The Morphometrical Variance and Abundance Of

Total Page:16

File Type:pdf, Size:1020Kb

The Morphometrical Variance and Abundance Of The Pennsylvania State University The Graduate School College of Agricultural Sciences REVIEW OF THE GENUS DIPLOTAXODON WITH A DESCRIPTION OF TWO NEW SPECIES A Thesis in Wildlife and Fisheries Science by Titus Bandulo Phiri © 2013 Titus Bandulo Phiri Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2013 The thesis of Titus Bandulo Phiri was reviewed and approved* by the following: Jay R. Stauffer, Jr. Distinguished Professor of Ichthyology Thesis Adviser Walter Tzilkowski Associate Professor Emeritus of Wildlife Wilson Lazaro Jere Senior Lecturer of Fish Genetics Jeremy Likongwe Associate Professor of Fisheries Sciences Michael G. Massina Head and Professor Department of Ecosystems Science and Management *Signatures are on file in the Graduate School ii ABSTRACT A review of the described species of the genus Diplotaxodon Trewavas 1935, deep water (offshore) fishes endemic to Lake Malaŵi, was conducted and included the description of two new species. Diplotaxodon spp. represent another example of the rapid radiation of the Haplochromine species in Lake Malaŵi. Fishes were collected from Domira Bay and Senga Bay. Morphometric and meristic differences among spp. were analyzed using Sheared Principal Component Analysis (SPCA) for the morphometric data and Principal Component Analysis (PCA) for the meristic data. To date seven species of Diplotaxodon are formally described. The investigations from this study resulted into describing two new species which were known by cheironym. iii TABLE OF CONTENTS LIST OF FIGURES .......................................................................................................................... vi LIST OF TABLES ............................................................................................................................ix AKNOWLEDGEMENTS .................................................................................................................xi CHAPTER 1 ..................................................................................................................................... 1 1.0.0 GENERAL INTRODUCTION ........................................................................................... 1 1.1.0 Study area ...................................................................................................................... 2 1.2.0 Study goals and objectives ........................................................................................................ 5 2.0.0 GENERAL METHODOLOGY ................................................................................................ 7 2.2.0 Collection of Fish Specimen.................................................................................................. 7 2.3.0. Data collection (Meristic and Morphometric) ....................................................................... 7 2.4.0 Meristic data ....................................................................................................................... 10 2.5.0 Data analysis ....................................................................................................................... 14 3.0.0 OVERVIEW OF THE GENUS Diplotaxodon TREWAVAS 1935 ...................................... 14 3.1.0 General Distribution of Diplotaxodon.................................................................................. 15 4.0.0 DESCRIBED SPECIES .......................................................................................................... 15 4.1.0 Diplotaxodon apogon Turner & Stauffer, 1998 ................................................................ 15 4.2.0. Diplotaxodon ecclesi Burgess & Axelrod, 1973 .............................................................. 19 4.3.0 Diplotaxodon macrops Turner & Stauffer, 1998 .............................................................. 20 4.4.0 Diplotaxodon aeneus Turner & Stauffer, 1998 ................................................................. 22 4.5.0 Diplotaxodon limnothrissa Turner, 1994 ........................................................................ 26 4.6.0 Diplotaxodon greenwoodi Stauffer &McKaye, 1986....................................................... 32 4.7.0 Diplotaxodon argenteus Trewavas, 1935 ........................................................................ 38 5.0.0. Overview of undescribed species........................................................................................ 45 CHAPTER 2 ................................................................................................................................... 47 6.0.0 DESCRIPTION OF TWO NEW SPECIES ......................................................................... 47 6.1.0. INTRODUCTION ................................................................................................................. 47 7.0.0 New species of Diplotaxodon .............................................................................................. 50 Diplotaxodon altus n. sp., n. nov (nova species, novem nomen) (Fig. 18)..................................... 50 Diplotaxodon sp. ‘deep’. .............................................................................................................. 50 7.1.0 Results ................................................................................................................................ 52 iv 8.0.0 Diplotaxodon maxillalongus n. sp., n. nov (nova species, novem nomen) (Fig. 18) ............. 67 Diplotaxodon sp. ‘maxillalongus’. ............................................................................................... 67 8.1.0 Results ................................................................................................................................ 70 9.0.0 Discussion .......................................................................................................................... 83 10.0.0 Conclusion ............................................................................................................................ 86 CHAPTER 3 ................................................................................................................................... 88 11.0.0 Dichotomous key for Diplotaxodon ....................................................................................... 88 13.0.0 Remarks............................................................................................................................ 92 LITERATURE CITED .................................................................................................................... 93 v LIST OF FIGURES Figure 1: Maps illustrating location of the study area, Lake Malaŵi showing Domira Bay and Senga Bay in Salima District. Inset is map of Africa showing The Great Lift Valley Lakes and location of Lake Malaŵi. (Source: Google earth and http://www.odci.gov/cia/publications) ..... 4 Figure 2: Diplotaxodon spp. showing landmarks and distances measured as indicated by the numbered landmarks, the measured points not shown in the figure include orbital depth, cheek depth, horizontal and vertical eye diameter. .............................................................................. 8 Figure 3: Illustration of counting of main external meristic sets of variables on dorsal spines, dorsal rays, anal spines, anal rays and lateral line scales in black dots. .............................................. 10 Figure 4: Counting model for rays on pectoral-fin and pelvic-fin as part of the meristic variables. .... 11 Figure 5: Format for counting scales on the cheek, scales appear to form a pattern/ series were considered as indicated by I, II, and III representing 3 series of scales .................................... 12 Figure 6: Part of the gill bar arch from the right hand side indicating how the gill rakers were counted for epibranchial and ceratobranchial. ...................................................................................... 12 Figure 7: Diplotaxodon apogon, holotype from British Museum, described by Turner and Stauffer in (1998). Holotype: BMNH 1996.4.30:21a ripe male of 87.8mm standard length (Source: Turner and Stauffer 1998).................................................................................................................. 17 Figure 8: Plots of the sheared second principle components (morphological data) and the first factor score, first principle component (meristic data) for Diplotaxodon apogon and Diplotaxodon limnothrissa sampled from commercial vessel in Domira Bay, Lake Malawi in 2012 ............. 18 Figure 9: Diplotaxodon ecclesi described from a male holotype: USNM 210696 of 145.7mm standard length, collected off Monkey Bay by Herbert R. Axelrod in 1973, redefined by Turner & Stauffer 1998. Photo by Dr. Herbert R. Axelrod (Source://fishbase.org). ................................ 20 Figure 10: Diplotaxodon macrops, described from a ripe male holotype: BMNH 1996.4.30:1, with 106.7mm in standard length and was collected from 100m depth off Monkey Bay at 14o03′S 34o56′E by Turner in 1991. (Source: //wikipedia.org). ............................................................ 22 Figure 11: Diplotaxodon aeneus, described from a ripe male of 125mm standard length, holotype: BMNH 1996.4.30:16, collected from a depth of 400m northeast of Nkhata Bay by ODA/SADC pelagic Resource Project between 30 November 1993-December 1994 (source: Turner and Stauffer 1998). ......................................................................................................................
Recommended publications
  • Feature: INTRODUCED FISH and ECOLOGY
    Feature: INTRODUCED FISH AND ECOLOGY Ecological Impacts of Non-native Freshwater Fishes Julien Cucherousset Centre for Conservation Ecology and Environmental Change, School of Applied Sciences, Bournemouth University, Poole, Dorset, United Kingdom Impactos Ecológicos de Peces Foráneos CNRS, UPS, ENFA, UMR5174 EDB (Laboratoire Évolution et Diversité de Agua Dulce Biologique), 118 route de Narbonne, F-31062 Toulouse, France Université de Toulouse, UPS, UMR5174 EDB, F-31062 Toulouse, France RESUMEN: Hay una larga historia de introducciones de especies de peces foráneos de agua dulce y la tasa Julian D. Olden de introducción se ha acelerado considerablemente a School of Aquatic and Fishery Sciences, University of Washington, través del tiempo. Si bien no todos los peces introduci- Box 355020, Seattle, Washington 98195, USA (Address correspondence dos tienen efectos notables en sus nuevos ecosistemas, to [email protected]) muchos de ellos ejercen importantes impactos ecológi- cos, evolutivos y económicos. Para los investigadores, ABSTRACT: There is a long history of introduction of non-native administradores y tomadores de decisiones que están in- fishes in fresh waters and the introduction rate has accelerated great- teresados en la conservación de la diversidad dulceacuí- ly over time. Although not all introduced fishes have appreciable cola, es de suma importancia entender la magnitud y effects on their new ecosystems, many exert significant ecological, alcance de los potenciales impactos de especies foráneas evolutionary, and economic impacts. For researchers, managers, de agua dulce. El presente estudio provee un panorama and policy makers interested in conserving freshwater diversity, un- de la literatura más reciente sobre impactos ecológicos derstanding the magnitude and array of potential impacts of non-na- asociados a la introducción de peces foráneos de agua tive fish species is of utmost importance.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • The Origin and Development of the CCAP in Zambia 1882-20042
    Coertzen, P Chilenje, V1 University of Stellenbosch The origin and development of the CCAP in Zambia 1882-20042 INTRODUCTION For a very long period of time the Church of Central Africa Presbyterian (CCAP) in Zambia had no record of its historical roots. As a result many Zambians questioned the independent existence of this church; others called it a “Malawian” church and others a “break away”. My hypothesis shows that it is clear from history that the CCAP existed among the Zambian people since the 1880’s. In addition it reveals that the CCAP in Zambia traces its roots from the Livingstonia Mission of the Free Church of Scotland which started its work in Central Africa in 1875 (Laws, 1934:7,16). Through this mission the church is known to have grown to a fully fledged denomination. It is also to be noted that the CCAP in Zambia is also a fruit of the activities of CCAP General Synod members in the urban areas. THE LIVINGSTONIA MISSION The Livingstonia Mission of the Free Church of Scotland was formed in memory of the late Dr. David Livingstone who died at Chitambo in Northern Zambia in 1874. Dr. David Livingstone’s famous appeal made at a large meeting in the Senate House at Cambridge on 4 December 1857, his three great journeys in Africa, and his reports on the “Open path for commerce, civilisation and Christianity” evoked a response from a wide variety of people (Johnston 1908:28, 29). Through the Livingstonia Mission of the Free Church of Scotland churches were established in Malawi and Zambia (Laws, 1934:179,185,196).
    [Show full text]
  • Lake Malawi Destination Guide
    Lake Malawi Destination Guide Overview of Lake Malawi Occupying a fifth of the country, Lake Malawi is the third largest lake in Africa and home to more fish species than any other lake in the world. Also known as Lake Nyasa, it is often referred to as 'the calendar lake' because it is 365 miles (590km) long and 52 miles (85km) wide. Situated between Malawi, Mozambique and Tanzania, this African Great Lake is about 40,000 years old, a product of the Great Rift Valley fault line. There are fishing villages to be found along the lakeshore where residents catch a range of local fish including chambo, kampango (catfish), lake salmon and tiger fish. The export of fish from the lake contributes significantly to the country's economy, and the delicious chambo, similar to bream, is served in most Malawian eateries. Visitors to Lake Malawi can see colourful mbuna fish in the water, while there are also occasional sightings of crocodiles, hippos, monkeys and African fish eagles along the shore. The nearby Eastern Miombo woodlands are home to African wild dogs. Swimming, snorkelling and diving are popular activities in the tropical waters of the lake, and many visitors also enjoy waterskiing, sailing and fishing. There are many options available for holiday accommodation at the lake, including resorts, guesthouses and caravan or camping parks. All budgets are catered for, with luxury lodges attracting the glamorous and humble campsites hosting families and backpackers. Cape Maclear is a well-developed lakeside town, and nearby Monkey Bay is a great holiday resort area. Club Makokola, near Mangochi, is also a popular resort.
    [Show full text]
  • Sustainable Development Impacts of Investment Incentives
    Sustainable Development Impacts of Investment Incentives A Case Study of Malawi’s Tourism Sector Nelson Nsiku and Sheila Kiratu 2009 trade knowledge network Abstract This study seeks to determine the link between investment incentives and foreign direct investment (FDI) flows in Malawi’s tourism sector and also to question whether these incentives have promoted sustainable development in the country. It finds that investment incentives do not determine FDI in the tourism sector; rather, decisions to invest were largely driven by the the country’s natural resources; the cost of raw materials; the availability of relatively cheap labour; and the inflation, foreign exchange and interest rates. This suggests that the type, nature and quantity of FDI in the tourism sector is shaped by other government policy such as promoting increased private sector participation rather than by investment incentives per se. It therefore follows that this has implications for Malawi’s sustainable development goals, especially the role of investment incentives in shaping the economic and social impacts of investment, as well as environmental impacts, which the incentives seem to have affected negatively. About the authors Nelson Nsiku is a lecturer in Economics at the University of Malawi Polytechnic and is a member of several national associations and committees that contribute to the policy debate on economic planning and trade policy in Malawi. Sheila Kiratu is an advocate of the High Court of Kenya and a trade and investment lawyer with research interests in sustainable development, climate change, energy and investment. She is currently the coordinator of the Trade Knowledge Network Southern Africa branch.
    [Show full text]
  • Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa)
    Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa/Niassa) by M.K. Oliver, Ph.D. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa/Niassa) by Michael K. Oliver, Ph.D. Peabody Museum of Natural History, Yale University Updated 3 November 2018 First posted June 1999 The cichlids of Lake Malawi constitute the largest vertebrate species flock and largest lacustrine fish fauna on earth. This list includes all cichlid species, and the few subspecies, that have been formally described and named. Many–several hundred–additional endemic cichlid species are known but still undescribed, and this fact must be considered in assessing the biodiversity of the lake. Recent estimates of the total size of the lake’s cichlid fauna, counting both described and known but undescribed species, range from 700–843 species (Turner et al., 2001; Snoeks, 2001; Konings, 2007) or even 1000 species (Konings 2016). Additional undescribed species are still frequently being discovered, particularly in previously unexplored isolated locations and in deep water. The entire Lake Malawi cichlid metaflock is composed of two, possibly separate, endemic assemblages, the “Hap” group and the Mbuna group. Neither has been convincingly shown to be monophyletic. Membership in one or the other, or nonendemic status, is indicated in the checklist below for each genus, as is the type species of each endemic genus. The classification and synonymies are primarily based on the Catalog of Fishes with a few deviations. All synonymized genera and species should now be listed under their senior synonym. Nearly all species are endemic to L. Malawi, in some cases extending also into the upper Shiré River including Lake Malombe and even into the middle Shiré.
    [Show full text]
  • Indian and Madagascan Cichlids
    FAMILY Cichlidae Bonaparte, 1835 - cichlids SUBFAMILY Etroplinae Kullander, 1998 - Indian and Madagascan cichlids [=Etroplinae H] GENUS Etroplus Cuvier, in Cuvier & Valenciennes, 1830 - cichlids [=Chaetolabrus, Microgaster] Species Etroplus canarensis Day, 1877 - Canara pearlspot Species Etroplus suratensis (Bloch, 1790) - green chromide [=caris, meleagris] GENUS Paretroplus Bleeker, 1868 - cichlids [=Lamena] Species Paretroplus dambabe Sparks, 2002 - dambabe cichlid Species Paretroplus damii Bleeker, 1868 - damba Species Paretroplus gymnopreopercularis Sparks, 2008 - Sparks' cichlid Species Paretroplus kieneri Arnoult, 1960 - kotsovato Species Paretroplus lamenabe Sparks, 2008 - big red cichlid Species Paretroplus loisellei Sparks & Schelly, 2011 - Loiselle's cichlid Species Paretroplus maculatus Kiener & Mauge, 1966 - damba mipentina Species Paretroplus maromandia Sparks & Reinthal, 1999 - maromandia cichlid Species Paretroplus menarambo Allgayer, 1996 - pinstripe damba Species Paretroplus nourissati (Allgayer, 1998) - lamena Species Paretroplus petiti Pellegrin, 1929 - kotso Species Paretroplus polyactis Bleeker, 1878 - Bleeker's paretroplus Species Paretroplus tsimoly Stiassny et al., 2001 - tsimoly cichlid GENUS Pseudetroplus Bleeker, in G, 1862 - cichlids Species Pseudetroplus maculatus (Bloch, 1795) - orange chromide [=coruchi] SUBFAMILY Ptychochrominae Sparks, 2004 - Malagasy cichlids [=Ptychochrominae S2002] GENUS Katria Stiassny & Sparks, 2006 - cichlids Species Katria katria (Reinthal & Stiassny, 1997) - Katria cichlid GENUS
    [Show full text]
  • Master Document Template
    Copyright by Pamela Margaret Willis 2011 The Dissertation Committee for Pamela Margaret Willis Certifies that this is the approved version of the following dissertation: Mate Choice and Hybridization within Swordtail Fishes (Xiphophorus spp.) and Wood Warblers (family Parulidae) Committee: Michael J. Ryan, Supervisor Daniel I. Bolnick Ulrich G. Mueller Gil G. Rosenthal Michael C. Singer Mate Choice and Hybridization within Swordtail Fishes (Xiphophorus spp.) and Wood Warblers (family Parulidae) by Pamela Margaret Willis, B.S., M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May, 2011 Dedication To Sparky Acknowledgements I am deeply indebted to my advisor, Mike Ryan, for his insight, guidance, patience, good humor, and unwavering support. I am also much indebted to Gil Rosenthal, who advised me as if I were one of his own students. I am very grateful. I had an excellent thesis committee - in addition to Mike and Gil, Dan Bolnick, Ulrich Mueller, and Mike Singer gave excellent advice and feedback. Karin Akre was my grad school support buddy in the last years of my PhD. I could not have done it without her. The Ecology, Evolution, and Behavior Program has provided a stimulating and supportive environment. Kim Hoke, Chad Smith, Nichole Bennett, Eben Gering, Barrett Klein, Ray Engezer, Frank Stearns, Frank Bronson, Hans Hoffman, and members of the Ryan lab deserve special mention. Thanks to my collaborators Beckie Symula and Irby Lovette on the warbler research.
    [Show full text]
  • Central African Wilderness Safaris an Introduction To
    An Introduction to Central African Wilderness Safaris Central African Wilderness Safaris is a responsible ecotourism and conservation company. We believe in providing specialist eco -tourism based safaris whilst protecting Malawi’s areas of pristine wilderness. We strive to preserve Malawi’s natural heritage and the biodivers ity it supports, whilst involving local communities in the process. Central African Wilderness Safaris offers an array of unique, exciting and diverse experiences in Malawi, the warm heart of Africa. With over twenty years of experience in the ecotourism i ndustry, we combine our highly personalized services and attention to detail to help meet your needs, keep you comfortable and ensure that your journey and time with us here in Malawi is truly unforgettable. Central African Wilderness Safaris P O Box 489, Sanctuary Lodge, Youth Drive, Lilongwe, Malawi T (00 265) 1 771 153/393 E(International inquiries) [email protected] or E(local inquiries) [email protected] www.cawsmw.com ABOUT MALAWI Malawi is a gem of a country in the heart of central southern Africa that offers a true African experience. Lake Malawi, the third largest water body in Africa, takes up almost a third of this narrow country. Malawi’s geography is sculptured by Africa’s Great Rift Valley: towering mountains, lush, fertile valley floors and enormous crystal- clear lakes are hallmarks of much of this geological phenomenon; and Malawi displays them all. At its lowest point, the country is only about 35m above sea level; its highest point, Mount Mulanje, is over 3 000m above sea level. Between these altitude extremes, the country’s diverse ecology is protected within Malawi’s nine national parks and game reserves; everything from elephants to orchids.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name
    [Show full text]
  • Patterns and Process During the Diversification of the Cichlid Fishes in Lake Malawi, Africa Michael R
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 2006 Patterns and process during the diversification of the cichlid fishes in Lake Malawi, Africa Michael R. Kidd University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Kidd, Michael R., "Patterns and process during the diversification of the cichlid fishes in Lake Malawi, Africa" (2006). Doctoral Dissertations. 342. https://scholars.unh.edu/dissertation/342 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. PATTERNS AND PROCESS DURING THE DIVERSIFICATION OF THE CICHLID FISHES IN LAKE MALAWI, AFRICA BY MICHAEL R. KIDD BA, Williams College, 1991 DISSERTATION Submitted to the University of New Hampshire In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Zoology September, 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3231355 Copyright 2006 by Kidd, Michael R. All rights reserved. INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Schistosomiasis in Lake Malaŵi and the Potential Use of Indigenous Fish for Biological Control
    6 Schistosomiasis in Lake Malaŵi and the Potential Use of Indigenous Fish for Biological Control Jay R. Stauffer, Jr.1 and Henry Madsen2 1School of Forest Resources, Penn State University, University Park, PA 2DBL Centre for Health Research and Development, Faculty of Life Sciences, University of Copenhagen, Frederiksberg 1USA 2Denmark 1. Introduction Schistosomiasis is a parasitic disease of major public health importance in many countries in Africa, Asia, and South America, with an estimated 200 million people infected worldwide (World Health Organization, 2002). The disease is caused by trematodes of the genus Schistosoma that require specific freshwater snail species to complete their life cycles (Fig. 1). People contract schistosomiasis when they come in contact with water containing the infective larval stage (cercariae) of the trematode. Fig. 1. Life cycle of schistosomes (Source: CDC/Alexander J. da Silva, PhD/Melanie Moser) www.intechopen.com 120 Schistosomiasis Schistosome transmission, Schistosoma haematobium, is a major public health concern in the Cape Maclear area of Lake Malaŵi (Fig. 2), because the disease poses a great problem for local people and reduces revenue from tourism. Until the mid-1980’s, the open shores of Lake Malaŵi were considered free from human schistosomes (Evans, 1975; Stauffer et al., 1997); thus, only within relatively protected areas of the lake or tributaries would transmission take place. These areas were suitable habitat of intermediate host snail, Bulinus globosus. During mid-1980’s, reports indicated that transmission also occurred along open shorelines. It is now evident that in the southern part of the lake, especially Cape Maclear on Nankumba Peninsula, transmission occurs along exposed shorelines with sandy sediment devoid of aquatic plants via another intermediate host, Bulinus nyassanus (Madsen et al., 2001, 2004).
    [Show full text]