IOP Newsletter 7.Indd

Total Page:16

File Type:pdf, Size:1020Kb

IOP Newsletter 7.Indd Summer 2005 the HEPP Group Newsletter ISSUE 2: BURSTING WITH CHEERS & APPLAUSE! ANNUAL CONFERENCE AT THE UNIVERSITY OF WARWICK INSIDE THIS ISSUE 10TH TO 12TH APRIL 2006 We are proud to introduce a new addition to your newsletter: fter our 2005 Dublin meeting, we wish to thank all involved for A ‘Outreach Stories’ (on page 4). making it such a success - thanks! After the appointment of Anna Now it’s time to announce Starkey to the position of Outreach our 2006 Annual Conference. Officer for PPARC, we approached It will be hosted by the her about writing for us. Hopefully Elementary Particle Physics this will become a regular spot to Group at the University of showcase the marvelous work by Warwick. As another young people in our field to reach out to group (featuring some familiar the community and inform them faces) we are very happy to be about the world of high energy welcomed to Warwick. particle physics. So, if you are involved in outreach work, or have Closer to the date, further details of the conference will be posted at: been inspired by someone else’s project (including ‘Travels with a http://www2.warwick.ac.uk/fac/sci/physics/research/epp/iop06/ Spark Chamber’) please contact Anna at [email protected]. Perhaps we will be featuring you THE EUROPEAN PHYSICAL SOCIETY’S in an upcoming edition?! 2005 OUTREACH PRIZE Staying on the ‘outreach’ theme, has been awarded jointly to please join us in congratulating Peter Kalmus and Dave Barney on ave Barney for promoting his fascination of particle physics to the D being jointly awarded the EPS’s public, in parallel to his research work in the CMS collaboration at 2005 Outreach Prize. (See the CERN. His impressive and successful efforts are concentrated around feature opposite.) Well done, keep the CMS experiment, but also reach far beyond his own experiment. up the great work! & Remember our feature on the eter Kalmus for his long-standing and major personal involvement P HEPP Group Prize in our last in particle physics outreach. In the last years, he has given issue? Well, the 2005 winner was talks for schools and the public to a total audience Nick Jelley. He kindly agreed to of some 24000 in countries from the UK, Ireland and write an article on the physics of France to South Africa, Singapore and India. SNO, so turn to page 3 for a great Dave and Peter were presented with the award at a read by your Prize winner! ceremony in honour of the 2005 HEPP Prize winners What a wonderfully positive way th on 25 July in Lisbon. Congratulations! to begin an issue! Thanks! Editor: Professor Roger Barlow Assistant Editor: Christina Edgar To submit an article or to have your say in ‘Readers’ Letters’ please email [email protected] ~ 2 ~ the HEPP Group Newsletter Summer 2005 IOP COMMITTEE MEMBERSHIP THE COMMITTEE NEW MEMBERS Chairman Let your three newest committee members introduce themselves... Roger Barlow I’m Peter. I completed my D.Phil at Oxford under the The University of Manchester supervision of Mike Seymour and Herbi Dreiner in 2000. elected Chair April ‘02 After being a postdoc in Cambridge HEP group and a Honorary Secretary fellow in the CERN theory division, I was appointed as a lecturer at the IPPP, Durham, in 2003. My main research Gavin Davies Imperial College interest is the search for new physics at the Tevatron and elected April ‘03, Secretary ‘04 LHC and simulations of high energy collisions. Ex Officio I’m Tara, an RS university research fellow at the University of Liverpool. I work on the CDF experiment Peter Hobson Brunel University at Fermilab and the LHCb experiment, which will start taking data at CERN in 2007. Most of my work involves Andrew Morrison studying heavy quark production, with occasional PPARC Schools Liaison Officer excursions into electroweak and new physics. Student Representatives Hi Folks, I’m Nikos. I’ve been a lecturer at UCL since Gareth Brown 2002, working on ATLAS. My main activities are tracking University of Durham for the LVL2 Trigger and the event display program, elected April ‘04 atlantis. Before ATLAS, I was heavily involved in the James Loach Higgs searches in ALEPH. Understanding the origin of University of Oxford mass continues to be my favourite physics topic and I’m elected May ‘04 very much looking forward to the first LHC data, which Members are bound to shed light on this area! Vakhtang Kartvelishvili Lancaster University elected April ‘03 FUTURE PROGRAMME OF HALF-DAY MEETINGS Nikos Konstantinidis UPCOMING MEETINGS... University College London elected April ‘05 Tevatron Physics From the Tevatron to the LHC st Steve McMahon Imperial, 21 September ‘05 Manchester, Spring ‘06 Rutherford Appleton Laboratory Contact Gavin Davies Contact Vakhtang Kartvelishvili elected April ‘04 Theory for Experimentalists Careers in physics Peter Richardson Liverpool, 2nd November ‘05 Venue TBA, Spring ‘06 University of Durham Contact Christos Touramanis Contact Gavin Davies elected April ‘05 Statistics in HEP LHC first year physics Tara Shears Manchester, 16th November ‘05 Venue TBA, Summer ‘06 University of Liverpool Contact Contact elected April ‘05 Roger Barlow Tara Shears Christos Touramanis COMING IN THE FUTURE... Details to be confirmed... University of Liverpool CMB for beginners elected April ‘02 ...please consult the website! Linear Collider For further details on what’s happening at the Institute of Physics, please visit the website at http://groups.iop.org/HE the HEPP Group Newsletter ~ 3 ~ Summer 2005 THE THREE PHASES OF SNO Sudbury Neutrino Observatory into two protons and release an enabled SNO to make the most (SNO) was designed by scientists electron. Both reactions give direct and precise measurement from Canada, the US and the UK rise to characteristic Cerenkov of the total number of solar to detect neutrinos from the sun light, detected by SNO’s 10000 neutrinos (in excellent agreement using 1000 tonnes of heavy water. photomultiplier tubes. These with solar models). Significant Copious numbers of neutrinos are ‘PMT’s surround the heavy water, refinements to the oscillation produced in the fusion reactions itself contained in a 12m acrylic parameters describing neutrino that power the Sun. These ‘solar sphere. This, in turn, is surrounded mixing have also been made. neutrinos’ were first by 7000 tonnes of Results show that the smallest detected in 1967 light water to shield mass difference between the by Ray Davis, who against radioactivity. three neutrino types is ~0.01eV/c2, shared the 2003 Nobel SNO is located in and that the mixing is large. Prize for Physics Inco’s Creighton There are also indications that the for the discovery. nickel mine, 2km oscillations are enhanced as the Surprisingly, he underground to all neutrinos pass through the Sun, found only a third but eliminate cosmic an effect predicted by Mikheev, of the number of ray backgrounds. Smirnov and Wolfenstein in 1985. neutrinos expected. Crucial to the SNO is now in its third phase with This deficit, the ‘solar success of SNO 3He counters deployed to further neutrino problem’, was the cleanliness improve neutron detection. This may was confirmed by of its components. allow a better determination of the later experiments. In particular, total number of solar neutrinos and There are three radioactivity had would provide unique information known types of neutrino: electron-, to be reduced to exceedingly low about neutrinos generated inside muon- and tau-type. Gribov and levels. The fraction of natural supernovae, should one occur Pontecorvo suggested in 1969 that thorium in the heavy water had to within our galaxy. some of the electron-neutrinos be less than a few parts in 1015 - less SNO’s results have helped redefine were changing before they reached than one teaspoonful of rock dust our knowledge of neutrinos and Earth into another type of neutrino in 1000 tonnes of D2O! Such purity provided impetus for many new undetectable in Davis’ experiment. was needed to reduce the breaking experiments. Currently, physicists Using heavy water has a unique apart of deuterons by high energy are using high energy neutrino advantage (as Herb Chen pointed gamma-rays from this radioactivity beams, travelling several hundred to a small level compared to that kilometres between detectors, as out in 1985): D2O enables detection of all neutrino types. There are ten from solar neutrinos. well as intense beams of neutrinos thousand million neutrinos passing SNO’s results from this first from reactors, to extend our through an area the size of a postage phase provided strong evidence understanding of neutrino mixing. stamp every second. Even so, SNO that electron-neutrinos do indeed This may provide insights into sees only ten interactions per day. ‘oscillate’ to other neutrino-types. grand unification and help to explain Neutrinos of all types can The second phase of SNO was to the enormous mass differences, occasionally break a deuteron ‘add a pinch of salt’! Two tonnes spanning some thirteen orders of apart into its constituent proton of common table salt were added magnitude, that are seen between the fundamental particles. and neutron. Only electron- to the D2O to enhance the neutron neutrinos can change a deuteron detection efficiency. This has by Nick Jelley For more information on Sudbury Neutrino Observatory, please visit their website at http://www.sno.phy.queensu.ca ~ 4 ~ the HEPP Group Newsletter Summer 2005 OUTREACH STORIES TRAVELS WITH A SPARK CHAMBER Human beings can be very Luckily, sixth formers enjoy to see first hand: acceleration quirky when it comes to travelling. helping to unload! of electrons and the avalanche There was a man who went round In the classroom, the speaker uses effect due to the strong electric Ireland with a fridge, and some the spark counter as the visual field between plates; total internal life-forms even choose to travel focus for an introduction to particle reflection of light in the channels through space and time with Billy physics, including a description of from the triggering scintillation Piper! Closer to home, a slightly his/her own research.
Recommended publications
  • The Institute of Physics
    REGIONAL NEWS 21 The Institute of Physics The forerunner of the Institute of do involves physics - switching on a light, physicists in commerce and industry. The Physics, the Physical Society of London, making a phone call or even baking a Council has established several Profession­ was created in 1874 at a time when the potato in a microwave oven. In industry, al Groups in areas such as consultancy, understanding of the physical world had physicists are helping companies to devel­ engineering physics and advanced been given an enormous impetus with the op novel materials that have physical prop­ systems. publication by James Clerk Maxwell of his erties more versatile that those previously In these days of shrinking science theory of electromagnetism. The creation developed, and they are designing new budgets, the academic physics community of the Physical Society was the response of generations of microchips which are has turned increasingly to its professional the embryonic society of professional and smaller and hence faster. The information representative, the Institute of Physics, to amateur physicists in Britain to what they revolution within which we are currently lobby Government about the importance believed was a major progression of their being buffeted would have been impos­ and relevance of physics. In common with ideas. Indeed, one could say that it was at sible without physicists and their research other science subjects, calls to justify Gov­ this time that much of physics began to - transistors, liquid crystal displays, mag­ ernment expenditure have increased in take on the appearance we recognize netic discs, optical fibres, semiconductor recent years.
    [Show full text]
  • Direct Search for Standard Model-Like Higgs Boson And
    Facult´edes Sciences de Base Institut de Physique de l’Energie´ et des Particules Laboratoire de Physique des Hautes Energies´ Direct Search for Standard Model-Like Higgs Boson and Software Integration of Data Acquisition Cards Th`ese de Doctorat pr´esent´ee `ala Section de Physique de la Facult´edes Sciences de Base de l’Ecole´ Polytechnique F´ed´erale de Lausanne pour l’obtention du grade de Docteur `es Sciences par C´edric Potterat Ing´enieur Physicien diplˆom´ede l’Ecole´ Polytechnique F´ed´erale de Lausanne, Suisse CERN-THESIS-2010-074 06/05/2010 Jury Prof. Nadine Baluc, Pr´esidente du jury Prof. Aurelio Bay, Directeur de th`ese Prof. Minh Quang Tran, Rapporteur Dr. Niko Neufeld, Rapporteur Dr. Tara Shears, Rapporteur CH - Lausanne 2010 R´esum´e Le Grand Collisionneur de Hadrons (LHC) au CERN, pr`es de Gen`eve, est con¸cu pour faire entrer en collision des protons `aune ´energie dans le centre de masse de 14 TeV. Il a ´et´etest´e `aplus faible ´energie en novembre 2009. Durant ces premiers jours, le LHC a ´etabli un nouveau record du monde avec ces deux faiseaux de protons `al’´energie de 1180 MeV. Le LHC a quatre points d’interaction pour les quartes grandes exp´eriences que sont : ALICE, ATLAS, CMS et LHCb. Le d´etecteur LHCb est situ´eau point d’interaction P8 (France). C’est un spectrom`etre `abras unique d´edi´e`ala physique des hardons contenant un quark b. Son but est l’´etude des processus qui ne conservent pas la sym´etrie CP et ainsi que certaines d´esint´egrations rares.
    [Show full text]
  • Review of Literature Relating to Lhcb 2 Sin (✓W ) Measurement
    University of Liverpool Department of Physics Faculty of Science and Engineering Review of Literature Relating to LHCb 2 sin (✓W ) Measurement Author: Abbie Jane Chadwick Supervisors: Prof. Tara Shears Dr. Stephen Farry Areportconcludingthefirstyearof PhD June 2020 Contents 1 The Standard Model 1 1.1 TheBasics .................................................. 1 1.2 TheUnderlyingPhysics ........................................... 2 1.3 TheDownfalls ................................................ 2 2 Collider Physics 4 2.1 ProbingtheStandardModel ........................................ 4 2.2 WorldColliderOverview........................................... 4 + 2.2.1 e e− .................................................. 4 2.2.2 pp and pp ............................................... 4 2.2.3 e±p .................................................. 5 2.2.4 Heavyions .............................................. 5 2 3 Sin (✓w) Measurement Survey 6 3.1 CMS...................................................... 6 3.2 LEPandSLD................................................. 8 3.3 CDFandD0 ................................................. 9 3.4 ATLAS .................................................... 9 3.5 LHCb ..................................................... 10 1 1 The Standard Model 1.1 The Basics The Standard Model (SM) is the most complete description of known elementary particles and their interactions currently within physics. It combines electromagnetic, weak and strong interactions into a quantum field theory, with the notable
    [Show full text]
  • 2013 January
    Online Newsletter January 2013 Issue no 24 Branch committee REMS At Home - An Environmental Miscellany Dr Mark Telling CPhys MInstP, Chair On 10 January 71 members and guests were educated and entertained E-mail [email protected] by 5 invited speakers. The meeting was organised and orchestrated by Bob Boutland CPhys MInstP George Freeman, who unfortunately could not attend during Treasurer recuperation following an operation. Mike Quinton, (pictured below) Education representative introduced the speakers. and online newsletter editor E-mail [email protected] David Parkes CPhys MInstP Berkshire Centre representative E-mail [email protected] Stephen Elsmere Berkshire Centre representative E-mail [email protected] Leonard Lewell CPhys MInstP, London Centre Representative E-mail [email protected] Prof. R Mackintosh CPhys FInstP Milton Keynes Centre representative E-mail [email protected] Dr Diane Crann MInstP Hertfordshire Centre representative E-mail [email protected] J A Belling MInstP REMS visit secretary E-mail [email protected] The Barometer and its early use in forecasting on land and on sea” Marta Caballero E-mail [email protected] Anita McConnell Provided a very detailed story from the early days. It Student Representative was Torricelli and Viviani who showed in 1643-4 that there is such a thing as a vacuum noting that the height of the column mercury varied James Kneller daily with changes in the weather, but also with temperature. Pascal E-mail [email protected] Student Representative noted that a barometer recorded a lower pressure when taken up a mountain, the Puy de Dôme.
    [Show full text]
  • Peter Kalmus, Rubab Khan, Luca Matone, Szabolcs Márka
    Search Method for Gravitational Wave Transients Associated with the SGR 1806-20 Giant Flare We describe a method for searching for transient gravitational waves associated with the SGR 1806-20 T Peter Kalmus, Rubab Khan, Luca Matone, Szabolcs Márka C giant flare of 27 December 2004 using data collected by the LIGO 4 km detector located at Hanford, WA. A We create an excess power time series from a time-frequency tiling by projecting elements in the R T frequency band of interest onto the time axis. This time series is calibrated with injections of known Columbia University Experimental Gravity Group S strength. An upper limit estimate can then be obtained by selecting the loudest event in the on-source B A region. Validations for the search and estimated sensitivity, obtained by performing the search on realistic simulated LIGO data, are presented. 7. Estimated Sensitivity From Simulated Data 5. The Search Algorithm Simulated Noise 1. An Extraordinary Event To create simulated noise, a segment of LIGO noise is taken as a model. The individual On 27 December 2004, SGR 1806-20, a 'Soft Gamma Repeater' located 6-15 kpc Creation of Tiling and Band Plot data samples are randomly shuffled. The amplitude spectral density of the result is then away [1, 2], emitted the brightest transient ever observed [1, 6, 8, 11, 15]. Data Conditioning Conditioned data is transformed into a spectrogram, which is a linear time- matched to the LIGO noise bin by bin in frequency space, and the resulting series is frequency tiling. We take the complex magnitude of the resulting matrix.
    [Show full text]
  • The Higgs Boson
    The Higgs Boson Introduction: The standard model of Particle Physics is a set of mathematical formula, observations and measurements which describe the elementary particles and their interactions. Its purpose is to create a quantum theory of matter so we can predict quantum behaviour accurately. The standard model also presented a gap in the model that predicted the existence of the Higgs Boson. The standard model is composed of two types of particles: Matter particles (fermions) and the particles which mediate the forces that allow the matter particles to interact which are called Bosons. The W Boson and Z Boson (the electrically neutral boson of the W boson) are both responsible for mediating the Weak Nuclear Force (which is responsible for the change in flavour of quarks). The Higgs Boson is responsible for giving matter particles and the Gauge Bosons (W and Z Bosons) their mass.1 The Standard model:2 The Higgs Boson’s origin: In the 1970’s the standard model was finalised and allowed the Electromagnetic Force and the Weak Nuclear Force to be unified in the same theory of the Electroweak Force. However, this theory first predicted that electromagnetisms gauge boson (the photon) and the weak nuclear forces gauge boson ( W and Z bosons) must both have 0 mass in order to compliment the symmetry requirements in gauge theory. However, this was an issue as W 1 Tara Shears (2012) Philosophical Transactions: Mathematical, Physical and Engineering Sciences. 2 https://www.bing.com/images/search?view=detailV2&ccid=LHDm1cNr&id=4369541D8F9C168E0CCF97D7C5C 666865A769921&thid=OIP.LHDm1cNr5Jeajxvg4Q04EAHaFk&mediaurl=https%3a%2f%2fwww.abc.net.au%2fc m%2flb%2f7864318%2fdata%2fstandard-model-of-physics- data.jpg&exph=526&expw=700&q=the+standard+model&simid=608046680252745529&selectedIndex=2&adl t=strict&ajaxhist=0 and Z bosons have been both proven to have the corresponding masses of: 80.385 GeV and 91.1876 GeV, both discovered in 1983 at CERN.
    [Show full text]
  • Symposium Celebrating CERN's Discoveries and Looking Into the Future
    CERN–EP–2003–073 CERN–TH–2003–281 December 1st, 2003 Proceedings Symposium celebrating the Anniversary of CERN’s Discoveries and a Look into the Future 111999777333::: NNNeeeuuutttrrraaalll CCCuuurrrrrreeennntttsss 111999888333::: WWW±±± &&& ZZZ000 BBBooosssooonnnsss Tuesday 16 September 2003 CERN, Geneva, Switzerland Editors: Roger Cashmore, Luciano Maiani & Jean-Pierre Revol Table of contents Table of contents 2 Programme of the Symposium 4 Foreword (L. Maiani) 7 Acknowledgements 8 Selected Photographs of the Event 9 Contributions: Welcome (L. Maiani) 13 The Making of the Standard Model (S. Weinberg) 16 CERN’s Contribution to Accelerators and Beams (G. Brianti) 30 The Discovery of Neutral Currents (D. Haidt) 44 The Discovery of the W & Z, a personal recollection (P. Darriulat) 57 W & Z Physics at LEP (P. Zerwas) 70 Physics at the LHC (J. Ellis) 85 Challenges of the LHC: – the accelerator challenge (L. Evans) 96 – the detector challenge (J. Engelen) 103 – the computing challenge (P. Messina) 110 Particle Detectors and Society (G. Charpak) 126 The future for CERN (L. Maiani) 136 – 2 – Table of contents (cont.) Panel discussion on the Future of Particle Physics (chaired by Carlo Rubbia) 145 Participants: Robert Aymar, Georges Charpak, Pierre Darriulat, Luciano Maiani, Simon van der Meer, Lev Okun, Donald Perkins, Carlo Rubbia, Martinus Veltman, and Steven Weinberg. Statements from the floor by: Fabiola Gianotti, Ignatios Antoniadis, S. Glashow, H. Schopper, C. Llewellyn Smith, V. Telegdi, G. Bellettini, and V. Soergel. Additional contributions: Comment on the occasion (S. L. Glashow) 174 Comment on Perturbative QCD in early CERN experiments (D. H. Perkins) 175 Personal remarks on the discovery of Neutral Currents (A.
    [Show full text]
  • Newsletter, November 2017
    ISSN 1756-168X (Print) ISSN 2516-3353 (Online) Newsletter No. 35 November 2017 Published by the History of Physics Group of the Institute of Physics (UK & Ireland) ISSN 1756-168X IOP History of Physics Newsletter November 2017 Contents Editorial 2 Meeting Reports Chairman’s Report 3 Rutherford’s chemists - abstracts 5 ‘60 Years on from ZETA’ by Chris Warrick 10 Letters to the editor 13 Obituary John W Warren by Stuart Leadstone 15 Features Anti-matter or anti-substance? by John W Warren 16 A Laboratory in the Clouds - Horace-Bénédict de Saussure by Peter Tyson 18 On Prof. W.H.Bragg’s December 1914 Letter to the Vice- Chancellor of the University of Leeds by Chris Hammond 34 Book Reviews Crystal Clear - Autobiographies of Sir Lawrence and Lady Bragg by Peter Ford 54 Forthcoming Meetings 69 Committee and contacts 70 61 2 Editorial A big ‘Thank you’! Around 45 people attended the Bristol meeting on the History of Particle Colliders, in April. It was a joint meeting between the History of Physics Group, the High Energy Physics Group, and the Particle Accelerators and Beams Group. With a joint membership of around 2000, that works out at well under 3% - and that was a good turnout. The Rutherford’s Chemists meeting held in Glasgow attracted probably a similar percentage - not very high you might think. But time and travel costs to attend come at a premium so any means by which the content of our meetings may be promulgated - reports in our newsletter and in those of the other groups - is a very worthwhile task.
    [Show full text]
  • Status of the Standard Model
    Status of the Standard Model Tara Shears 1. Overview 2. Tests of the Standard Model 3. Shortcomings 4. Conclusions Overview • What is the Standard Model? – What does it describe? – What does it need as inputs? • Experimental tests – Verification of theory – Adding the missing parameters – Check internal consistency • Shortcomings – Experimental problems – Philosophical problems See also pp plenaries and parallel sessions for more details 1. Overview 2. Tests of the Standard Model 3. Shortcomings 4. Conclusions What does the Standard Model describe? SM describes matter – force interactions; – 12 types of matter particle (fermion) – 3 forces, mediated by force carrying particle (boson) We use the SM to predict experimental observations space boson Quarks (3 generations) fermion Leptons (3 generations) Force carriers time 1. Overview 2. Tests of the Standard Model 3. Shortcomings 4. Conclusions Constructing the Standard Model SM is a field theory. Describe force - matter interactions by Lagrangians _ µνµνµν µµµ L = -1/4F µνµνµν F +ΨΨΨ(i γγγ Dµµµ –m) ΨΨΨ Field strength Boson-fermion of force field F Fermion mass interaction, fermion movement Lagrangian L obeys local gauge invariance Doesn’t change as a function of space and time: ΨΨΨ→e-iθθθ(x,t) ΨΨΨ Consequence that bosons must be massless Each force described by L of similar form (details of F, D, Ψ vary) 1. Overview 2. Tests of the Standard Model 3. Shortcomings 4. Conclusions Constructing the Standard Model LSM = L EM + L WEAK + L STRONG EM force Weak force Strong force Electric charge (1) Weak charge (2) Colour charge (3) Massless photon Massive W±,Z 8 massless gluons Coupling g Coupling gW Coupling gs Value unknown/ not predicted 1.
    [Show full text]
  • Peter Kalmus, Rubab Khan, Luca Matone, Szabolcs Márka Columbia
    Search Method for Gravitational Wave Transients Associated with the SGR 1806-20 Giant Flare We describe a method for searching for transient gravitational waves associated with the SGR 1806-20 giant T Peter Kalmus, Rubab Khan, Luca Matone, Szabolcs Márka C flare of 27 December 2004 using data collected by the LIGO 4 km detector located at Hanford, WA. We create A an excess power time series from a time-frequency tiling by projecting elements in the frequency band of R T interest onto the time axis. This time series is calibrated with injections of known strength. An upper limit Columbia University Experimental Gravity Group S estimate can then be obtained by selecting the loudest event in the on-source region. Validations for the search B A and estimated sensitivity, obtained by performing the search on realistic simulated LIGO data, are presented. 7. Estimated Sensitivity From Simulated Data 5. The Search Algorithm Simulated Noise 1. An Extraordinary Event To create simulated noise, a segment of LIGO noise is taken as a model. This noise On 27 December 2004, SGR 1806-20, a 'Soft Gamma Repeater' located 6-15 kpc Creation of Tiling and Band Plot vector is randomized. The amplitude spectral density of the result is then matched to the away [1, 2], emitted the brightest transient ever observed [1, 6, 8, 11, 15]. Data Conditioning Conditioned data is transformed into a spectrogram, which is a linear time- LIGO noise bin by bin in frequency space, and the resulting series is inverse transformed frequency tiling. We take the complex magnitude of the resulting matrix.
    [Show full text]
  • Why the Universe Exists How Particle Physics Unlocks the Secrets of Everything
    Why the Universe Exists How particle physics unlocks the secrets of everything NEW SCIENTIST Contents Series introduction Contributors Introduction 1 Fantastic particles and where to find them 2 Boson power 3 The Higgs maker 4 Quark tales 5 Antimatter 6 The little neutral ones 7 The lethal lightweight 8 Superparticles and beyond 9 Pieces of gravity 10 After the Large Hadron Collider 11 Practical particles 12 Conclusion Fifty ideas Glossary Picture credits Series introduction New Scientist’s Instant Expert books shine light on the subjects that we all wish we knew more about: topics that challenge, engage enquiring minds and open up a deeper understanding of the world around us. Instant Expert books are definitive and accessible entry points for curious readers who want to know how things work and why. Look out for the other titles in the series: The End of Money How Evolution Explains Everything about Life How Your Brain Works Machines That Think The Quantum World Where the Universe Came From Your Conscious Mind Contributors Editor: Stephen Battersby is a physics writer and consultant for New Scientist. Series editor: Alison George is Instant Expert editor for New Scientist. Articles in this book are based on talks at the 2016 New Scientist masterclass ‘Mysteries of particle physics’ and articles previously published in New Scientist. Academic contributors Jon Butterworth is a professor of physics at University College London, and a member of the ATLAS collaboration at CERN’s Large Hadron Collider, who researches the mechanism of electroweak symmetry breaking, which explains why some things have mass. He wrote ‘Why do we need the Higgs?’ in Chapter 2, and Detector story plus ‘The big discovery’ in Chapter 3.
    [Show full text]
  • Summer Students 2020.Pdf
    A brief tour of the Particle World (and your lecture programme) Tara Shears, University of Liverpool1 Overview • What particle physics describes • What we know (and what we don’t) • The Standard Model: matter; forces; Higgs. • Experiments; performing research • Outstanding questions and mysteries … … just a taster of what’s waiting in your lectures 2 The Universe BIG BANG NOW 3 Cosmology LHC Nuclear physics Q&A: 23/7/20 Q&A: 21/7/20 Cosmic rays Astrophysics Quark/gluon plasma Plus …. Heavy ions Q&A: 29/7/20 Antimatter Q&A: 20/7/20 Astroparticle physics Q&A: 16/7/20 4 Matter u c t e μ τ d s b νe νμ ντ quarks leptons 5 Mass 2.4 MeV/c2 1.27 GeV/c2 171.2 GeV/c2 Charge 2/3 u 2/3 c 2/3 t Spin 1/2 1/2 1/2 up charm top quarks 4.8 MeV/c2 104 MeV/c2 4.2 GeV/c2 -1/3 d -1/3 -1/3 1/2 1/2 s 1/2 b down strange bottom 0.511 MeV/c2 105.7 MeV/c2 1.777 GeV/c2 -1 e -1 -1 1/2 1/2 m 1/2 t electron muon tau leptons < 2.2 eV/c2 < 0.17 MeV/c2 < 15.5 MeV/c2 (more about the 0 0 0 discoveries in ne nm nt Lecture 1, 1/2 1/2 1/2 Particle World) e neutrino m neutrino t neutrino 6 and … antimatter … 2 2 2 2 4 Einstein’s equation of motion*: E = p c + m c Two energy solutions for the same mass; • Matter • Antimatter Every fermion has an antimatter version.
    [Show full text]