Allende meteorite: Synchrotron micro-diffraction and EBSD CHI MA,1,* OLIVER TSCHAUNER,1,2 JOHN R. BECKETT,1 GEORGE R. ROSSMAN,1 AND WENJUN LIU3 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. 2High Pressure Science and Engineering Center and Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154, U.S.A. 3Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. ABSTRACT 4+ Panguite (IMA 2010-057), (Ti ,Sc,Al,Mg,Zr,Ca)1.8O3, is a new titania, occurring as fine-grained crystals with Ti-rich davisite in an ultra-refractory inclusion within an amoeboid olivine inclusion from the Allende CV3 carbonaceous chondrite. The phase was characterized by SEM, EBSD, synchrotron micro-diffraction, micro-Raman spectroscopy, and EPMA. The mean chemical composition of the type panguite is (wt%) TiO2 47.97, ZrO2 14.61, Sc2O3 10.67, Al2O3 7.58, MgO 5.54, Y2O3 5.38, CaO 3.34, SiO2 1.89, FeO 1.81, V2O3 0.95, Cr2O3 0.54, HfO2 0.28, sum 100.56 with a corresponding empirical 4+ 3+ formula calculated on the basis of 3 O atoms of [(Ti0.79Zr0.16Si0.04)Σ0.99(Sc0.20Al0.20Y0.06V0.02Cr0.01)Σ0.49 2+ (Mg0.18Ca0.08Fe0.03)Σ0.29]Σ1.77O3. Synchrotron micro-Laue diffraction (i.e., an energy scan by a high-flux X-ray monochromatic beam and white beam diffraction) on one type domain at sub-micrometer resolution revealed that panguite is an orthorhombic mineral in space group Pbca.
    [Show full text]
  • Handheld and Non Destructive Methodologies For
    Analytical Methods Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/methods Page 1 of 8 Analytical Methods Dynamic Article Links ► Journal Name 1 2 3 Cite this: DOI: 10.1039/c0xx00000x 4 5 www.rsc.org/xxxxxx ARTICLE TYPE 6 7 Handheld and non destructive methodologies for the compositional 8 9 investigation of meteorite fragments 10 11 Vincenza Crupi,* a Alessandra Giunta, b Barry Kellett b, Francesca Longo, a Giacomo Maisano, a Domenico 12 Majolino, a Antonella Scherillo c and Valentina Venuti a 13 14 5 Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 15 DOI: 10.1039/b000000x 16 17 In the present study, an innovative methodological approach has been proposed in order to characterize 18 meteoritic samples without removing or causing damage to any part of them.
    [Show full text]
  • Allendeite (Sc4zr3o12) and Hexamolybdenum (Mo,Ru,Fe), Two New Minerals from an Ultrarefractory Inclusion from the Allende Meteorite
    American Mineralogist, Volume 99, pages 654–666, 2014 Allendeite (Sc4Zr3O12) and hexamolybdenum (Mo,Ru,Fe), two new minerals from an ultrarefractory inclusion from the Allende meteorite Chi Ma*, John R. BeCkett and GeoRGe R. RossMan Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. aBstRaCt During a nanomineralogy investigation of the Allende meteorite with analytical scanning elec- tron microscopy, two new minerals were discovered; both occur as micro- to nano-crystals in an ultrarefractory inclusion, ACM-1. They are allendeite, Sc4Zr3O12, a new Sc- and Zr-rich oxide; and hexamolybdenum (Mo,Ru,Fe,Ir,Os), a Mo-dominant alloy. Allendeite is trigonal, R3, a = 9.396, c = 8.720, V = 666.7 Å3, and Z = 3, with a calculated density of 4.84 g/cm3 via the previously described structure and our observed chemistry. Hexamolybdenum is hexagonal, P63/mmc, a = 2.7506, c = 4.4318 Å, V = 29.04 Å3, and Z = 2, with a calculated density of 11.90 g/cm3 via the known structure and our observed chemistry. Allendeite is named after the Allende meteorite. The name hexamolyb- denum refers to the symmetry (primitive hexagonal) and composition (Mo-rich). The two minerals an important ultrarefractory carrier phase linking Zr-,Sc-oxides to the more common Sc-,Zr-enriched pyroxenes in Ca-Al-rich inclusions. Hexamolybdenum is part of a continuum of high-temperature al- loys in meteorites supplying a link between Os- and/or Ru-rich and Fe-rich meteoritic alloys. It may be a derivative of the former and a precursor of the latter.
    [Show full text]
  • Carmeltazite, Zral2ti4o11, a New Mineral Trapped in Corundum from Volcanic Rocks of Mt Carmel, Northern Israel
    minerals Article Carmeltazite, ZrAl2Ti4O11, a New Mineral Trapped in Corundum from Volcanic Rocks of Mt Carmel, Northern Israel William L. Griffin 1 , Sarah E. M. Gain 1,2 , Luca Bindi 3,* , Vered Toledo 4, Fernando Cámara 5 , Martin Saunders 2 and Suzanne Y. O’Reilly 1 1 ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Earth and Planetary Sciences, Macquarie University, Sydney 2109, Australia; bill.griffi[email protected] (W.L.G.); [email protected] (S.E.M.G.); [email protected] (S.Y.O.) 2 Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth 6009, Australia; [email protected] 3 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy 4 Shefa Yamim (A.T.M.) Ltd., Netanya 4210602, Israel; [email protected] 5 Dipartimento di Scienze della Terra ‘A. Desio’, Università degli Studi di Milano, Via Luigi Mangiagalli 34, 20133 Milano, Italy; [email protected] * Correspondence: luca.bindi@unifi.it; Tel.: +39-055-275-7532 Received: 26 November 2018; Accepted: 17 December 2018; Published: 19 December 2018 Abstract: The new mineral species carmeltazite, ideally ZrAl2Ti4O11, was discovered in pockets of trapped melt interstitial to, or included in, corundum xenocrysts from the Cretaceous Mt Carmel volcanics of northern Israel, associated with corundum, tistarite, anorthite, osbornite, an unnamed REE (Rare Earth Element) phase, in a Ca-Mg-Al-Si-O glass. In reflected light, carmeltazite is weakly to moderately bireflectant and weakly pleochroic from dark brown to dark green.
    [Show full text]