Steller Sea Lion Recovery Investigations in Alaska, 1992-1994

Total Page:16

File Type:pdf, Size:1020Kb

Steller Sea Lion Recovery Investigations in Alaska, 1992-1994 Steller Sea Lion Recovery Investigations in Alaska, 1992-1994 Contributors T. C. Adams, D. Bradley, E. A. A. Brandon, D. G. Calkins, M. A. Castellini, R. W. Davis, B. S. Fadely, T. R. Loughlin, L. L. Milette, D. C. McAllister, G. W. Pendleton, K. W. Pitcher, B. Porter, L. D. Rea, T. R. Spraker, U. G. Swain and T. Zenteno-Savin COURTESY OF JOEL SARTORI AND Alaska Department of Fish and Game NATIONAL GEOGRAPHIC Division of Wildlife Conservation Wildlife Technical Bulletin No. 13 SK May 1996 367 .G35 no. 13 ABSTRACT The United States population of Steller sea lions (SSL), Eumetopias jubatus, is classified as ''threatened'' under the Endangered Species Act" because of a recent 73% decline in numbers. National Marine Fisheries Service (NMFS) has recommended that the US population of SSL be divided into two stocks, with an east-west division at 1440 west longitude, based largely on genetic evidence. Since 1992, the Alaska Department of Fish & Game (ADF&G) and NMFS have been the recipients of congressional appropriations to study the decline and develop management strategies for population recovery. The basis for much of the research has been an "experimental/control" approach comparing population characteristics between the depressed westem stock and the increasing Southeast Alaska (SEA) portion of the eastern stock. Research then could focus on those factors that are different between stocks to determine their role in the decline and eventually to develop appropriate strategies to enhance population recovery. In addition to ADF&G and NMFS several other scientific groups (cooperators), with specialized expertise, have joined the research effort. In this report we present findings from our research and that of our cooperators. Counts of SSL pups and nonpups were made at rookery and haulout sites in SEA between 1979 and 1995. Historical data on SSL abundance from earlier in the century were also examined. Counts of both pups and nonpups showed a positive trend (pups =+6.86%/yr, nonpups =+4.83%). The lower rate of increase for nonpups was probably due to the reduced presence of subadults from the depressed western stock. During this period two sites, White Sisters and Hazy Island, developed into significant rookeries. We estimate, based on total counts of pups, that in 1994 the SEA breeding population numbered approximately 17,000 animals. We conclude that SSL are abundant in SEA and are probably at the highest level of this century. These findings question the logic behind classification of the SEA subpopulation as threatened. Comparisons of composition data from Sugarloaf Island rookery, in the area of decline, and Forrester Island rookery, in an increasing population, showed no differences that indicated reduced juvenile survival. There was an increasing trend in the proportion of adult males at Sugarloaf and a decreasing trend at Forrester. The mean ratio of subadult males was higher for Sugarloaf than for Forrester. Ratios of pups to adult females differed among years at both locations which indicates that annual variations in the environments affect productivity. We found that pupping dates for SSL at Sugarloaf Island, in the .depressed western stock, were about 10 days later than at Forrester Island, in the increasing SEA portion of the eastem stock. Pupping dates also differed between years at Sugarloaf and Forrester. At Sugarloaf Island pupping appeared earlier in 1995 than during 1980. At Forrester, between 1992 and 1995, there was a trend towards later pupping. It had previously been thought that the timing of pupping was synchronous throughout the species range. There are reports in the literature for other pinnipeds that timing of pupping is affected by nutritional status. We suggest that these findings support the hypothesis of undernutrition as a factor in the decline of the western stock but do not discount the presence of a genetic component to birthing dates. Late pupping is likely a symptom of undernutrition rather than a major mechanism behind the decline. A potential mechanism in aiding the recovery of the western stock of SSL is emigration of animals from the SEA. It is known 'from other studies that SSL are highly mobile with movements of many hundred and even thousands of kilometers. However, current information indicate adult females show a high degree of fidelity to their site of birth or to nearby areas. We marked 813 pups at the Forrester Island rookery in the increasing SEA portion of the eastern stock during 1994 and 1995. Resightings of the marked animals have been made at sites ranging from Seattle, Washington to Kodiak, Alaska. Between 1998 and 2002 searches for these marked animals will be made on rookeries from Oregon to the Aleutian Islands to determine the rate of emigration. Survivorship rates will be estimated using the resightings of marked animals. One hypothesis proposed to explain the decline is that juvenile SSL are nutritionally stressed and are experiencing high mortality during winter. It is postulated that activity budgets of juvenile SSL should reflect nutritional status. A comparative behavioural study of juvenile activity budgets was conducted at haulout sites in both the declining western stock (Cape S1. Elias) and in the increasing SEA portion of the eastern stock (Timbered Island). Activity data are currently being analyzed and will be reported in a MS thesis from the University of British Columbia. The target date for completion is October 1996. A comparative study of reproductive behaviours of SSL was conducted at the Sugarloaf Island rookery in the declining western stock and at Forrester Island in SEA, an increasing segment of the eastern stock. During an EI Nino event, which resulted in drastic food shortages ranging from Chile to California, a number of reproductive behaviours were noted to change in otariids. Based on findings of field research with otariids and experimental studies of terrestrial mammals, data on the following behavioural, developmental and physica.l indices were collected at the two sites. These included activity budgets, maternal attendance patterns, male tenure duration and territory size, copulation frequency and time, delayed weaning, ea.rly pup development and maternal care postpartum, and the occurrence of fungal patches. Preliminary results indicate that females spend more time nursing their pups, are more aggressive and have a longer perinatal period in the area of decline. Trip durations appear to be shorter in the area of decline. The final results of this study will be reported in a MS thesis from the University of British Columbia. The target date for completion is December 1996. Indices of adult female reproductive effort, female body condition, and pup growth were studied for Alaskan Steller sea lions. Data from declining populations at Chirikof Island in 1993 (C93), Marmot Island in 1994 (M94), and Fish Island in 1995 (F95) were compared to a stable population at Lowrie Island in 1993 and 1994 (L93, L94). Trip duration of adult females was monitored by deploying VHF transmitters. Female body condition and known-age pup growth, body condition and milk intake were measured during their first 40 days postpartum. There was a significant difference among locations in mean trip duration, the longest at L94 (29.1 hrs) and shortest at C93 (11.2 hrs). There was no significant difference among locations in pup mass at age 0-5 days (mean = 21.0 kg), although males (22.4 kg) were significantly heavier than females (19.5 kg). There was a significant difference among growth rates, with the C93 and F95 pups growing faster in their first 40 days than the M93, L93, and L94 pups. Male and female pups generally grew at the same rate, so male pups remained consistently ii heavier than females. There was no significant difference in milk composition, lean body mass and total body lipid among pups or adult females at the different locations, Overall, there is no indication for increased female reproductive effort, poor body condition or slower pup growth for females and pups in the area of declining population. Wfrexamined th'e plasma concentration of the acute phase protein haptoglobin (Hp) from SSL and harbor seals (Phoca vitulina) in regions of Alaska where the populations of these pinnipeds were declining and compared the values with concentrations of Hp from the same species in areas where the populations were stable. Samples were collected from 1992 through 1994 at sites in Southeast Alaska, Prince William Sound, the Gulf of Alaska and the Aleutian Islands. Significantly higher levels of Hp were found in the samples 'from the areas of decline compared to those from stable populations. Based on these findings, we propose that one may be able to distinguish these compromised pinniped populations using Hp as a biomedical indicator. Studies of the health status of SSL were conducted in both the area of decline (western stock) and an area where numbers were increasing (SEA) in an attempt to identify factors involved in the decline. These studies were organized into three categories: clinical evaluations of live-captured pups and adults; gross necropsies, histological lesions and toxicology of animals found dead;and studies of a specific syndrome characterized by dermal ulceration and alopecia in relatively healthy and robust pups. Hematological data demonstrated that many of the adults had relatively normal blood parameters while many of the clinically normal pups had slightly elevated white blood cell counts. At least 6 serotypes of the San Miguel sea lion virus and a Chlamydia sp. are circulating through the sea lion population. Both of these agents could cause abortions under certain circumstances. Based on small sample sizes, only low levels of chlorinated hydrocarbons and polychlorinated biphenyls were present in the blubber of SSL from SEA. Necropsies of 4 adult female SSL indicated all were relatively healthy. The deaths of 4 juveniles were attributed to emaciation (2), capture related drug reaction (1) and blunt trauma (1).
Recommended publications
  • Baylisascariasis
    Baylisascariasis Importance Baylisascaris procyonis, an intestinal nematode of raccoons, can cause severe neurological and ocular signs when its larvae migrate in humans, other mammals and birds. Although clinical cases seem to be rare in people, most reported cases have been Last Updated: December 2013 serious and difficult to treat. Severe disease has also been reported in other mammals and birds. Other species of Baylisascaris, particularly B. melis of European badgers and B. columnaris of skunks, can also cause neural and ocular larva migrans in animals, and are potential human pathogens. Etiology Baylisascariasis is caused by intestinal nematodes (family Ascarididae) in the genus Baylisascaris. The three most pathogenic species are Baylisascaris procyonis, B. melis and B. columnaris. The larvae of these three species can cause extensive damage in intermediate/paratenic hosts: they migrate extensively, continue to grow considerably within these hosts, and sometimes invade the CNS or the eye. Their larvae are very similar in appearance, which can make it very difficult to identify the causative agent in some clinical cases. Other species of Baylisascaris including B. transfuga, B. devos, B. schroeder and B. tasmaniensis may also cause larva migrans. In general, the latter organisms are smaller and tend to invade the muscles, intestines and mesentery; however, B. transfuga has been shown to cause ocular and neural larva migrans in some animals. Species Affected Raccoons (Procyon lotor) are usually the definitive hosts for B. procyonis. Other species known to serve as definitive hosts include dogs (which can be both definitive and intermediate hosts) and kinkajous. Coatimundis and ringtails, which are closely related to kinkajous, might also be able to harbor B.
    [Show full text]
  • Dental and Temporomandibular Joint Pathology of the Kit Fox (Vulpes Macrotis)
    Author's Personal Copy J. Comp. Path. 2019, Vol. 167, 60e72 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/jcpa DISEASE IN WILDLIFE OR EXOTIC SPECIES Dental and Temporomandibular Joint Pathology of the Kit Fox (Vulpes macrotis) N. Yanagisawa*, R. E. Wilson*, P. H. Kass† and F. J. M. Verstraete* *Department of Surgical and Radiological Sciences and † Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA Summary Skull specimens from 836 kit foxes (Vulpes macrotis) were examined macroscopically according to predefined criteria; 559 specimens were included in this study. The study group consisted of 248 (44.4%) females, 267 (47.8%) males and 44 (7.9%) specimens of unknown sex; 128 (22.9%) skulls were from young adults and 431 (77.1%) were from adults. Of the 23,478 possible teeth, 21,883 teeth (93.2%) were present for examina- tion, 45 (1.9%) were absent congenitally, 405 (1.7%) were acquired losses and 1,145 (4.9%) were missing ar- tefactually. No persistent deciduous teeth were observed. Eight (0.04%) supernumerary teeth were found in seven (1.3%) specimens and 13 (0.06%) teeth from 12 (2.1%) specimens were malformed. Root number vari- ation was present in 20.3% (403/1,984) of the present maxillary and mandibular first premolar teeth. Eleven (2.0%) foxes had lesions consistent with enamel hypoplasia and 77 (13.8%) had fenestrations in the maxillary alveolar bone. Periodontitis and attrition/abrasion affected the majority of foxes (71.6% and 90.5%, respec- tively).
    [Show full text]
  • Phylogeographic and Diversification Patterns of the White-Nosed Coati
    Molecular Phylogenetics and Evolution 131 (2019) 149–163 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeographic and diversification patterns of the white-nosed coati (Nasua narica): Evidence for south-to-north colonization of North America T ⁎ Sergio F. Nigenda-Moralesa, , Matthew E. Gompperb, David Valenzuela-Galvánc, Anna R. Layd, Karen M. Kapheime, Christine Hassf, Susan D. Booth-Binczikg, Gerald A. Binczikh, Ben T. Hirschi, Maureen McColginj, John L. Koprowskik, Katherine McFaddenl,1, Robert K. Waynea, ⁎ Klaus-Peter Koepflim,n, a Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA b School of Natural Resources, University of Missouri, Columbia, MO 65211, USA c Departamento de Ecología Evolutiva, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico d Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA e Department of Biology, Utah State University, Logan, UT 84322, USA f Wild Mountain Echoes, Vail, AZ 85641, USA g New York State Department of Environmental Conservation, Albany, NY 12233, USA h Amsterdam, New York 12010, USA i Zoology and Ecology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia j Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA k School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ 85721, USA l College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA m Smithsonian Conservation Biology Institute, National Zoological Park, Washington, D.C.
    [Show full text]
  • Mammalia, Carnivora) from the Blancan of Florida
    THREE NEW PROCYONIDS (MAMMALIA, CARNIVORA) FROM THE BLANCAN OF FLORIDA Laura G. Emmert1,2 and Rachel A. Short1,3 ABSTRACT Fossils of the mammalian family Procyonidae are relatively abundant at many fossil localities in Florida. Analysis of specimens from 16 late Blancan localities from peninsular Florida demonstrate the presence of two species of Procyon and one species of Nasua. Procyon gipsoni sp. nov. is slightly larger than extant Procyon lotor and is distinguished by five dental characters including a lack of a crista between the para- cone and hypocone on the P4, absence of a basin at the lingual intersection of the hypocone and protocone on the P4, and a reduced metaconule on the M1. Procyon megalokolos sp. nov. is significantly larger than extant P. lotor and is characterized primarily by morphology of the postcrania, such as an expanded and posteriorly rotated humeral medial epicondyle, more prominent tibial tuberosity, and more pronounced radioulnar notch. Other than larger size, the dentition of P. megalokolos falls within the range of variation observed in extant P. lotor, suggesting that it may be an early member of the P. lotor lineage. Nasua mast- odonta sp. nov. has a unique accessory cusp on the m1 as well as multiple morphological differences in the dentition and postcrania, such as close appression of the trigonid of the m1 and a less expanded medial epicondyle of the humerus. We also synonymize Procyon rexroadensis, formerly the only known Blancan Procyon species in North America, with P. lotor due to a lack of distinct dental morphological features observed in specimens from its type locality in Kansas.
    [Show full text]
  • Brown Bear (Ursus Arctos) John Schoen and Scott Gende Images by John Schoen
    Brown Bear (Ursus arctos) John Schoen and Scott Gende images by John Schoen Two hundred years ago, brown (also known as grizzly) bears were abundant and widely distributed across western North America from the Mississippi River to the Pacific and from northern Mexico to the Arctic (Trevino and Jonkel 1986). Following settlement of the west, brown bear populations south of Canada declined significantly and now occupy only a fraction of their original range, where the brown bear has been listed as threatened since 1975 (Servheen 1989, 1990). Today, Alaska remains the last stronghold in North America for this adaptable, large omnivore (Miller and Schoen 1999) (Fig 1). Brown bears are indigenous to Southeastern Alaska (Southeast), and on the northern islands they occur in some of the highest-density FIG 1. Brown bears occur throughout much of southern populations on earth (Schoen and Beier 1990, Miller et coastal Alaska where they are closely associated with salmon spawning streams. Although brown bears and grizzly bears al. 1997). are the same species, northern and interior populations are The brown bear in Southeast is highly valued by commonly called grizzlies while southern coastal populations big game hunters, bear viewers, and general wildlife are referred to as brown bears. Because of the availability of abundant, high-quality food (e.g. salmon), brown bears enthusiasts. Hiking up a fish stream on the northern are generally much larger, occur at high densities, and have islands of Admiralty, Baranof, or Chichagof during late smaller home ranges than grizzly bears. summer reveals a network of deeply rutted bear trails winding through tunnels of devil’s club (Oplopanx (Klein 1965, MacDonald and Cook 1999) (Fig 2).
    [Show full text]
  • Ecology of Cougars (Puma Concolor) in North-Central Montana
    Ecology of Cougars (Puma concolor) in north-central Montana: Distribution, resource selection, dynamics, harvest, and conservation design Chippewa Cree Tribal Wildlife Program In cooperation with World Wildlife Fund Northern Great Plains Program Bozeman, Montana Final Report April 2012 Kyran Kunkel1, Tim Vosburgh2, and Hugh Robinson3 1World Wildlife Fund; presently University of Montana, Gallatin Gateway, MT; 2Chippewa Cree Tribal Wildlife Program; presently Bureau of Land Management, Lander, WY; 3University of Montana; presently Panthera, New York, NY Space for Cougar photo Photo credit: Kyran Kunkel 1 Ecology of Cougars (Puma concolor) in north-central Montana: Distribution, resource selection, dynamics, harvest, and conservation design Kyran Kunkel, Tim Vosburgh, and Hugh Robinson Chippewa Cree Tribal Wildlife Program in cooperation with World Wildlife Fund, Final Report April 2012 Citation: Kunkel, K, T. Vosburgh, and H. Robinson. 2012. Ecology of cougars (Puma concolor) in north-central Montana. Final Report to the US Fish and Wildlife Service. World Wildlife Fund Northern Great Plains Program 202 S. Black, Ste 3 Bozeman, MT 59715 P.O. Box 7276 Bozeman, Montana 59771 (406) 582-0236 To learn more, visit www.worldwildlife.org/ngp/ ©2010 WWF. All rights reserved by the World Wildlife Fund, Inc. 2 1. Introduction opportunity. Information about cougar recolonization and ecol- Increasing attention is being directed to ecological ogy of established populations will greatly enhance restoration in North American grasslands (Forrest et understanding and management of cougars in the al. 2004), particularly with respect to species that grasslands and prairie breaks of north-central Mon- have been lost or eliminated from these systems. tana. This is especially important because cougars Some species, notably wolf (Canis lupus), bear (Ursus have been little studied in this type of landscape (Wil- spp.), and cougar are expanding in Montana through liams 1992) and very little work has been conducted reintroductions and natural recolonization.
    [Show full text]
  • History and Status of the American Black Bear in Mississippi
    History and status of the American black bear in Mississippi Stephanie L. Simek1,5, Jerrold L. Belant1, Brad W. Young2, Catherine Shropshire3, and Bruce D. Leopold4 1Carnivore Ecology Laboratory, Forest and Wildlife Research Center, Mississippi State University, Box 9690, Mississippi State, MS 39762, USA 2Mississippi Department of Wildlife, Fisheries, and Parks, 1505 Eastover Drive, Jackson, MS 39211, USA 3Mississippi Wildlife Federation, 517 Cobblestone Court, Suite 2, Madison, MS 39110, USA 4Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Box 9690, Mississippi State, MS 39762, USA Abstract: Historically abundant throughout Mississippi, American black bears (Ursus americanus) have declined due to habitat loss and overharvest. By the early 1900s, the bear population was estimated at ,12 individuals, and Mississippi closed black bear hunting in 1932. However, habitat loss continued and by 1980 suitable habitat was estimated at 20% (20,234 km2) of historic levels (101,171 km2) with the decline continuing. Although black bear abundance is currently unknown, a recent increase in occurrence reports and documented reproduction suggests the population may be increasing. There have been 21 reported nuisance complaints since 2006, of which 7 were apiary damage. Additionally, 31 bear mortalities were reported since 1972; 80% were human caused. Government and private organizations have emphasized education on bear ecology and human–bear coexistence, while habitat restoration through land retirement programs (e.g.,
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • Raccoons Procyon Lotor
    Raccoons Procyon lotor The raccoon, (Procyon lotor), is closely related to the dog and the bear families although its disposition resembles that of a small bear. Characteristic features include short, pointed ears: a long, pointed snout; and greyish-brown, long fur covering the body. The raccoon's most distinguishing features are the black masks around the eyes and the black rings around the long, bushy tail. A raccoon may be two to three feet or more long and weigh between 15 and 30 pounds when mature. Raccoons are excellent climbers and have very dexterous fore paws. They are primarily nocturnal creatures but occasionally venture out in the daytime particularly toward evening. During the fall and winter months (November through March), they may den-up in their home quarters during the coldest periods. This is not true hibernation, as the raccoons will wander out during warm spells. Reproduction Raccoons breed in late winter or early spring. The gestation period is 63 days. Females produce one litter per year ranging in size from three to six young (kits). The litter is born in a sheltered den, usually a hollow log, tree or rock crevice. Raccoons are sociable animals in their family group. After two months of age the young accompany the mother on excursions for food and may travel several miles. Family groups remain intact for about a year. Distribution and Habitat Raccoons are very common throughout Connecticut and the northeastern United States. Color shadings in the fur may vary according to age, sex and range area. They inhabit a wide range of habitats, but prefer mature woodlands along streams, ponds, wetlands and marshes.
    [Show full text]
  • Ecology of the European Badger (Meles Meles) in the Western Carpathian Mountains: a Review
    Wildl. Biol. Pract., 2016 Aug 12(3): 36-50 doi:10.2461/wbp.2016.eb.4 REVIEW Ecology of the European Badger (Meles meles) in the Western Carpathian Mountains: A Review R.W. Mysłajek1,*, S. Nowak2, A. Rożen3, K. Kurek2, M. Figura2 & B. Jędrzejewska4 1 Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106 Warszawa, Poland. 2 Association for Nature “Wolf”, Twardorzeczka 229, 34-324 Lipowa, Poland. 3 Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland. 4 Mammal Research Institute, Polish Academy of Sciences, Waszkiewicza 1c, 17-230 Białowieża, Poland. * Corresponding author email: [email protected]. Keywords Abstract Altitudinal Gradient; This article summarizes the results of studies on the ecology of the European Diet Composition; badger (Meles meles) conducted in the Western Carpathians (S Poland) Meles meles; from 2002 to 2010. Badgers inhabiting the Carpathians use excavated setts Mustelidae; (53%), caves and rock crevices (43%), and burrows under human-made Sett Utilization; constructions (4%) as permanent shelters. Excavated setts are located up Spatial Organization. to 640 m a.s.l., but shelters in caves and crevices can be found as high as 1,050 m a.s.l. Badger setts are mostly located on slopes with southern, eastern or western exposure. Within their territories, ranging from 3.35 to 8.45 km2 (MCP100%), badgers may possess 1-12 setts. Family groups are small (mean = 2.3 badgers), population density is low (2.2 badgers/10 km2), as is reproduction (0.57 young/year/10 km2). Hunting by humans is the main mortality factor (0.37 badger/year/10 km2).
    [Show full text]
  • Periodic Status Review for the Steller Sea Lion
    STATE OF WASHINGTON January 2015 Periodic Status Review for the Steller Sea Lion Gary J. Wiles The Washington Department of Fish and Wildlife maintains a list of endangered, threatened, and sensitive species (Washington Administrative Codes 232-12-014 and 232-12-011, Appendix E). In 1990, the Washington Wildlife Commission adopted listing procedures developed by a group of citizens, interest groups, and state and federal agencies (Washington Administrative Code 232-12-297, Appendix A). The procedures include how species listings will be initiated, criteria for listing and delisting, a requirement for public review, the development of recovery or management plans, and the periodic review of listed species. The Washington Department of Fish and Wildlife is directed to conduct reviews of each endangered, threatened, or sensitive wildlife species at least every five years after the date of its listing. The reviews are designed to include an update of the species status report to determine whether the status of the species warrants its current listing status or deserves reclassification. The agency notifies the general public and specific parties who have expressed their interest to the Department of the periodic status review at least one year prior to the five-year period so that they may submit new scientific data to be included in the review. The agency notifies the public of its recommendation at least 30 days prior to presenting the findings to the Fish and Wildlife Commission. In addition, if the agency determines that new information suggests that the classification of a species should be changed from its present state, the agency prepares documents to determine the environmental consequences of adopting the recommendations pursuant to requirements of the State Environmental Policy Act.
    [Show full text]
  • SPECIES REPORT Sierra Nevada Red Fox (Vulpes Vulpes Necator)
    SPECIES REPORT Sierra Nevada Red Fox (Vulpes vulpes necator) U.S. FISH AND WILDLIFE SERVICE August 14, 2015 Table of Contents INTRODUCTION .......................................................................................................................... 4 ACRONYMS AND SUBSTITUTIONS USED ............................................................................. 4 SPECIES AND SUBSPECIES DESCRIPTION ............................................................................ 5 TAXONOMY AND GENETICS ................................................................................................... 6 Taxonomic History and Relationship to Other Fox Subspecies ........................................... 6 Genetics ...................................................................................................................................... 7 RANGE AND DISTRIBUTION .................................................................................................... 8 Historical Range ........................................................................................................................ 8 Map 1: SNRF Historical Range in California .................................................................... 9 Current Distribution ............................................................................................................... 10 Map 2: SNRF Sighting Areas............................................................................................. 12 Table 1: SNRF Sighting Areas ..........................................................................................
    [Show full text]