Spatially Explicit Cost-Effective Actions for Biodiversity Threat Abatement

Total Page:16

File Type:pdf, Size:1020Kb

Spatially Explicit Cost-Effective Actions for Biodiversity Threat Abatement Spatially explicit cost-effective actions for biodiversity threat abatement Nancy Anne Auerbach BA, MBSc A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Biological Sciences Abstract Biodiversity decline is indisputable, and rates of future decline depend on whether threats to species persistence are abated. However, current resources for threatened species management are less than required to stop further decline. Management that abates many threats to many species is necessary, yet decisions about how to do this under resource constraints are inherently complex. My thesis incorporates systematic conservation planning and cost-effectiveness analysis in a decision-support framework for prioritising spatially-explicit management actions for many species across a region. By prioritising action where it is expected to provide the greatest benefit to the most species at least cost, my research advances the thinking on decision support, and contributes to the effort to reduce biodiversity decline. Using information on threats to species that was compiled by the Queensland, Australia government, my research develops a decision-support process for managing threats to threatened species in a bio-diverse regional-scale management area, the Burnett-Mary Natural Resource Management Region. In my thesis, predicted distributions for 65 threatened species are modelled on co-occurring presence-only species locations and ecologically-meaningful environmental data. Three threats are addressed: invasive red fox predation; too frequent and intense fire; and habitat degradation from overgrazing. Indirect threat maps are made by combining predicted distribution models of species vulnerable to specific threats and are used to identify locations where threat- abating actions are most likely to provide benefit to species. Management action costs are estimated for fox control, on the basis of a roadside baiting strategy; proactive fire management, on the basis of vegetation type and proximity to human structures; and stewardship agreements to reduce grazing, on the basis of foregone agriculture profit. Spatially combining the costs and benefits of threat-abating actions leads to the ability to prioritise cost-effective locations for actions. Within the context of prioritising regional threat management actions, my research examines four topics. Firstly, an understanding of where species are affected by threats determines where to direct management. Indirect threat maps are made by combining threatened species distribution maps, but are sensitive to map scale in guiding spatially-explicit threat management efforts (Chapter 2). Using fine-scale predicted species distribution models to derive indirect threat maps, instead of general range maps, may lead to better regional management decisions. Funding limitations for threat management require that choices be made when not everything can be done. Transparent and rigorous decision support is provided by prioritising management ranked on the most, to least, cost-effective actions and locations, and is made accessible when calculated with readily-available spreadsheet and mapping software (Chapter 3). Cost-effective management ii priorities are determined by combining indirect threat maps that locate which actions benefit species with maps quantifying the cost of action. Priorities depend on how the benefits and costs co-vary across a landscape. The costs and/or benefits of one management action may depend upon those of another action, which will affect the ranking of conservation actions by their cost-effectiveness (Chapter 4). If actions are dependent and species are secured when only one threat is managed, managing for multiple threats results in poor allocation of resources. Alternatively, focusing on individual threats potentially results in inadequate management and failure of conservation outcomes if species only benefit when all the threats are managed. Considering when management action success depends upon which other actions are undertaken will better protect species from threats and guide spending of limited funding. Lastly, providing an alternative to basic decision support, more complex methods for conservation planning can be used to meet more comprehensive management goals, but spatial priorities are likely to differ (Chapter 5). When the goal includes explicitly managing for all species and threats, priority locations for actions are different than if prioritising management in species-rich areas. Trade-offs between threatened species management plans are inevitable, but examining the implications of different strategies may lead to better decisions. My research provides four contributions to conservation research by focusing on decision support for threat management that reduces biodiversity decline. 1) Indirect threat maps, created by combining predicted distribution models of threatened species, indicate where action is needed for managing threats at the regional scale. 2) Decisions about where to manage threats are made by prioritising cost-effective actions and can be determined using accessible and commonly-used software. 3) Failing to consider that the success of management actions is likely to depend on what other actions have been undertaken will result in ineffective spending of limited funding or insufficient management of threats. 4) Both simpler and more complex conservation planning methods assist in choosing where to manage, with which actions, at least cost, but spatial priorities will differ. In summary, my research shows that management priorities can be selected by combining threatened species distributions with the costs of abating threats. Transparently chosen management actions that are efficient in using limited resources may better lead to abating threats to biodiversity. iii Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the General Award Rules of The University of Queensland, immediately made available for research and study in accordance with the Copyright Act 1968. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis iv Publications during candidature Peer reviewed papers Auerbach, N. A., A. I. T. Tulloch, and H. P. Possingham 2014. Informed actions: Where to cost- effectively manage multiple threats to species to maximize return on investment. Ecological Applications 24:1357-1373. Tulloch, V. J. D., A. I. T. Tulloch, P. Visconti, B. S. Halpern, J. E. M. Watson, M. C. Evans, N. A. Auerbach, M. Barnes, M. Beger, I. Chadès, S. Giakoumi, E. McDonald-Madden, N. J. Murray, J. Ringma, and H. P. Possingham 2015. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Frontiers in Ecology and the Environment doi:10.1890/140022. Conference abstracts Auerbach, N., M. C. Evans, and H. P. Possingham. 2012a. A comparison of regional spatial patterns of threats to species for conservation management guidance. Paper presentation at World Conference on Natural Resource Modeling. 9-12 July 2012, University of Queensland, Brisbane, Australia. Auerbach, N., T. Holmes, J. E. M. Watson, L. N. Joseph, J. Szabo, and H. Possingham. 2012b. The state(s) of threatened species prioritisation in Australia. Paper presentation at Society for Conservation Biology Oceania Section Regional Conference. 21-23 September 2012, Charles Darwin University, Darwin, Australia. Auerbach, N., A. Tulloch, and H. Possingham. 2013a. Cost-effectively managing threats to species. Poster Presentation at Student Conference on Conservation Biology. 21-31 January 2013, University of Queensland, St Lucia, Australia. Auerbach, N., A. Tulloch, and H. Possingham. 2013b. Where should I do what to cost-effectively manage threats to species? Paper presentation at Connecting Systems, Disciplines, and Stakeholders: 26th International Congress for Conservation Biology. 21-25 July 2013, Baltimore, MD, USA. Auerbach, N., A. Tulloch, K. A. Wilson, J. R. Rhodes, and H. Possingham. 2014. Evaluating dependencies in threat action prioritization. Paper presentation at Society for Conservation Biology Fiji 2014 Conference. 7-8 July 2014, Suva, Fiji. v Other articles Mills, M., and N. Auerbach. 2014. Tools for natural resource management and monitoring. Decision Point 80:14. Publications included in this thesis
Recommended publications
  • Pests, Diseases, and Aridity Have Shaped the Genome of Corymbia Citriodora
    Lawrence Berkeley National Laboratory Recent Work Title Pests, diseases, and aridity have shaped the genome of Corymbia citriodora. Permalink https://escholarship.org/uc/item/5t51515k Journal Communications biology, 4(1) ISSN 2399-3642 Authors Healey, Adam L Shepherd, Mervyn King, Graham J et al. Publication Date 2021-05-10 DOI 10.1038/s42003-021-02009-0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE https://doi.org/10.1038/s42003-021-02009-0 OPEN Pests, diseases, and aridity have shaped the genome of Corymbia citriodora ✉ Adam L. Healey 1,2 , Mervyn Shepherd 3, Graham J. King 3, Jakob B. Butler 4, Jules S. Freeman 4,5,6, David J. Lee 7, Brad M. Potts4,5, Orzenil B. Silva-Junior8, Abdul Baten 3,9, Jerry Jenkins 1, Shengqiang Shu 10, John T. Lovell 1, Avinash Sreedasyam1, Jane Grimwood 1, Agnelo Furtado2, Dario Grattapaglia8,11, Kerrie W. Barry10, Hope Hundley10, Blake A. Simmons 2,12, Jeremy Schmutz 1,10, René E. Vaillancourt4,5 & Robert J. Henry 2 Corymbia citriodora is a member of the predominantly Southern Hemisphere Myrtaceae family, which includes the eucalypts (Eucalyptus, Corymbia and Angophora; ~800 species). 1234567890():,; Corymbia is grown for timber, pulp and paper, and essential oils in Australia, South Africa, Asia, and Brazil, maintaining a high-growth rate under marginal conditions due to drought, poor-quality soil, and biotic stresses. To dissect the genetic basis of these desirable traits, we sequenced and assembled the 408 Mb genome of Corymbia citriodora, anchored into eleven chromosomes. Comparative analysis with Eucalyptus grandis reveals high synteny, although the two diverged approximately 60 million years ago and have different genome sizes (408 vs 641 Mb), with few large intra-chromosomal rearrangements.
    [Show full text]
  • Border Rivers Maranoa - Balonne QLD Page 1 of 125 21-Jan-11 Species List for NRM Region Border Rivers Maranoa - Balonne, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Creating Jobs, Protecting Forests?
    Creating Jobs, Protecting Forests? An Analysis of the State of the Nation’s Regional Forest Agreements Creating Jobs, Protecting Forests? An Analysis of the State of the Nation’s Regional Forest Agreements The Wilderness Society. 2020, Creating Jobs, Protecting Forests? The State of the Nation’s RFAs, The Wilderness Society, Melbourne, Australia Table of contents 4 Executive summary Printed on 100% recycled post-consumer waste paper 5 Key findings 6 Recommendations Copyright The Wilderness Society Ltd 7 List of abbreviations All material presented in this publication is protected by copyright. 8 Introduction First published September 2020. 9 1. Background and legal status 12 2. Success of the RFAs in achieving key outcomes Contact: [email protected] | 1800 030 641 | www.wilderness.org.au 12 2.1 Comprehensive, Adequate, Representative Reserve system 13 2.1.1 Design of the CAR Reserve System Cover image: Yarra Ranges, Victoria | mitchgreenphotos.com 14 2.1.2 Implementation of the CAR Reserve System 15 2.1.3 Management of the CAR Reserve System 16 2.2 Ecologically Sustainable Forest Management 16 2.2.1 Maintaining biodiversity 20 2.2.2 Contributing factors to biodiversity decline 21 2.3 Security for industry 22 2.3.1 Volume of logs harvested 25 2.3.2 Employment 25 2.3.3 Growth in the plantation sector of Australia’s wood products industry 27 2.3.4 Factors contributing to industry decline 28 2.4 Regard to relevant research and projects 28 2.5 Reviews 32 3. Ability of the RFAs to meet intended outcomes into the future 32 3.1 Climate change 32 3.1.1 The role of forests in climate change mitigation 32 3.1.2 Climate change impacts on conservation and native forestry 33 3.2 Biodiversity loss/resource decline 33 3.2.1 Altered fire regimes 34 3.2.2 Disease 35 3.2.3 Pest species 35 3.3 Competing forest uses and values 35 3.3.1 Water 35 3.3.2 Carbon credits 36 3.4 Changing industries, markets and societies 36 3.5 International and national agreements 37 3.6 Legal concerns 37 3.7 Findings 38 4.
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • Threatened Wildlife Photographic Competition
    THREATENED WILDLIFE PHOTOGRAPHIC COMPETITION Winners Announced The Australian Wildlife Society Threatened Wildlife Photographic Competition is a national competition that awards and promotes endangered Australian wildlife through the medium of photography. The Australian Wildlife Society invited photographers to raise the plight of endangered wildlife in Australia. Our Society aims to encourage the production of photographs taken in Australia, by Australians, which reflects the diversity and uniqueness of endangered Australian wildlife. The annual judge’s prize of $1,000 was won by Native Animal Rescue of Western Australia (Mike Jones, Black Cockatoo Coordinator). The winning entry was a photo of a forest red-tailed black cockatoo named Makuru. The forest red-tailed black cockatoo (Calyptorhynchus banksia naso) is listed as Vulnerable; only two of the five subspecies of black cockatoo are listed as Threatened on account of habitat destruction and competition for nesting hollows. The photograph was taken in Native Animal Rescue’s Black Cockatoo Facility (opened 2011 thanks to a generous grant from Lotterywest), which allows them to receive and care for injured or ill black cockatoos. Makuru (a Nyungar word meaning The First Rains or Fertility Season) was the first captive-born black cockatoo at the facility in July 2016. The photo depicts the young cockatoo emerging from its breeding hollow at two months and 15 days. Thank you to all the contributors to the Society’s inaugural Threatened Wildlife Photographic Competition – please enter again next year. Australian Wildlife Vol 4 - Spring 2017 7 The annual people’s choice prize of $500 was won by Matt White Matt’s entry was a photo of a greater glider (Petauroides volans).
    [Show full text]
  • Evolution and Diversification of the Plant Gibberellin Receptor GID1
    Evolution and diversification of the plant gibberellin receptor GID1 Hideki Yoshidaa,b, Eiichi Tanimotoc, Takaaki Hiraia, Yohei Miyanoirid,e, Rie Mitania, Mayuko Kawamuraa, Mitsuhiro Takedad,f, Sayaka Takeharaa, Ko Hiranoa, Masatsune Kainoshod,g, Takashi Akagih, Makoto Matsuokaa,1, and Miyako Ueguchi-Tanakaa,1 aBioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Aichi, Japan; bKihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813 Kanagawa, Japan; cGraduate School of Natural Sciences, Nagoya City University, Nagoya, 467-8501 Aichi, Japan; dStructural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, 464-8601 Aichi, Japan; eResearch Center for State-of-the-Art Functional Protein Analysis, Institute for Protein Research, Osaka University, Suita, 565-0871 Osaka, Japan; fDepartment of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, 862-0973 Kumamoto, Japan; gGraduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, 192-0397 Tokyo, Japan; and hGraduate School of Agriculture, Kyoto University, 606-8502 Kyoto, Japan Edited by Mark Estelle, University of California, San Diego, La Jolla, CA, and approved July 10, 2018 (received for review April 9, 2018) The plant gibberellin (GA) receptor GID1 shows sequence similarity erwort Marchantia polymorpha (5–7). Furthermore, Hirano et al. to carboxylesterase (CXE). Here, we report the molecular evolution (5) reported that GID1s in the lycophyte Selaginella moellen- of GID1 from establishment to functionally diverse forms in dorffii (SmGID1s) have unique properties in comparison with eudicots. By introducing 18 mutagenized rice GID1s into a rice angiosperm GID1s: namely, lower affinity to bioactive GAs and gid1 null mutant, we identified the amino acids crucial for higher affinity to inactive GAs (lower specificity).
    [Show full text]
  • Detailed Ecological Assessment
    Detailed Ecological Assessment St Aidan’s Anglican Girls School Ambiwerra Sports Complex MID 30 Thalia Court, Corinda Client St Aidan’s Anglican Girls School File Ref S520038ER001_v1.5 Date 8 March 2021 ii Quality Control St Aidan’s Anglican Girl’s School Prepared for C/- John Gaskell Planning Consultants S5 Consulting Pty Ltd (ACN 600 187 844) 22 Wolverhampton Street Prepared by Stafford, QLD, 4053 T 3356 0550 www.s5consulting.com.au Date 8 March 2021 Version Control Version Description Date Author Reviewer Approver 1.0 FINAL August 2020 KR (Ecologist) LH (Senior Ecologist) RS (Director) 1.2 FINAL September 2020 KR (Ecologist) LH (Senior Ecologist) RS (Director) 1.3 FINAL November 2020 KR (Ecologist) LH (Senior Ecologist) RS (Director) 1.4 FINAL 17 November 2020 KR (Ecologist) LH (Senior Ecologist) RS (Director) 1.5 FINAL 8 March 2021 RG (Ecologist) LH (Senior Ecologist) RS (Director) S5 Consulting Pty Ltd has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of S5 Consulting Pty Ltd. These materials or parts of them may not be reproduced in any form, by any method, for any purpose except with written permission from S5 Consulting Pty Ltd. Subject to these conditions, this document may be transmitted, reproduced or disseminated only in its entirety. S520038ER001_v1.5 Ambiwerra Sports Precinct Detailed Ecological Assessment iii Table of Contents ABBREVIATIONS ......................................................................................................................................................
    [Show full text]
  • Regional Ecosystem Technical Descriptions
    Department of Science, Information Technology, Innovation and the Arts Regional Ecosystem Technical Descriptions Technical descriptions provide a detailed description of the full range in structure and floristic composition of regional ecosystems (e.g. 12.3.5) and their component vegetation communities (e.g. 12.3.5a). The descriptions are compiled using site survey data from the Queensland Herbarium’s CORVEG database. Distribution maps, representative images (if available) and the pre-clearing and remnant area (hectares) of each vegetation community derived from the regional ecosystem mapping (spatial) data are included. The technical descriptions should be used in conjunction with the fields from the regional ecosystem description database (REDD) for a full description of the regional ecosystem. Quantitative site data from relatively undisturbed sites are extracted from CORVEG and summarized to provide information specific to each vegetation community. Technical descriptions include the attributes: tree canopy height and cover and native plant species composition of the predominant layer, which are used to assess the remnant status of vegetation under the Vegetation Management Act 1999. However, as technical descriptions reflect the full range in structure and floristic composition across the climatic, natural disturbance and geographic range of the regional ecosystem, local reference sites should be used where possible (Neldner et al. 2005 section 3.3.3). The technical descriptions are subject to review and are updated as additional
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Recommendation of Native Species for the Reforestation of Degraded Land Using Live Staking in Antioquia and Caldas’ Departments (Colombia)
    UNIVERSITÀ DEGLI STUDI DI PADOVA Department of Land, Environment Agriculture and Forestry Second Cycle Degree (MSc) in Forest Science Recommendation of native species for the reforestation of degraded land using live staking in Antioquia and Caldas’ Departments (Colombia) Supervisor Prof. Lorenzo Marini Co-supervisor Prof. Jaime Polanía Vorenberg Submitted by Alicia Pardo Moy Student N. 1218558 2019/2020 Summary Although Colombia is one of the countries with the greatest biodiversity in the world, it has many degraded areas due to agricultural and mining practices that have been carried out in recent decades. The high Andean forests are especially vulnerable to this type of soil erosion. The corporate purpose of ‘Reforestadora El Guásimo S.A.S.’ is to use wood from its plantations, but it also follows the parameters of the Forest Stewardship Council (FSC). For this reason, it carries out reforestation activities and programs and, very particularly, it is interested in carrying out ecological restoration processes in some critical sites. The study area is located between 2000 and 2750 masl and is considered a low Andean humid forest (bmh-MB). The average annual precipitation rate is 2057 mm and the average temperature is around 11 ºC. The soil has a sandy loam texture with low pH, which limits the amount of nutrients it can absorb. FAO (2014) suggests that around 10 genera are enough for a proper restoration. After a bibliographic revision, the genera chosen were Alchornea, Billia, Ficus, Inga, Meriania, Miconia, Ocotea, Protium, Prunus, Psidium, Symplocos, Tibouchina, and Weinmannia. Two inventories from 2013 and 2019, helped to determine different biodiversity indexes to check the survival of different species and to suggest the adequate characteristics of the individuals for a successful vegetative stakes reforestation.
    [Show full text]
  • Potent Antibacterial Prenylated Acetophenones from the Australian Endemic Plant Acronychia Crassipetala
    antibiotics Communication Potent Antibacterial Prenylated Acetophenones from the Australian Endemic Plant Acronychia crassipetala Trong D. Tran 1 , Malin A. Olsson 2, David J. McMillan 2, Jason K. Cullen 3, Peter G. Parsons 3, Paul W. Reddell 4 and Steven M. Ogbourne 1,* 1 GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; [email protected] 2 School of Health and Sports Sciences, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; [email protected] (M.A.O.); [email protected] (D.J.M.) 3 QIMR Berghofer Medical Research Institute, Locked Bag 2000, PO Royal Brisbane Hospital, Herston, Queensland 4029, Australia; [email protected] (J.K.C.); [email protected] (P.G.P.) 4 QBiotics Limited, PO Box 1, Yungaburra, Queensland 4884, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-7-5456-5188 Received: 28 June 2020; Accepted: 4 August 2020; Published: 6 August 2020 Abstract: Acronychia crassipetala is an endemic plant species in Australia. Its phytochemistry and therapeutic properties are underexplored. The hexane extract of the fruit A. crassipetala T. G. Hartley was found to inhibit the growth of the Gram-positive bacteria Staphylococcus aureus. Following bio-activity guided fractionation, two prenylated acetophenones, crassipetalonol A (1) and crassipetalone A (2), were isolated. Their structures were determined mainly by NMR and MS spectroscopic analyses. This is the first record of the isolation and structural characterisation of secondary metabolites from the species A. crassipetala. Their antibacterial and cytotoxic assessments indicated that the known compound (2) had more potent antibacterial activity than the antibiotic chloramphenicol, while the new compound (1) showed moderate cytotoxicity.
    [Show full text]
  • Critical Revision of the Genus Eucalyptus Volume 8: Parts 71-80
    Critical revision of the genus eucalyptus Volume 8: Parts 71-80 Maiden, J. H. (Joseph Henry) (1859-1925) University of Sydney Library Sydney 2002 http://setis.library.usyd.edu.au/oztexts © University of Sydney Library. The texts and images are not to be used for commercial purposes without permission Source Text: Prepared from the print edition of Parts 71-80 Critical revision of the genus eucalyptus, published by William Applegate Gullick Sydney 1933. 354pp. All quotation marks are retained as data. First Published: 1933 583.42 Australian Etext Collections at botany prose nonfiction 1910-1939 Critical revision of the genus eucalyptus volume 8 (Government Botanist of New South Wales and Director of the Botanic Gardens, Sydney) “Ages are spent in collecting materials, ages more in separating and combining them. Even when a system has been formed, there is still something to add, to alter, or to reject. Every generation enjoys the use of a vast hoard bequeathed to it by antiquity, and transmits that hoard, augmented by fresh acquisitions, to future ages. In these pursuits, therefore, the first speculators lie under great disadvantages, and, even when they fail, are entitled to praise.” Macaulay's “Essay on Milton” Sydney William Applegate Gullick, Government Printer 1933 Part 71 CCCLXXXIII. E. Bucknelli Cambage In Proc. Linn. Soc., N.S.W., li (1926), 325, with Plate 22. FOLIA MATURA lanceolata, longa circa 6–15 cm., lata 1–3 cm., cum punctus rectis aut uncis, viridia prope cinerea, interdum glauca in utramque partem, glabra, costa media distincta, venae laterales aliquanto prominentes, dispositae ex costa media cum angulo circa 45–55 graduum, cum venularum tenuiorum reticulo interveniente, vena intra marginem aliquanto procul margine, glandulae olei parvae sed multae, petiolus longus 2 mm.
    [Show full text]