CHILDHOOD Hib VACCINES: NEARLY ELIMINATING the THREAT of BACTERIAL MENINGITIS

Total Page:16

File Type:pdf, Size:1020Kb

CHILDHOOD Hib VACCINES: NEARLY ELIMINATING the THREAT of BACTERIAL MENINGITIS CHILDHOOD Hib VACCINES: NEARLY ELIMINATING THE THREAT OF BACTERIAL MENINGITIS By “teaching” the immune system to defend against HAEMOPHILUS INFLUENZAE TYPE B (Hib) infection, vaccines prevent serious illness, disability, and death from dozens of infectious diseases,1 making vaccines • Bacterial infection spread by direct person-to-person one of the most important public health achievements ever. contact as well as coughing and sneezing As a leader in biomedical research, NIH has contributed to • Causes fever, bacterial meningitis, pneumonia, infection the development of many vaccines throughout its history – of the blood, and swelling of the throat and joints one standout vaccine has nearly eliminated Haemophilus • Long-term consequences can include deafness, influenzae type b (Hib) infection in the U.S. Once the leading blindness, brain damage, and intellectual disability cause of bacterial meningitis in children, Hib infection can result in serious, long-term disability and death. Today, • Predominately affects young children, especially infants the near elimination of Hib has had profound benefits Also see Hib information provided by the Centers for 2 throughout the world. NIH, in concert with many other Disease Control and Prevention (CDC): governmental, non-profit, and private organizations, played http://www.cdc.gov/vaccines/vpd-vac/hib.htm a key role in making an effective Hib vaccine a reality, resulting in thousands of lives saved.3 Hib INFECTIONS: THEN AND NOW THEN More than 20,000 NOW Cases have • Antibiotics were not always cases of Hib were • Highly effective Hib dropped by more prescribed at the right time vaccines have been in use reported in the than 99%, with and dose. Even with effective since the late 1980s.5 antibiotic treatment, 5 percent U.S. each year.8 • More than 90% of children only around 40 of those who contracted the in the U.S. received a Hib reported in 2009.9 infection died.4 vaccine in 2014.7 • Hib was the leading cause of bacterial meningitis • The CDC predicts that more and acquired intellectual disability in children – most of than 19,000 cases whom were under 5 years of age.6 and 700 Hib-related deaths will be prevented over • Upwards of 1,000 children died from Hib every the lifespan of the 4 million U.S. children born in year and 6,000 suffered from deafness, seizures, 2009 alone.11 intellectual disability, or brain damage primarily due • For the group of children born in 2009, Hib vaccination to bacterial meningitis.10 is predicted to save $1.8 billion in direct costs and • $2 billion per year in health care costs were attributed $3.7 billion in total societal costs.13 to Hib and related illnesses in 1968.12 1980 FDA scientists (who 1984 RESEARCH-TO-PRACTICE later moved to NIH) linked Hib sugar NIH and FDA scientists MILESTONES FOR THE chains to immune- found that this conjugate stimulating proteins vaccine triggered immune PROTECTING (e.g., from diphtheria), responses in appropriate INFANTS WITH A producing a “conjugate animal models.24 Hib VACCINE vaccine.”23 NEXT-GENERATION For more information on the supporting evidence and research sponsors for CONJUGATE these milestones, see the Web appendix. VACCINE The first attempts at developing 1930s 1968 1993 a Hib vaccine focused on the sugar chains – researchers worked Hib (seen below right, in photo) on isolating, purifying, and was found to be the primary cause of The conjugate vaccine developed preparing these chains for clinical bacterial meningitis in children. The bacteria by NIH-funded scientists was use.18 could be distinguished under the microscope licensed, manufactured, and 27 by their unique outer coat.15 Later, scientists commercially distributed. determined this coat was made up of chains NIH-funded clinical 16 trials showed that the of specificsugar molecules. 1985- CDC included the Hib conjugate 1989 conjugate vaccine vaccine in its recommended was safe and effective vaccine schedule.28 25 Because sugar chains typically do not in infants. stimulate immune responses as well as proteins, researchers began to EARLY HIB 1995 look for ways to link the chains to VACCINE FDA approved the bacterial proteins in order to enhance 1987- first4 conjugate 17 1993 their immunogenicity. DEVELOPMENT vaccines for use in infants.26 For their “groundbreaking work and …leadership in the development and By deactivating disease-causing commercialization of the [Hib] 1985 components of bacteria, vaccines vaccine,” the Albert and Mary were developed to prevent tetanus Lasker Foundation awarded 1920s and diphtheria.14 These advances The Food and Drug Administration (FDA) approved their prestigious Clinical would later help enhance the the first Hib vaccines (including from Praxis Biologics) Medical Research Award effectiveness of Hib vaccines. for use in children two years of age,21 while researchers (often referred to as the explored ways to make the vaccines more effective “American Nobels”) to four 22 in infants. NIH-supported scientists.29 NIH’s National Institute of Allergy and Infectious Diseases provided grant NIH-funded clinical trials Scientists leading funding to Drs. Porter FOUNDATIONAL found that these early Hib these clinical trials Anderson and David Smith. vaccines worked well founded a company, Drs. Rachel Schneerson and RESEARCH 1970s for children over age 2, called Praxis Biologics John Robbins performed the but were not as effective (now incorporated into majority of their research 19 Wyeth), to develop and in infants. 1983 within the intramural produce vaccines for laboratories of the Eunice children, including Kennedy Shriver National Hib vaccines.20 Institute on Child Health and indicates NIH-funded milestones Human Development. 1977: A young girl receives a vaccination, administered by a public health nursing practitioner IMPACTS OF Hib VACCINES HIB DISEASE NEARLY ELIMINATED IN THE U.S. HEALTH Incidence of Hib FOLLOWING THE VACCINE • First conjugate vaccine cases declined A FDA Approved Hib Vaccines B Hib Vaccines Added to CDC approved to treat an more than Childhood Vaccine Schedule 30 infectious disease. 99% following 25 • More than 90% of children availability of the in the U.S. receive the conjugate vaccine.32 20 A 31 Incidence Hib vaccine. A 15 SOCIETY • Hospitalization for Hib- 10 meningitis costs upwards For children born of $38,000 depending on B in 2009 alone, 5 the severity of the disease.36 Hib vaccination • NIH-supported researchers saves $3.7 billion, started a company and 1980 1985 1990 1995 2000 2005 2010 including more Years successfully moved Hib and than $1.8 billion other experimental vaccines in direct treatment Figure Legend: The CDC-estimated annual incidence of through the full product invasive Hib disease (per 100,000 people) is shown here for costs.35 development pipeline.37 U.S. children less than five years of age from 1980 to 2012. Once approved and licensed, the use of Hib vaccines resulted in a rapid decline of Hib cases and the disease has KNOWLEDGE been nearly eliminated in the United States.33 • Hib vaccine research provided fundamental understanding of how the infant immune system works, stimulating new strategies HEALTH IMPACT OF ROUTINE CHILDHOOD for developing effective vaccines for infants. 34 • The Hib conjugate vaccine technology has been IMMUNIZATION FOR Hib: U.S. 1994-2013 applied to create several vaccines against Illnesses Hospitalizations Deaths other disease-causing bacteria, such as Prevented: Averted: Avoided: pneumococci, meningococci, Salmonella typhi, group B streptococci, and E coli.38 361,000 334,000 13,700 CHILDHOOD VACCINES: OVERALL IMPACT ON SOCIETY The Hib vaccine success story highlights how continued scientific investment leads to new tools that prevent deadly diseases and improve the lives of people around the world. The Hib vaccine is one of many childhood vaccines, and the CDC projects that over the lifespan of the 4 million U.S. children born in 2009 alone, childhood vaccination overall will: save prevent reduce direct save 42,000 20 million health care costs by $68.8 billion lives cases of disease $13.5 billion in indirect costs39 For references, supplementary information, and more on the impact of NIH, please visit http://www.nih.gov/impact.
Recommended publications
  • (ACIP) General Best Guidance for Immunization
    8. Altered Immunocompetence Updates This section incorporates general content from the Infectious Diseases Society of America policy statement, 2013 IDSA Clinical Practice Guideline for Vaccination of the Immunocompromised Host (1), to which CDC provided input in November 2011. The evidence supporting this guidance is based on expert opinion and arrived at by consensus. General Principles Altered immunocompetence, a term often used synonymously with immunosuppression, immunodeficiency, and immunocompromise, can be classified as primary or secondary. Primary immunodeficiencies generally are inherited and include conditions defined by an inherent absence or quantitative deficiency of cellular, humoral, or both components that provide immunity. Examples include congenital immunodeficiency diseases such as X- linked agammaglobulinemia, SCID, and chronic granulomatous disease. Secondary immunodeficiency is acquired and is defined by loss or qualitative deficiency in cellular or humoral immune components that occurs as a result of a disease process or its therapy. Examples of secondary immunodeficiency include HIV infection, hematopoietic malignancies, treatment with radiation, and treatment with immunosuppressive drugs. The degree to which immunosuppressive drugs cause clinically significant immunodeficiency generally is dose related and varies by drug. Primary and secondary immunodeficiencies might include a combination of deficits in both cellular and humoral immunity. Certain conditions like asplenia and chronic renal disease also can cause altered immunocompetence. Determination of altered immunocompetence is important to the vaccine provider because incidence or severity of some vaccine-preventable diseases is higher in persons with altered immunocompetence; therefore, certain vaccines (e.g., inactivated influenza vaccine, pneumococcal vaccines) are recommended specifically for persons with these diseases (2,3). Administration of live vaccines might need to be deferred until immune function has improved.
    [Show full text]
  • Asplenia Vaccination Guide
    Stanford Health Care Vaccination Subcommitee Revision date 11/308/2018 Functional or Anatomical Asplenia Vaccine Guide I. PURPOSE To outline appropriate vaccines targeting encapsulated bacteria for functionally or anatomically asplenic patients. Routine vaccines that may also be indicated but not addressed here include influenza, Tdap, herpes zoster, HPV, MMR, and varicella.1,2,3 II. Background Functionally or anatomically asplenic patients should be vaccinated to decrease the risk of sepsis due to organisms such as Streptococcus pneumoniae, Haemophilus influenzae type B, and Neisseria meningitidis. Guidelines are based on CDC recommendations. For additional information, see https://www.cdc.gov/vaccines/schedules/hcp/imz/adult-conditions.html. III. Procedures/Guidelines1,2,3,6,7,8 The regimen consists of 4 vaccines initially, followed by repeat doses as specified: 1. Haemophilus b conjugate (Hib) vaccine (ACTHIB®) IM once if they have not previously received Hib vaccine 2. Pneumococcal conjugate 13-valent (PCV13) vaccine (PREVNAR 13®) IM once • 2nd dose: Pneumococcal polysaccharide 23-valent (PPSV23) vaccine (PNEUMOVAX 23®) SQ/IM once given ≥ 8 weeks later, then 3rd dose as PPSV23 > 5 years later.4 Note: The above is valid for those who have not received any pneumococcal vaccines previously, or those with unknown vaccination history. If already received prior doses of PPSV23: give PCV13 at least 1 year after last PPSV23 dose. 3. Meningococcal conjugate vaccine (MenACWY-CRM, MENVEO®) IM (repeat in ≥ 8 weeks, then every 5 years thereafter) 4. Meningococcal serogroup B vaccine (MenB, BEXSERO®) IM (repeat in ≥ 4 weeks) Timing of vaccination relative to splenectomy: 1. Should be given at least 14 days before splenectomy, if possible.
    [Show full text]
  • Menhibrix® Meningococcal Groups C and Y and Haemophilus B Tetanus Toxoid Conjugate Vaccine
    MenHibrix® Meningococcal Groups C and Y and Haemophilus b Tetanus Toxoid Conjugate Vaccine Age Indications for Menhibrix ® Vaccine Vaccine Administration Menhibrix® (GSK): for aged 6 weeks through 18 months at increased - Intramuscular (IM) injection in the anterolateral aspect of risk for meningococcal disease (see below) the thigh for most infants younger than 1 year of age In older children, in the deltoid muscle of the arm Indications for Use and Schedule - Indicated for active immunization to prevent invasive disease - 1-1.5 inch, 22-25 gauge needle - Use professional judgment in selecting caused by Neisseria meningitidis serogroups C and Y and needle length Haemophilus influenzae type b. Storage and Handling - Four doses (0.5 mL each) by intramuscular injection at 2, 4, 6, and 12 through 15 months of age. The first dose may be - Store in the refrigerator between given as early as 6 weeks of age. The fourth dose may be 35º-46º F (2º-8º C); Do NOT freeze Hib-MenCY-TT given as late as 18 months of age. - Protect vials from light. - Keep in the original box · Minimum interval - 8 weeks between doses - Administer vaccine immediately after drawn up in syringe MenHibrix will be supplied to select providers designated by the Georgia Immunization Office. HIGH- RISK INFANTS 6 WEEKS THROUGH 18 MONTHS OF AGE: Persons with persistent complement component pathway deficiencies Persons with anatomic or functional asplenia Complex congenital heart disease with asplenia Sickle cell disease Persons living in or traveling to countries in which N. meningitidis is hyper-endemic or epidemic. CONTRAINDICATIONS • An anaphylactic (severe allergic) reaction to a prior dose or a component of any meningococcal-, H.
    [Show full text]
  • CDPH Letterhead
    State of California—Health and Human Services Agency California Department of Public Health KAREN L. SMITH, MD, MPH EDMUND G. BROWN JR. Director and State Health Officer Governor January 25, 2017 IZB-FY-16-17-07 TO: California Vaccines for Children (VFC) Program Providers FROM: Sarah Royce, M.D., M.P.H, Chief Immunization Branch SUBJECT: HIBERIX™ (HAEMOPHILUS INFLUENZAE TYPE B (HIB) CONJUGATE VACCINE) AVAILABLE FOR BOTH PRIMARY SERIES AND BOOSTER DOSE This memo is divided into sections to enable you to quickly access the information you need: Section Page(s) Summary 1 Background and Composition 2 Recommendations for Vaccine Use 2 Eligible Groups 2 Licensed Dosing Schedule 2 Current ACIP Recommendations 3 Minimum Ages and Intervals 3 Contraindications 3 Precautions 3 Vaccine Information Statement 3 Administration 3 Storage and Handling 4 Administration with Other Vaccines 4 Potential Vaccine Adverse Events 4 Reporting of Adverse Events and Errors 4 How Supplied 4 Ordering and Billing 5 Documentation 6 California Vaccines for Children Program 850 Marina Bay Parkway, Building P, 2nd Floor, Richmond, CA 94804 Toll free (877) 243-8832 ● FAX (877) 329-9832 ● Internet Address: www.eziz.org Hiberix Page 2 of 6 January 25, 2017 SUMMARY On January 14, 2016, the United States Food and Drug Administration (FDA) expanded the licensure of Hiberix™ (GlaxoSmithKline Biologicals [GSK]). It is now licensed for the primary Hib vaccination series at 2, 4, and 6 months of age, in addition to the previous indication for the booster dose. Hiberix™ is a Haemophilus influenzae type b conjugate (tetanus toxoid conjugate) vaccine indicated for active immunization for the prevention of invasive disease caused by Haemophilus influenzae type b for children 6 weeks through 4 years of age.
    [Show full text]
  • Vaccinations for Pregnant Women the Table Below Shows Which Vaccinations You May Or May Not Need During Your Pregnancy
    Vaccinations for Pregnant Women The table below shows which vaccinations you may or may not need during your pregnancy. Vaccine Do you need it during your pregnancy? Influenza Yes! You need a flu shot every fall (or even as late as winter or spring) for your protection and for the protection of your baby and others around you. It’s safe to get the vaccine at any time during your pregnancy. Tetanus, diphtheria, Yes! Women who are pregnant need a dose of Tdap vaccine (the adult whooping cough vaccine) during each pregnancy, prefer- whooping cough ably in the early part of the third trimester. It’s safe to be given during pregnancy and will help protect your baby from whooping (pertussis) cough in the first few months after birth when he or she is most vulnerable. After Tdap, you need a Tdap or Td booster dose every Tdap, Td 10 years. Consult your healthcare provider if you haven’t had at least 3 tetanus- and diphtheria-toxoid containing shots some- time in your life or if you have a deep or dirty wound. Human No. This vaccine is not recommended to be given during pregnancy, but if you inadvertently receive it, this is not a cause for papillomavirus concern. HPV vaccine is recommended for all people age 26 or younger, so if you are in this age group, make sure you are HPV vaccinated before or after your pregnancy. People age 27 through 45 may also be vaccinated against HPV after discussion with their healthcare provider. The vaccine is given in 2 or 3 doses (depending on the age at which the first dose is given) over a 6-month period.
    [Show full text]
  • The Compelling Need for Game-Changing Influenza Vaccines
    THE COMPELLING NEED FOR GAME-CHANGING INFLUENZA VACCINES AN ANALYSIS OF THE INFLUENZA VACCINE ENTERPRISE AND RECOMMENDATIONS FOR THE FUTURE OCTOBER 2012 The Compelling Need for Game-Changing Influenza Vaccines An Analysis of the Influenza Vaccine Enterprise and Recommendations for the Future Michael T. Osterholm, PhD, MPH Nicholas S. Kelley, PhD Jill M. Manske, PhD, MPH Katie S. Ballering, PhD Tabitha R. Leighton, MPH Kristine A. Moore, MD, MPH The Center for Infectious Disease Research and Policy (CIDRAP), founded in 2001, is a global leader in addressing public health preparedness and emerging infectious disease response. Part of the Academic Health Center at the University of Minnesota, CIDRAP works to prevent illness and death from targeted infectious disease threats through research and the translation of scientific information into real-world, practical applications, policies, and solutions. For more information, visit: www.cidrap.umn.edu. This report was made possible in part by a grant from the Alfred P. Sloan Foundation. This report is available at: www.cidrap.umn.edu This report was produced and designed by Betsy Seeler Design. © 2012 Regents of the University of Minnesota. All rights reserved. Contents Preface...............................................................................................................................................................2 Executive Summary..........................................................................................................................................5 Chapter.1.
    [Show full text]
  • Immunizing Children Against Hepatitis B -- a Training Module
    Cover Immunizing Children Against Hepatitis B A Training Module For Vaccinators Training Resource Series, Revised March 2006 Adapting This Training Module for Your Program This module was developed as a prototype for training immunization providers on hepatitis B disease and vaccine. Sections of this module will need to be adapted for the local context before use. Recommended Steps for Adaptation • Thoroughly review the training module and mark sections that may require adaptation for your country or region. ADAPTATION NOTES are included throughout the module. These notes should be deleted once you have finalized your version of this document. • Adjust the level of technical detail and language so that it is appropriate for the staff you are training. • Delete sections that discuss vaccine formulations and schedules not used in your country. • Add or change examples to reflect actual situations in your country. Add or change pictures to reflect the ethnic or cultural preferences of your audience. • Adapt the section on waste management and disposal of sharps to reflect local policies (for example, waste management policies may be different in rural and urban settings). • Translate the training module into the appropriate language. Be sure to check that new page numbers coincide with the table of contents. • Create handouts for participants. Delete the Trainer’s notes and Adaptation notes from the word processor version of this document, then print the simplified file as a participant handout. If your manual will be in English or French, request a free Microsoft Word version of the module from PATH: Post: PATH Email: [email protected] 1455 NW Leary Way Fax: 206-285-6619 (USA) Seattle, Washington 98107 USA Website: www.path.org Acknowledgements Much of the information in this module was adapted from documents produced by PATH and the World Health Organization.
    [Show full text]
  • The Covid-19 Vaccine Guide
    Copyright © 2021 by Kathryn M. Edwards, MD, Walter A. Orenstein, MD, DSc (Hon), and David S. Stephens, MD All rights reserved. No part of this book may be reproduced in any manner without the express written consent of the publisher, except in the case of brief excerpts in critical reviews or articles. All inquiries should be addressed to Skyhorse Publishing, 307 West 36th Street, 11th Floor, New York, NY 10018. Skyhorse Publishing books may be purchased in bulk at special discounts for sales promotion, corporate gifts, fund- raising, or educational purposes. Special editions can also be created to specifications. For details, contact the Special Sales Department, Skyhorse Publishing, 307 West 36th Street, 11th Floor, New York, NY 10018 or [email protected]. Skyhorse® and Skyhorse Publishing® are registered trademarks of Skyhorse Publishing, Inc.®, a Delaware corporation. Visit our website at www.skyhorsepublishing.com. 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data is available on file. Cover design by Laura Klynstra Image Credits: Cover image – ©2021 Emory University, created by Satyen Tripathi, MA CMI Figure 1 – Orenstein WA, Ahmed R. Simply put: Vaccination saves lives. Proc. Natl. Acad. Sci. U.S.A. 2017;114(16):4031-4033 – Copyright (2017) National Academy of Sciences Figure 2 – Provided by Destefano F, Immunization Safety Office, Centers for Disease Control and Prevention. Website: www.cdc.gov/vaccinesafety/iso.html. Figures 3a & b – From Georgia Department of Public Health. Website: https://dph.georgia.gov/covid-19-daily-status- report. Figure 4 – ©2021 Emory University, created by Michael Konomos Figures 5a & b – ©2021 Emory University, created by Michael Konomos Figure 6 – ©2021 Emory University, created by Michael Konomos Figure 7 – Reprinted by permission from Macmillan Publishers Ltd: Nature.
    [Show full text]
  • CDC Vaccine Storage and Handling Guide
    Table of Contents General Information Vaccine Storage and Handling Best Practices 5 Selected Biologicals Diphtheria Toxoid-, Tetanus Toxoid- and acellular Pertussis-Containing Vaccines DTaP: DAPTACEL, Infanrix, Tripedia 11 DTaP-IPV: KINRIX 11 DTaP-HepB-IPV: Pediarix 11 DTaP-IPV/Hib: Pentacel 11 Haemophilus influenzae type b-Containing Vaccines Hib: ActHIB, Hiberix, PedvaxHIB 15 Hib-HepB: Comvax 15 DTaP-IPV/Hib: Pentacel 11 Hepatitis-Containing Vaccines HepA: Havrix, VAQTA 19 HepB: Engerix-B, Recombivax HB 19 HepA-HepB: Twinrix 19 Vaccine Storage and Handling Guide and Storage Vaccine National Center for Immunization and Respiratory Disease DTaP-HepB-IPV: Pediarix 11 Hib-HepB: Comvax 15 Human Papillomavirus Vaccines HPV2: Cervarix 23 HPV4: Gardasil 23 Vaccine Storage and Handling Guide —————————————————————————————— Page 2 Table of Contents Influenza Vaccines LAIV: FluMist 27 TIV: Afluria, Fluarix, FluLaval, Fluvirin, Fluzone, Fluzone High-Dose, Fluzone Intradermal 29 Measles-, Mumps- and Rubella-Containing Vaccine MMR: M-M-RII 33 MMRV: ProQuad 69 Meningococcal Vaccines MCV4: Menactra, Menveo 37 MPSV4: Menomune 41 Pneumococcal Vaccines PCV13: Prevnar 13 45 PPSV23: Pneumovax 23 45 Poliovirus-Containing Vaccine IPV: IPOL 49 DTaP-HepB-IPV: Pediarix 11 DTaP-IPV: KINRIX 11 Vaccine Storage and Handling Guide and Storage Vaccine National Center for Immunization and Respiratory Disease DTaP-IPV/Hib: Pentacel 11 Rotavirus Vaccines RV1: ROTARIX 53 RV5: RotaTeq 53 Tetanus Toxoid Vaccine TT: Tetanus Toxoid 57 Vaccine Storage and Handling Guide ——————————————————————————————
    [Show full text]
  • Diphtheria, Tetanus, Pertussis (Whooping Cough), Hepatitis B, Polio (Poliomyelitis) and Hib (Haemophilus Influenzae Type B)
    Diphtheria, tetanus, pertussis (whooping cough), hepatitis B, polio (poliomyelitis) and Hib (Haemophilus influenzae type b) Immunisation Information The National Immunisation Program Whooping cough is most serious in babies under 12 months of age and often requires admission to hospital. Whooping provides free diphtheria, tetanus, cough can lead to complications such as haemorrhage, whooping cough, hepatitis B, polio convulsions, pneumonia, coma, inflammation of the brain, and Hib vaccine to infants at two, permanent brain damage and long term lung damage. four and six months of age. Around one in every 200 children under six months of age who catches whooping cough will die. Diphtheria Whooping cough can be caught through coughs and Diphtheria is caused by bacteria which are found in the sneezes from an infected person. Parents and family mouth, throat and nose. Diphtheria causes a membrane to members are the main source of infection for babies. grow around the inside of the throat. This can make it difficult to swallow, breathe and can even lead to suffocation. Hepatitis B The bacteria produce a poison which can spread around The hepatitis B virus affects the liver and can cause: the body and cause serious complications such as • fever paralysis and heart failure. Around 10 per cent of people • nausea and diarrhoea who contract diphtheria die from it. • tiredness Diphtheria can be caught through coughs and sneezes • dark urine and yellow skin. from an infected person. Hepatitis B virus is usually spread through contact with Tetanus the body fluids (blood, saliva, semen) of an infected person, or from mother to child at birth.
    [Show full text]
  • Haemophilus Influenzae Type B
    Haemophilus influenzae type b HAEMOPHILUS INFLUENZAE TYPE B (HIB) VACCINES FOR AUSTRALIAN CHILDREN: INFORMATION FOR IMMUNISATION PROVIDERS This fact sheet provides information on Hib disease and the available vaccines to assist immunisation providers in the delivery of Hib vaccinations to children. Disease and epidemiology • Haemophilus influenzae type b (Hib) is a bacterium that causes a range of clinical syndromes such as meningitis, pneumonia and epiglottitis, particularly among young children. • Introduction of Hib conjugate vaccines into routine vaccination programs has led to a dramatic decline in the incidence of Hib disease in many regions of the world. • In Australia, Hib conjugate vaccines were first introduced into the routine vaccination schedule in 1993, leading to a more than 95% reduction in the reported incidence of Hib disease. Who should be vaccinated? • Hib-containing vaccine is recommended for all infants from 2 months of age and also for people with special vaccination requirements, such as people with asplenia and people who have received haematopoietic stem cell transplants. • Infants should be given 3 primary doses of Hib vaccine at 2, 4 and 6 months of age and a booster at 18 months of age. Vaccines • The current Hib conjugate and monovalent vaccines used in the National Immunisation Program are PRP-T vaccines. These vaccines contain the capsular polysaccharide of Hib, polyribosyl-ribitol phosphate (PRP), linked to a tetanus toxoid carrier protein. • Previously used PRP-OMP vaccines are no longer available and have been discontinued for use in Australia since 2017. Haemophilus influenzae type b (Hib) vaccines for Australian children | NCIRS Fact sheet: June 2018 1 Hib enters the body through the upper respiratory tract via The disease droplets, after direct contact with either asymptomatic Causative agent carriers or patients with Hib disease.
    [Show full text]
  • Evolving Pharmacovigilance Requirements with Novel Vaccines and Vaccine Products
    Evolving pharmacovigilance requirements with novel vaccines and vaccine products Situation paper Draft prepared by: • Patrick Zuber, Martin Friede, Brigitte Giersing (WHO) • David Kaslow (PATH) • Bob Chen (Brighton Collaboration) • Marion Gruber (US FDA) Disclaimer: This working paper will be updated following the GACVS anniversary symposium The views presented here are those of their authors alone and do not represent the position of the World Health Organization nor of the other affiliated institutions 1 Table of content Executive summary ................................................................................................ 3 Introduction ........................................................................................................... 5 Vaccines and vaccine technologies pipeline ........................................................... 5 Safety considerations ............................................................................................. 8 Viral vectors .............................................................................................................................................. 8 Genetic attenuation of live organisms .................................................................................................... 10 Adjuvants and novel formulations .......................................................................................................... 12 Combination vaccines and increasing valency .......................................................................................
    [Show full text]