Cp4 Epsps MON 87427

Total Page:16

File Type:pdf, Size:1020Kb

Cp4 Epsps MON 87427 亩ⴞ㕆ਧ: 亩ⴞ㊫࡛: ߌъ䖜สഐ⭏⢙ᆹޘ䇴ԧ ⭣ ᣕ Җ 䖜 cp4 epsps สഐ㙀䲔㥹ࡲ⦹㊣ MON 87427 䘋ਓ⭘ ֌࣐ᐕ৏ᯉⲴᆹޘ䇱Җ ˄к޼˖⭣䈧Җ↓᮷䜘࠶˅ ᆏኡ䜭䘌ьᴹ䲀ޜਨ 2017 ᒤ 6 ᴸ 20 ᰕ ѝॾӪ≁ޡ઼ഭߌъ䜘ࡦ 亩ⴞ㕆ਧ˖ 亩ⴞ㊫࡛˖ ߌ ъ 䖜 ส ഐ ⭏ ⢙ ᆹ ޘ 䇴 ԧ ⭣ ᣕ Җ 亩ⴞ਽〠˖ 䖜 cp4 epsps สഐ㙀䲔㥹ࡲ⦹㊣ MON 87427 䘋ਓ⭘֌࣐ ᐕ৏ᯉⲴᆹޘ䇱Җ ⭣䈧অս˖ᆏኡ䜭䘌ьᴹ䲀ޜਨ ⭣䈧Ӫ˖ ൠ ൰˖ेӜᐲᵍ䱣४ᴉݹ㾯䟼⭢ 5 ਧ䲒ࠔࠠ㖞ൠᒯ൪ F ᓗ 8 ቲ 䛞᭯㕆⸱˖100028 ⭥䈍˖ Րⵏ˖ E-mail˖ ປᣕᰕᵏ˖2017 ᒤ 6 ᴸ 20 ᰕ ѝॾӪ≁ޡ઼ഭߌъ䜘ࡦ ᆏኡ䜭ޜਨ᮷Ԧ © 2017 ᆏኡ䜭ޜਨ ⡸ᵳᡰᴹ ᵜ⭣䈧ҖਇѝॾӪ≁ޡ઼ഭ㪇֌ᵳ⌅ǃц⭼⸕䇶ӗᵳ㓴㓷˄WIPO˅㪇֌ᵳޜ㓖઼ ˈᣔDŽᵜ⭣䈧Җ৺ަ䱴ᑖᶀᯉӵ׋᧕᭦Ⲵ⌅㿴ᵪᶴᡰ⭘؍㓖Ⲵޜ૱WIPO 㺘╄৺ᖅ丣ࡦ ᒦӵ⭘Ҿ᭟ᤱᆏኡ䜭ޜਨⲴ⴨ᓄ⭣䈧DŽ䲔䶎⴨ޣ⌅ᖻ⌅㿴৺⌅㿴ѫ㇑䜘䰘㿴ᇊˈަԆ ԫօሩᵜ⭣䈧Җ৺ަ䱴ᑖ䍴ᯉⲴަԆᓄ⭘ǃᤧ䍍৺वᤜӂ㚄㖁ޜᐳ൘޵ⲴՐ᫝䜭ᗵ享 ਨⲴҖ䶒਼᜿DŽᵜ⭣䈧ѝ᧿䘠Ⲵᡆ䱴ᑖⲴ⸕䇶ӗᵳǃؑ᚟ԕ৺ᶀᯉޜһݸᗇࡠᆏኡ䜭 ᐢ㓿⭡ᆏኡ䜭ޜਨ⭣ᣕу࡙ᡆ㘵㧧ᗇу࡙ˈѪᆏኡ䜭ޜਨᡰᴹDŽᆏኡ䜭ޜਨᨀӔᵜ⭣ ਨሶᵜ⭣䈧Җѝ᧿䘠ᡆवਜ਼Ⲵᶀᯉǃؑ᚟ᡆ⸕䇶ӗᵳᦸᵳ㔉ަԆޜ䈧Җн㺘⽪ᆏኡ䜭 ԫօњӪᡆᇎփDŽ ມ ߏ 䈪 ᱄ ㇗⨼ᶗׁɆȽɅߒѐ䖢ޞ1κ൞ມߏ⭩ᣛҜҁࢃθᓊ䇚ⵕ䰻䈱Ʌߒѐ䖢ะഖ⭕⢟ᆿ ะഖ⭕⢟ᆿޞ䇺ԭ㇗⨼ࣔ⌋ɆȽɅߒѐ䖢ะഖ⭕⢟䘑ਙᆿޞ㇗⨼ࣔ⌋Ɇㅿᴿީ⌋㿺θ Ҽ䀙⴮ީ㾷≸Ⱦ 2κ↚⭩ᣛҜੂṭ䘸⭞ӄ⌋㿺㿺ᇐⲺᣛ઀㊱ᇔ僂⹊ガૂѣ䰪䈋僂Ⲻᣛ઀θ੃〦࠼ࡡ ᭯Ѱ“ߒѐ䖢ะഖ⭕⢟ᇔ僂⹊ガᣛ઀Ҝ”ૂ“ߒѐ䖢ะഖ⭕⢟ѣ䰪䈋僂ᣛ઀Ҝ”Ⱦ 3κ⭩ᣛҜ޻ᇯᓊᖉऻᤢԛс䜞࠼φ⭩䈭㺞Ƚ亯ⴤ޻ᇯ᪎㾷Ƚᐛ֒ⴤⲺૂᝅѿȽള ޻ཌ⹊ガⲺ⴮ީ㜂Ქ䍺ᯏȽᆿޞᙝ䇺ԭȽ䈋僂ᯯṾȽ⴮ީ䱺Ԭ䍺ᯏȽᵢঋփߒѐ䖢ะ ഖ⭕⢟ᆿޞቅ㓺ᇗḛᝅ㿷Ƚᵢঋփᇗḛᝅ㿷Ƚᡶ൞ⴷδᐸȽ㠠⋱॰εⲺߒѐ㺂᭵ѱ㇗ 䜞䰞Ⲻᇗḛᝅ㿷Ⱦ 4κ⭩䈭ᇔ僂⹊ガⲺθ⭩䈭㺞᤿㺞 2 ມߏθ亯ⴤ੃〦ᓊऻ੡䖢ะഖᙝ⣬Ƚ਍։⭕⢟ ੃〦Ƚᇔ僂⹊ガᡶ൞ⴷδᐸȽ㠠⋱॰ε੃〦ૂᇔ僂⹊ガ䱬⇫ㅿ޻ᇯθྸ“䖢ะഖᣍ㲡ỿ 㣧൞⋩्ⴷⲺᇔ僂⹊ガ”ȾжԳ⭩ᣛҜਠ㜳ऻ੡ੂж⢟〃Ⲻ਍։⭕⢟ૂ⴮ੂⲺ䖢ะഖᙝ ⣬Ⱦ“ᆿޞᙝ䇺ԭ”ਥуມߏȾ“䈋僂ᯯṾ”ऻᤢ⹊ガⴤḽȽཌⓆะഖⲺ੃〦ૂᶛⓆȽ䖳 ։ᶺᔰഴ䉧Ƚ䖢ौᯯ⌋ૂ㿺⁗Ƚ൦⛯Ƚᆿޞ᧝࡬᧠᯳ㅿȾ“⴮ީ䱺Ԭ䍺ᯏ”ऻᤢ⌋Ӱ䇷 Ҝૂ㩛ѐᢝ➝ⲺགྷদԬθ㤛⎿਀ਾ֒亯ⴤθᓊᨆӚਂᯯਾ֒ᡌ䖢䇟অ䇤ㅿȾ“ᡶ൞ⴷδᐸȽ 㠠⋱॰εⲺߒѐ㺂᭵ѱ㇗䜞䰞Ⲻᇗḛᝅ㿷”ਥуມߏθ⭩ᣛᶆᯏᣛ䘷ߒѐ䜞ᰬθᢺ䘷ᇔ 僂⹊ガᡶ൞ⴷδᐸȽ㠠⋱॰εⲺߒѐ㺂᭵ѱ㇗䜞䰞Ⱦ 5κ⭩䈭ѣ䰪䈋僂Ⲻθ⭩䈭㺞᤿㺞 2 ມߏȾ⭩ᣛҜѣ“ᆿޞᙝ䇺ԭ”Ƚ“䈋僂ᯯṾ”ૂ 䇺ԭ㇗⨼ࣔ⌋Ɇ䱺ᖋ IȽIIȽIII 㾷≸䙆ᶗມޞɅߒѐ䖢ะഖ⭕⢟ᆿ➝ד”⴮ީ䱺Ԭ䍺ᯏ“ ߏȾ“ᡶ൞ⴷδᐸȽ㠠⋱॰ε㓝ߒѐ㺂᭵ѱ㇗䜞䰞Ⲻᇗḛᝅ㿷”ਥуມߏθ⭩ᣛᶆᯏᣛ 䘷ߒѐ䜞ᰬθᢺ䘷ѣ䰪䈋僂ᡶ൞ⴷδᐸȽ㠠⋱॰ε㓝ߒѐ㺂᭵ѱ㇗䜞䰞Ⱦ 6κ⭩䈭⧥ູ䠀᭴ૂ⭕ӝᙝ䈋僂Ⲻθ⭩䈭㺞᤿㺞 2 ມߏχ⭩ᣛҜѣ“ᆿޞᙝ䇺ԭ”Ƚ 䇺ԭ㇗⨼ࣔ⌋Ɇ䱺ᖋ IȽIIȽޞɅߒѐ䖢ะഖ⭕⢟ᆿ➝ד”䈋僂ᯯṾ”ૂ“⴮ީ䱺Ԭ䍺ᯏ“ III 㾷≸䙆ᶗມߏȾሯӄᐨ᢯߼䗽Ⲻ⧥ູ䠀᭴ᡌ⭕ӝᙝ䈋僂θ൞䈋僂㔉ᶕ੄θ㤛ੂж䖢 ะഖ⭕⢟൞৕᢯߼൦⛯ԛ⴮ੂ㿺⁗䠃གྷ䈋僂θ൞⭩ᣛᰬ“ᆿޞᙝ䇺ԭ”䜞࠼ਥⴷ⮛Ⱦ 7κ⭩䈭ߒѐ䖢ะഖ⭕⢟ᆿޞ䇷ҜⲺθ⭩䈭㺞᤿㺞 3 ມߏχ⭩ᣛҜѣ“ᆿޞᙝ䇺ԭ” 䇺ԭ㇗⨼ࣔ⌋Ɇ䱺ᖋ IȽIIȽIII 㾷≸䙆ᶗޞɅߒѐ䖢ะഖ⭕⢟ᆿ➝ד”⴮ީ䱺Ԭ䍺ᯏ“ૂ ມߏθ“䈋僂ᯯṾ”у⭞ມߏχ䖢ะഖὃ⢟Ⲻ૷〃ળ੃ᓊㅜਾɅߒѐὃ⢟૷〃ળ੃㿺ᇐɆχ Ʌߒѐ䖢ะഖב䇷ҜⲺθ䴶ᨆޞ俌⅗⭩䈭ߒѐ䖢ะഖ⭕⢟૷〃δᡌ૷㌱ε⭕ӝᓊ⭞ᆿ ⭕⢟૷〃δᡌ૷㌱ε⭕ӝᓊ⭞㔲ਾ䇺ԭᣛ઀Ɇθѱ㾷ऻᤢሯᡇള⭕ӝȽ䍮᱉Ƚ⽴Րㅿ ᯯ䶘ᖧଃȾ 䇷ҜⲺθ൞⭩䈭ᡠ↘ᰛ 30 Ѡᐛ֒ޞ8κ俌⅗⭩䈭ߒѐ䖢ะഖ⭕⢟⭕ӝᙝ䈋僂ૂᆿ ᡶ⭩ᣛ䖢ะഖ⭕⢟⍱ᙝṭ૷ૂᢶᵥ䍺ᯏȾṭ૷㾷≸φㅜਾ㾷≸Ⲻθᴿ⍱ᙝⲺבᰛࢃᨆ ὃ⢟〃ᆆ 2.5 kgθࣞ⢟ 5ml 㹶ṭᡌ 3g 㓺㓽਺пԳθᗤ⭕⢟ 3 ᢯⅗θ਺ 10 ㇗ṭ૷Ⱦᢶ ཌⓆ⡽⇫᮪ਾ䘑ะഖ㓺Ⲻ Southern ᵸӚ㔉᷒Ƚ᤭䍓בᵥ䍺ᯏ㾷≸φ⭩䈭⭕ӝᙝ䈋僂ᨆ ⌊ؗᚥ਀䖢ौ։⢯ᔸᙝ PCR Ỷ⎁ᯯ⇫⡽ޛཌⓆᨈב䇷Ҝᨆޞᮦ਀Ỷ⎁ᯯ⌋ㅿχ⭩䈭ᆿ ㅿȾ 9κ⭩ᣛҜᓊᖉ⭞ѣᮽມߏθжᕅॷԳθжᗁֵ⭞ A4 㓮θ↙ᮽ⭞ቅ഑ᇁ։ᢉদθ ݿⴎȾሯӄуㅜਾ㾷≸Ⲻ⭩ᣛҜθуҾ਍⨼Ⱦב㺂䐓θᒬᨆكḽ߼ᆍ䰪䐓ૂঋ 10κ⭩䈭㘻ਥԛ⌞᱄ଠӑ䍺ᯏ䴶㾷ؓᇼᒬ䈪᱄⨼⭧Ⱦ 11κ਍⨼ᰬ䰪φ∅ᒪ 3 ⅗θᡠ↘ᰛᵕ࠼ࡡѰ 3 ᴾνᰛȽ7 ᴾ 1 ᰛૂ 11 ᴾ 1 ᰛȾ 12κ਍⨼ঋփφߒѐ䜞㺂᭵ᇗ᢯㔲ਾࣔޢᇚ〇ᮏネਙȾ൦൶φ्Ӣᐸᵓ䱩॰ߒኋ 侼঍䠂 11 ਭȾ䛤᭵㕌⸷φ100125Ⱦ᭬ⅴঋփφߒѐ䜞〇ᢶਇኋѣᗹχᔶᡭ㺂φѣؗ䬬 㺂्Ӣᵓ䱩᭥㺂χᑆਭφ7111110189800000419Ⱦ ⴞ ᖅ аǃ⭣䈧㺘.................................................................................................1 Ҽǃ亩ⴞ޵ᇩ᪈㾱......................................................................................9 йǃᐕ֌ⴞⲴ઼᜿ѹ ................................................................................12 ഋǃഭ޵ཆ⴨ޣ⹄ウⲴ㛼Ჟ䍴ᯉ .............................................................13 ӄǃ䖜สഐἽ⢙Ⲵᆹޘᙗ䇴ԧ .................................................................20 1. ਍։ὃ⢟Ⲻᆿޞᙝ䇺ԭ.................................................................................20 ᙝ䇺ԭ.................................................................................35ޞะഖᬃ֒Ⲻᆿ .2 3. 䖢ะഖὃ⢟ᆿޞᙝ䇺ԭ.................................................................................68 4. 䖢ะഖὃ⢟ӝ૷ᆿޞᙝ䇺ԭ.......................................................................128 ޝǃ⴨ޣ䱴Ԧ䍴ᯉ..................................................................................141 1. ⴤⲺะഖⲺṮ㤭䞮ᓅࡍ਀ެ᧞ሲⲺ≞ะ䞮ᓅࡍ.......................................142 2. ⴤⲺะഖф䖳։ᶺᔰⲺഴ䉧.......................................................................143 3. ⴤⲺะഖфὃ⢟ะഖ㓺᮪ਾ਀ެ㺞䗴Ⲻ࠼ᆆỶ⎁ᡌ䢪ᇐ㔉᷒...............146 4. 䖢ะഖᙝ⣬਀ӝ⢟ⲺỶ⎁ૂ䢪ᇐᢶᵥ.......................................................171 5. ਺䈋僂䱬⇫ᇗ᢯ҜⲺགྷদԬ.......................................................................174 6. ਺䈋僂䱬⇫Ⲻᆿޞᙝ䇺ԭ䈋僂ᙱ㔉ᣛ઀...................................................174 7. 䖢ะഖὃ⢟ሯ⭕ᘷ⧥ູᆿޞᙝⲺ㔲ਾ䇺ԭᣛ઀.......................................174 8. 伕૷ᆿޞᙝⲺ㔲ਾ䇺ԭᣛ઀.......................................................................174 9. 䈛㊱䖢ะഖὃ⢟ള޻ཌ⭕ӝᓊ⭞Ᾰ߫.......................................................182 10. ⭦䰪ⴇ᧝ᯯṾ...............................................................................................268 11. ᇗḛᡶ䴶Ⲻެᆹ⴮ީ䍺ᯏ ...........................................................................269 䖢ะഖ⭕⢟൞䗉࠰ളᇬᡌ൦॰ᐨ㔅ݷ䇮֒Ѱ⴮ᓊ⭞䙊ᒬᣋ᭴ᐸ൰Ⲻ .12 䇷᱄ᮽԬ.......................................................................................................271 13. 䗉࠰ളᇬᡌ൦॰㔅䗽〇ᆜ䈋僂䇷᱄ሯӰ㊱Ƚࣞὃ⢟ૂ⭕ᘷ⧥ູᰖᇩⲺ 䍺ᯏ...............................................................................................................290 гǃᵜঅսߌъ䖜สഐ⭏⢙ᆹޘሿ㓴ᇑḕ᜿㿱..................................... 292 ޛǃᵜঅսᇑḕ᜿㿱 .............................................................................. 293 ҍǃᡰ൘ⴱ˄ᐲǃ㠚⋫४˅Ⲵߌъ㹼᭯ѫ㇑䜘䰘Ⲵᇑḕ᜿㿱............... 294 ߌъ䜘ޣҾMON 87427ᆹޘ䇴ԧ⭣䈧Ⲵഎ༽࠭ ˄2017ᒤ6ᴸ12ᰕ˅ I ᆏኡ䜭ޜਨ⭣䈧Җ˄2017˅_MON 87427 Ҿߌъ䜘ᢩ༽ؑ࠭Ⲵ䈤᰾ޣਨޜᆏኡ䜭 䰞仈˖ሩҾ 2016 ᒤ 12 ᴸᢩ༽᮷ԦⲴഎ༽޵ᇩѝˈᵚᨀ׋㖾ഭᐢਁ⧠Ⲵ 17 ⿽㥹 ⭈㟖ᣇᙗᵲ㥹Ⲵ਽〠ǃᣇᙗᵲ㥹Ⲵ䲔㥹ࡲ⭘䟿৺ަ↻⮉䟿ਈॆDŽ 䈤᰾˖ᵲ㥹ሩ䲔㥹ࡲⲴᣇᙗаⴤᱟߌъ⭏ӗѝⲴаབྷ䰞仈DŽሩҾԫօа⿽䲔㥹ࡲ 㘼䀰ˈ৽༽䮯ᵏঅа֯⭘㘼н䖵ԕަԆᵲ㥹᧗ࡦ᡻⇥ᴰ㓸䜭Պሬ㠤ᣇᙗᵲ㥹㗔փ Ⲵӗ⭏DŽᵲ㥹Ⲵ䲔㥹ࡲᣇᙗ䰞仈㠚кц㓚ӄॱᒤԓ䎧ቡᕅ䎧Ҷޣ⌘ˈᒦ䶎ᱟ䲿⵰ 㙀䲔㥹ࡲ䖜สഐ֌⢙㘼ࠪ⧠Ⲵᯠ䰞仈DŽ ⴞࡽ൘㖾ഭᣕ੺ਁ⧠Ⲵ㥹⭈㟖ᣇᙗᵲ㥹ޡ 17 ⿽ˈަ਽〠䈧㿱л㺘DŽ㔏䇑ᮠ ᦞᶕⓀҾഭ䱵䲔㥹ࡲᣇᙗᵲ㥹䈳ḕ㖁ㄉ http://www.weedscience.org/DŽ ᣹бᆖ਽ 㤡᮷਽ ѝ᮷਽ ਁ⧠ൠ֌⢙㊫ර 1 Amaranthus palmeri Palmer 䮯㣂㣻 ⦹㊣ǃỹ㣡ǃབྷ䉶 Amaranth 2 Amaranthus spinosus Spiny Amaranth ࡪ㣻 ỹ㣡 3 Amaranthus Tall Waterhemp ㌉᷌㣻 ⦹㊣ǃỹ㣡ǃབྷ䉶ǃ tuberculatus ˄=㾯䜘㣻˅ 儈㋡ (=A.rudis) 4 Ambrosia Common 䊊㥹 ⦹㊣ǃỹ㣡ǃབྷ䉶 artemisiifolia Ragweed 5 Ambrosia trifida Giant Ragweed й㻲ਦ䊊㥹 ⦹㊣ǃỹ㣡ǃབྷ䉶 6 Conyza bonariensis Hairy Fleabane 俉э㥹 ⦹㊣ǃ㪑㨴ǃ᷌ഝ 7 Conyza canadensis Horseweed ሿ㬜㥹 ⦹㊣ǃỹ㣡ǃབྷ䉶ǃ ሿ哖ǃᵿӱ Echinochloa colona Junglerice ݹཤぇ ⦹㊣ǃỹ㣡ǃ㪑㨴ǃ 8 ᷌ഝ 9 Eleusine indica Goosegrass ⢋ㅻ㥹 ỹ㣡ǃབྷ䉶ǃ䉧⢙ 10 Helianthus annuus Common ੁᰕ㪥 ⦹㊣ Sunflower 11 Kochia scoparia Kochia ൠ㛔 ⦹㊣ǃỹ㣡ǃབྷ䉶ǃ ⭈㭇 12 Lolium perenne ssp. Italian Ryegrass ཊ㣡唁哖㥹 ⦹㊣ǃỹ㣡ǃབྷ䉶ǃ multiflorum ሿ哖ǃ᷌ഝǃ㪑㨴ǃ 㤌㬯 13 Lolium rigidum Rigid Ryegrass ⺜ⴤ唁哖㥹 ᵿӱǃ᷌ഝ 14 Poa annua Annual ᰙ⟏⿮ ᵿӱǃ㥹ක Bluegrass 15 Parthenium Ragweed 䬦㜦㧺 䶎֌⢙⿽Ἵ४˄ྲ II ᆏኡ䜭ޜਨ⭣䈧Җ˄2017˅_MON 87427 hysterophorus Parthenium 䐟䗩ǃ䫱䖘˅ 㖇ᯟ㬏 ሿ哖״ Salsola tragus Russian-thistle 16 17 Sorghum halepense Johnsongrass ⸣㤵 བྷ䉶 к㺘ѝᡰࡇⲴ㥹⭈㟖ᣇᙗᵲ㥹བྷ䜘࠶ᱟ൘䮯ᵏԕḷㆮࡲ䟿௧ᯭ㥹⭈㟖Ⲵߌ ⭠ѝਁ⧠Ⲵˈ㥹⭈㟖Ⲵާփ௧ᯭࡲ䟿ഐߌ⭠ѝ⿽ἽⲴ֌⢙㘼ᔲˈঅ⅑௧ᯭᴰ儈ࡲ 䟿ਟ䗮 1.5 lbs. a.e./A.DŽл㺘ѝᾲ䘠Ҷн਼ᣇ㥹⭈㟖֌⢙Ⲵḷㆮ௧ᯭᴰ儈ࡲ䟿˖ অ⅑௧ᯭᴰ儈ࡲ䟿 ᙫ௧ᯭᴰ儈ࡲ䟿 ᣇ㥹⭈㟖֌⢙ ˄֌⢙㹼䰤/䎺亦௧ᯭ˅ ˄֌⢙㹼䰤/䎺亦௧ᯭ˅ (lb. a.e./A) (lb. a.e./A) ᣇ㥹⭈㟖㤌㬯 1.55 4.61 ᣇ㥹⭈㟖⋩㨌 0.56 0.77 ˄᱕⋩㨌˅ ᣇ㥹⭈㟖⋩㨌 0.77 1.55 ˄ߜ⋩㨌˅ ᣇ㥹⭈㟖⋩㨌 1.55 1.55 ˄MON 88302˅ ᣇ㥹⭈㟖བྷ⭠⦹ 1.125 2.25 ㊣˄NK603˅ 0.77˄᭦㧧ࡽ௧ᯭ˅ 2.32˄ྲ᷌᭦㧧ࡽ࣐௧а⅑˅ ᣇ㥹⭈㟖⭌⦹㊣ 1.55 4.64 ˄NK603˅ ᣇ㥹⭈㟖ỹ㣡 0.77 2.8125 ˄MON 1445˅ 1.125˄ӊ࡙ẁ䛓ᐎ˅ 4.359˄ྲ᷌᭦㧧ࡽ࣐௧а⅑˅ 1.55˄᭦㧧ࡽ௧ᯭ˅ ᣇ㥹⭈㟖ỹ㣡 1.125 ˄MON 88913˅ 1.55˄ӊ࡙ẁ䛓ǃᯠ໘㾯 4.50 ˅କᐎǃ㾯ᗧݻ㩘ᯟᐎ˅ 6.05˄ྲ᷌᭦㧧ࡽ࣐௧а⅑ 1.55˄᭦㧧ࡽ௧ᯭ˅ ᣇ㥹⭈㟖བྷ䉶 1.55 2.25 ˄MON 89788˅ ᣇ㥹⭈㟖⭌㨌 1.125 3.5156 ᵲ㥹Ⲵ䲔㥹ࡲᣇᙗ㻛ᇊѹѪḀ⿽䲔㥹ࡲⴞḷᵲ㥹ѝⲴḀа㗔փ㧧ᗇҶ㙀ਇ 䘉⿽䲔㥹ࡲⲴ㜭࣋ˈ൘ԕᖰⲴ௧ᯭࡲ䟿л䈕䲔㥹ࡲሩ⢩ᇊ㗔փᵲ㥹н޽ᴹ᭸ ˄WSSA, 2011˗HRAC, 2016˅ˈࡽ㺘ѝᡰࡇᵲ㥹ণᱟ൘ḷㆮࡲ䟿௧ᯭਾᆈ⍫Ⲵ ᣇᙗ㗔փDŽ᤹➗ഭ䱵䲔㥹ࡲᣇᙗᵲ㥹䈳ḕ㖁ㄉⲴ༠᰾ˈᨀ׋ࡠ䈕㖁ㄉᒦ༠〠Ѫ“ᣇ ᙗᵲ㥹”Ⲵ㗔փᗵ享㓿䗷䘋а↕Ⲵ⍻䈅ˈ᧘㦀᧗ࡦᶑԦ˄ษޫ㇡ǃ⑙ᇔ˅лⲴἽ Ṛࡲ䟿૽ᓄ䈅傼˄http://www.weedscience.org/Documents/ResistanceCriterion.pdf˅DŽ 䘹㗔փ࠶࡛⭘վҾ઼儈ҾḷㆮⲴࡲ䟿௧ᯭⴞḷ䲔ى൘ࡲ䟿૽ᓄ⹄ウѝˈᣇᙗᵲ㥹 III ᆏኡ䜭ޜਨ⭣䈧Җ˄2017˅_MON 87427 㥹ࡲˈ䇴ՠᵲ㥹ἽṚⲴᆈ⍫㺘⧠DŽࡽ㺘ѝᡰࡇ㖁ㄉѝⲴᵲ㥹ᮠᦞ⭡н਼Ⲵ⹄ウ㘵 ᨀ׋ˈަ⹄ウᰦ֯⭘Ⲵ௧ᯭࡲ䟿ҏнቭ⴨਼DŽ∄ྲˈNandula ㅹӪሩ㌉᷌㣻 ˄Amaranthus tuberculatus˅䘋㹼Ⲵ⹄ウѝˈ㥹⭈㟖௧ᯭࡲ䟿㤳തѪ 0.21-3.36 kg a.e. ha-1˄http://www.bioone.org/doi/full/10.1614/WS-D-12-00155.1˅ˈ㘼 Bell ㅹӪ ਼ṧሩ㌉᷌㣻䘋㹼Ⲵ⹄ウѝˈ㥹⭈㟖Ⲵ௧ᯭࡲ䟿㤳തࡉѪ 0.052 to 6.7 kg a.e. ha-1 http://pubs.acs.org/doi/abs/10.1021/jf103797n˅DŽє亩⹄ウ൷㺘᰾ˈণ֯൘⍻䈅˄ ᡰ⭘ᴰ儈ࡲ䟿лˈ㥹⭈㟖ሩ䘉Ӌᵲ㥹Ⲵ䲔㥹᭸᷌൷∄ሩ➗㓴ᴹᡰ߿ᕡDŽᰐ䇪ᱟ൘ ࡲ䟿૽ᓄ⹄ウ઼ᑨ㿴Ⲵ䲔㥹ࡲ㦟᭸઼ᣇᙗ⹄ウѝˈ䙊ᑨ䜭нՊሩᵲ㥹ѝⲴ䲔㥹ࡲ ↻⮉䟿䘋㹼Ự⍻ˈަѝа䜘࠶৏ഐᱟ᱃ᝏᵲ㥹Պྲ亴ᵏ㻛䲔㥹ࡲᵰ↫ˈ㘼䲔㥹ࡲ 㦟᭸઼Ἵ⢙䮯࣯ࡉᱟєњᴤᑨ㿱Ⲵ⍻䟿ᤷḷDŽഐ↔ˈ㥹⭈㟖൘ᵲ㥹ѝ↻⮉䟿ⲴỰ ⍻ᮠᦞ䶎ᑨᴹ䲀DŽ Ѫ⺞ᇊ⢩ᇊ䲔㥹ࡲ൘Ḁ⿽Ἵ⢙ѝⲴ↻⮉䟿ˈỰ⍻ᯩ⌅ᗵ享㓿䗷傼䇱ˈ⎸䲔 н਼ส䍘ӗ⭏Ⲵ䈟ᐞˈԕ㧧ᗇਟ䶐ⲴỰ⍻㔃᷌DŽ❦㘼ˈสҾᡁԜӾк䘠ഭ䱵䲔 㥹ࡲᣇᙗᵲ㥹䈳ḕ㖁ㄉѝ㧧ᗇⲴؑ᚟ˈ䪸ሩ䘉 17 ⿽㻛ᣕ੺Ѫާᴹ㥹⭈㟖ᣇᙗⲴ ᵲ㥹ˈ勌ᴹ⢩࡛䪸ሩḀ⿽ᵲ㥹㘼䇮䇑Ⲵ䲔㥹ࡲ↻⮉Ự⍻ᯩ⌅DŽᵲ㥹、ᆖ亶ฏⲴ ⹄ウ㘵ਟ㜭Պሩᣇᙗᵲ㥹ѝ䲔㥹ࡲⲴ↻⮉䟿ᝏޤ䏓ᒦ䘋㹼⍻䈅ˈնሩҾ䘋ਓⲴ ˈⲴ䇱ᦞޣᙗ⴨ޘབྷᇇߌӗ૱㘼䀰ˈ䘉㊫ᮠᦞᰐ⌅ᨀ׋ᴤཊо䖜สഐ֌⢙伏⭘ᆹ 䘉ҏᱟ㥹⭈㟖൘ᵲ㥹ѝ↻⮉䟿ᮠᦞ䶎ᑨቁⲴ৏ഐѻаDŽ 㲭❦㥹⭈㟖ᱟ䶎䘹ᤙᙗ䲔㥹ࡲˈնྲࡽᡰ䘠ˈ䮯ᵏ৽༽֯⭘অа䲔㥹ࡲᴰ㓸 ∄˄䜭Պሬ㠤ᣇᙗᵲ㥹Ⲵӗ⭏DŽᖃߌ≁᜿䇶ࡠ㔗㔝֯⭘ḷㆮࡲ䟿௧ᯭḀ⿽䲔㥹ࡲ ྲ㥹⭈㟖˅൘㠚ᇦߌ⭠Ⲵ䲔㥹᭸᷌ᐢнྲԕᖰᰦˈԆԜᗵ享䘹ᤙަԆᯩᔿ৫䲔䘉 Ӌ亭പⲴᵲ㥹ˈवᤜ֯⭘ަԆ㊫රⲴ䲔㥹ࡲᡆᱟ֯⭘⢙⨶䲔㥹ᯩᔿˈ∄ྲ㘫㙅ᡆ 䬴㥹DŽ㥹⭈㟖ሩߌ⭠ѝަԆⲴ᱃ᝏᵲ㥹ӽ❦ᴹ᭸ˈնণ֯ߌ≁൘䘹ᤙަԆ䲔㥹ᯩ ˈᔿⲴ਼ᰦ㔗㔝֯⭘㥹⭈㟖ˈԆԜҏнՊ䙊䗷ᨀ儈௧ᯭࡲ䟿ᶕ䈅മᵰ↫ᣇᙗᵲ㥹 ↔䇱ᣇᙗᵲ㥹аᇊՊ㻛ᵰ↫DŽ؍⌅ҏᰐˈ؍⧟ഐѪᨀ儈ࡲ䟿Ⲵᯩ⌅ᰒн㓿⍾ҏн ተѕṬ㇑⨶ᡰᴹߌ㦟Ⲵ֯⭘ḷㆮˈᤷᇊ⇿а⿽ߌ㦟ӗ૱൘ⴞⲴ⭘䙄؍⧟ཆˈ㖾ഭ ⌅кⲴ֯⭘ᯩ⌅ˈवᤜᴰվ઼ᴰ儈֯⭘ࡲ䟿DŽԫօнㅖਸḷㆮ㿴ᇊⲴ֯⭘൷Ѫ䘍 㹼ѪDŽഐ↔ˈ൘ਸ⌅֯⭘Ⲵࡽᨀлˈਟ亴ᵏ֌⢙᭦㧧㊭㋂ᡆᱟᣇᙗᵲ㥹ѝⲴ䲔㥹 ࡲ↻⮉䟿ᒦнՊഐѪߌ⭠ѝᵲ㥹ᱟ੖ާᴹᣇᙗ㘼ਈॆDŽ MON 87427 ᱟᆏኡ䜭ޜਨ᧘ࠪⲴ㓴㓷⢩ᔲᙗᣇ㥹⭈㟖⦹㊣૱⿽ˈަ䳴ᙗಘ ᇈᒦн㙀ਇ㥹⭈㟖ˈഐ↔௧ᯭਜ਼ᴹ㥹⭈㟖Ⲵ䲔㥹ࡲਾਟ䗮ࡠᘛ䙏ᖫᓅⲴ৫䳴᭸᷌DŽ ަӗ૱ⴞⲴᱟ֌Ѫ⇽ᵜ⭘Ҿࡦ⿽ˈ㘼䶎⭠䰤⿽Ἵˈഐ↔ᒦнՊ໎࣐ߌ⭠ѝ⧠ᴹ㥹 ⭈㟖ᣇᙗᵲ㥹Ⲵ䘹ᤙ঻࣋DŽ਼ṧˈ൘ԕ MON 87427 Ѫ⇽ᵜᗇࡠⲴᵲӔ⿽ਾԓ⭏ ⢙ተᢩ߶Ⲵ㥹⭈㟖ḷㆮ֯⭘ࡲ䟿䘋㹼֌؍⧟䮯Ⲵߌ⭠ѝˈ㖾ഭߌ≁ᗵ享᤹➗㖾ഭ 㹼䰤/䎺亦௧ᯭ䲔㥹ˈഐ↔ˈ⦹㊣㊭㋂৺ަ࣐ᐕ㓴࠶ѝⲴ㥹⭈㟖↻⮉䟿亴ᵏнՊ ഐᆈ൘ᣇᙗᵲ㥹㘼ਁ⭏ਈॆˈߌ⭠ѝԫօਟ㜭ᆈ൘Ⲵ㥹⭈㟖ᣇᙗᵲ㥹ѝⲴ↻⮉䟿 ҏᱟྲ↔DŽ ᆏኡ䜭ޜਨ࡙⭘㓿傼䇱ᴹ᭸Ⲵ⍻䈅ᯩ⌅Ự⍻Ҷਜ਼ᴹ MON 87427 ᙗ⣦Ⲵ⦹㊣ ㊭㋂ѝ㥹⭈㟖Ⲵ↻⮉≤ᒣDŽѪᗇࡠ⦹㊣⋩઼⦹㊣㊹ѝ㥹⭈㟖↻⮉≤ᒣ⴨ሩҾ㊭㋂ Ⲵ⎃㕙㌫ᮠ˄CF˅ˈ⢩࡛ሶᇎ傼ᶑԦѝⲴ௧ᯭࡲ䟿࣐བྷ˄~2 ؽ˅ˈণ֯൘䘉⿽ IV ᆏኡ䜭ޜਨ⭣䈧Җ˄2017˅_MON 87427 ࣐བྷࡲ䟿ᶑԦлˈਜ਼ᴹ MON 87427 ᙗ⣦Ⲵ⦹㊣㊭㋂ѝ㥹⭈㟖Ⲵ↻⮉䟿Ѫ 0.91 ppmˈ䘌վҾ CODEX ൘⦹㊣㊭㋂к䇮ᇊⲴ㥹⭈㟖↻⮉䲀䟿ḷ߶˄5 ppm˅˄Codex Alimentarius, 2016˅ˈ䈧㿱ᢰᵟᣕ੺ 16bDŽഐ↔ˈণ֯ᴹњ࡛ߌ≁䈅മ䙊䗷ᨀ儈 ࡲ䟿ᶕᵰ↫ᣇᙗᵲ㥹ˈ亴ᵏ⦹㊣㊭㋂ᡆᵲ㥹ѝⲴ㥹⭈㟖↻⮉≤ᒣҏнՊ䎵䗷 ٬DŽ CODEX 䇮ᇊⲴ MRL ࡽᡰ䘠ˈሩҾԫօа⿽䲔㥹ࡲ㘼䀰ˈ৽༽䮯ᵏঅа֯⭘㘼н䖵ԕަԆᵲ㥹ྲ ᧗ࡦ᡻⇥ᴰ㓸䜭Պሬ㠤ᣇᙗᵲ㥹㗔փⲴӗ⭏DŽഐ↔ˈᣇཊ⿽䲔㥹ࡲⲴ༽ਸᙗ⣦䖜 สഐ૱⿽ҏᱟа⿽ᴹ᭸䱢→ᣇᙗᵲ㥹ӗ⭏Ⲵ䖳ྭ䘹ᤙˈⴞࡽᐢᴹ䎺ᶕ䎺ཊⲴ䘉㊫ ӗ૱䰞цDŽ㘼 MON 87427 ਚᱟᆏኡ䜭ޜਨ᧘ࠪⲴ㓴㓷⢩ᔲᙗᣇ㥹⭈㟖⦹㊣૱⿽ˈ ަ䳴ᙗಘᇈᒦн㙀ਇ㥹⭈㟖ˈഐ↔௧ᯭਜ਼ᴹ㥹⭈㟖Ⲵ䲔㥹ࡲਾਟ䗮ࡠᘛ䙏ᖫᓅⲴ ৫䳴᭸᷌DŽ㲭❦ MON 87427 ⦹㊣ҏ㜭ཏ㺘䗮 CP4 EPSPS 㳻ⲭˈնަӗ૱ⴞⲴᒦ 䶎ѪҶ൘୶ъॆ⿽Ἵᰦ䙊䗷௧ᯭ㥹⭈㟖᧗ࡦߌ⭠ᵲ㥹ˈ㘼ਚᱟ֌Ѫ⇽ᵜ⭘Ҿࡦ⿽ˈ ഐ↔ᒦнՊ໎࣐ߌ⭠ѝ⧠ᴹ㥹⭈㟖ᣇᙗᵲ㥹Ⲵ䘹ᤙ঻࣋DŽ V ᆏኡ䜭ޜਨ⭣䈧Җ˄2017˅_MON 87427 ߌъ䜘ޣҾMON 87427ᆹޘ䇴ԧ⭣䈧Ⲵഎ༽࠭ ˄2016ᒤ12ᴸ31ᰕ˅ VI ᆏኡ䜭ޜਨ⭣䈧Җ˄2017˅_MON 87427 Ҿߌъ䜘ᢩ༽ؑ࠭Ⲵ䈤᰾ޣਨޜᆏኡ䜭 䰞仈 1˖ ᵚᨀ׋㖾ഭߌ⭠ᵲ㥹ሩ㥹⭈㟖䲔㥹ࡲ㙀ਇᙗ⧠⣦᧿䘠઼࠶᷀Ⲵ䈖㓶 䍴ᯉ˗ 䈤᰾˖㓴㓷⢩ᔲᙗᣇ㥹⭈㟖⦹㊣ MON 87427 ѝᕅޕҶⓀ㠚Ҿ൏༔ߌᵶ㧼 CP4 㧼 ṚⲴ cp4 epsps 㕆⸱ᒿࡇˈަ㺘䗮ӗ⢙ 5-✟䞷ᔿщ䞞䞠㧭㥹䞨-3-⼧䞨ਸ䞦 ˄CP4 EPSPS˅ሩ㥹⭈㟖ⲴӢ઼ᙗ䶎ᑨվˈഐ↔㜭ཏ㙀ਇ㥹⭈㟖㊫䲔㥹ࡲDŽ 㥹⭈㟖㊫䲔㥹ࡲᐢ㓿୶ъॆᓄ⭘Ҷ䎵䗷40ᒤˈ⢩࡛ᱟ㠚кц㓚90ᒤԓԕᶕˈ 䲿⵰ᣇ㥹⭈㟖֌⢙୶ъॆ⿽ἽⲴнᯝᢙབྷˈ㥹⭈㟖ᐢ㓿ᡀѪߌ≁ᴰѫ㾱ǃᴰᴹ᭸ Ⲵߌ⭠ᵲ㥹᧗ࡦ᡻⇥ѻаDŽդ䲿⵰㥹⭈㟖Ⲵ䮯ᵏᓄ⭘ˈṩᦞHeap(2016a,b,c)Ⲵ ᣕ䚃ˈवᤜ㖾ഭ൘޵Ⲵཊњഭᇦҏࠪ⧠Ҷ㥹⭈㟖ᣇᙗᵲ㥹Ⲵᣕ੺ˈᴹ17⿽㥹⭈㟖 ᣇᙗᵲ㥹൘㖾ഭⲴ38њᐎᴹᣕ੺DŽ 㲭❦ԫօа⿽䲔㥹ࡲ䮯ᵏᓄ⭘ᴰ㓸䜭Պሬ㠤ᵲ㥹ᣇᙗӗ⭏ˈնᱟᵲ㥹ᣇᙗӗ ⭏ҏᱟਟԕ䙊䗷аӋ᧚ᯭᔦ㕃ᒦ᧗ࡦⲴˈ⢩࡛ᱟᖃ䘉Ӌ᧚ᯭоާᴹн਼֌⭘ᯩᔿ Ⲵཊ⿽н਼䲔㥹ࡲ༽ਸ֯⭘ᰦˈᴤ㜭བྷབྷ䱽վᣇᙗἽṚᆈ⍫৺䘋а↕㑱㹽Ⲵਟ㜭DŽ ˖᚟ؑޣԕлѪᵲ㥹ᣇᙗⲴаӋ⴨ ᵲ㥹ᱟᖡ૽֌⢙ӗ䟿ᴰ䟽㾱Ⲵഐ㍐ѻаˈਟሬ㠤ѕ䟽Ⲵӗ䟿ᦏཡ઼㓿⍾ᆖᖡ ૽˄Ross and Lembi, 1985; Aref and Pike, 1998; Dalley et al., 2001˅DŽഐ↔ˈᵲ㥹 䱢䲔ᱟߌъ⭏ӗѝ䶎ᑨ䟽㾱Ⲵа䜘࠶DŽⴞࡽᑨ⭘Ⲵ䲔㥹ᯩ⌅ѫ㾱ᴹഋ⿽˖㙅֌᧚ ᯭǃ⢙⨶䲔㥹ǃॆᆖ䲔㥹઼⭏⢙䲔㥹˄Knezevic and Cassman, 2003, HRAC, 2016˅˖ ᓧ≤ᒣ઼ᣁࡦᵲ㥹⭏䮯㘼䟷ਆⲴњ㌫ࡇ㙅ڕ⢙㙅֌᧚ᯭ䲔㥹ᱟѪᨀ儈֌ - ֌ᯩ⌅ᙫ઼ˈवᤜ䘲ᖃ♼Ⓓǃᯭ㛕ǃ䘹ᤙ䘲ᓄᓖྭⲴ૱⿽ǃ䘲ᇌⲴ᫝⿽䰤 ⢙ᣔㅹüüަⴞⲴ䜭ᱟѪҶᑞࣙ֌؍⢙䐍઼᫝⿽ᇶᓖǃ䟷⭘䖞֌઼㾶൏֌ 䮯࣯䎵䗷ᵲ㥹ᡆᣁࡦᵲ㥹⭏䮯DŽ
Recommended publications
  • Zea Mays Subsp
    Unclassified ENV/JM/MONO(2003)11 Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 23-Jul-2003 ___________________________________________________________________________________________ English - Or. English ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND Unclassified ENV/JM/MONO(2003)11 THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY Cancels & replaces the same document of 02 July 2003 Series on Harmonisation of Regulatory Oversight in Biotechnology, No. 27 CONSENSUS DOCUMENT ON THE BIOLOGY OF ZEA MAYS SUBSP. MAYS (MAIZE) English - Or. English JT00147699 Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format ENV/JM/MONO(2003)11 Also published in the Series on Harmonisation of Regulatory Oversight in Biotechnology: No. 4, Industrial Products of Modern Biotechnology Intended for Release to the Environment: The Proceedings of the Fribourg Workshop (1996) No. 5, Consensus Document on General Information concerning the Biosafety of Crop Plants Made Virus Resistant through Coat Protein Gene-Mediated Protection (1996) No. 6, Consensus Document on Information Used in the Assessment of Environmental Applications Involving Pseudomonas (1997) No. 7, Consensus Document on the Biology of Brassica napus L. (Oilseed Rape) (1997) No. 8, Consensus Document on the Biology of Solanum tuberosum subsp. tuberosum (Potato) (1997) No. 9, Consensus Document on the Biology of Triticum aestivum (Bread Wheat) (1999) No. 10, Consensus Document on General Information Concerning the Genes and Their Enzymes that Confer Tolerance to Glyphosate Herbicide (1999) No. 11, Consensus Document on General Information Concerning the Genes and Their Enzymes that Confer Tolerance to Phosphinothricin Herbicide (1999) No.
    [Show full text]
  • Estudios Citogenéticos Evolutivos Del Género Zea
    UNIVERSIDAD POLITÉCNICA DE VALENCIA DEPARTAMENTO DE BIOLOGÍA VEGETAL ESTUDIOS CITOGENÉTICOS EVOLUTIVOS DEL GÉNERO ZEA Tesis doctoral presentada por: Ing. Agr. María del Carmen Molina Dirigida por: Dr. Vicente Moreno Ferrero 2011 Don Vicente Moreno Ferrero Catedrático de Genética del Departamento de Biotecnología de la Universidad Politécnica de Valencia adscrito al Instituto de Biología Molecular y Celular de Plantas (centro mixto UPV - CSIC). Certifica: Que la memoria titulada “Estudios ctogenéticos evolutivos del Género Zea” presentada por Dna. María del Carmen Molina Belver para optar al grado de Doctor Ingeniero Agrónomo ha sido realizada bajo su dirección. Y para que asi conste a todos los efectos y a petición de la persona interesada se expide el presente certificado en Valencia. Marzo del año 2010. Vicente Moreno Ferrero 2 AGRADECIMIENTOS En primer lugar a la Universidad Politécnica de Valencia y a la Facultad de Ciencias Agrarias de la Universidad Nacional de Lomas de Zamora que a través de un Convenio de Cooperación Internacional han hecho posible que se plasmase la posibilidad de realizar la Especialidad y posteriormente el Doctorado. Al personal del Instituto Fitotécnico de Santa Catalina, Facultad de Ciencias Agrarias y Forestales de la Universidad Nacional de la Plata donde se ha llevado a cabo la investigación. Al Dr. Vicente Moreno Ferrero por su permanente apoyo y buena predisposición para comprender y solucionar los problemas que se fueron planteando, como asi mismo salvar los escollos que se presentaron al dirigir una tesis a distancia donde la comunicación con el doctorando es menos fluida. Y muy especialmente a mi familia por su permanente aliento, compresión y ayuda para que pudiese concretar mis deseos.
    [Show full text]
  • 47 Section 3 Maize (Zea Mays Subsp. Mays)
    SECTION 3 MAIZE (ZEA MAYS SUBSP. MAYS) 1. General Information Maize, or corn, is a member of the Maydeae tribe of the grass family, Poaceae. It is a robust monoecious annual plant, which requires the help of man to disperse its seeds for propagation and survival. Corn is the most efficient plant for capturing the energy of the sun and converting it into food, it has a great plasticity adapting to extreme and different conditions of humidity, sunlight, altitude, and temperature. It can only be crossed experimentally with the genus Tripsacum, however member species of its own genus (teosinte) easily hybridise with it under natural conditions. This document describes the particular condition of maize and its wild relatives, and the interactions between open-pollinated varieties and teosinte. It refers to the importance of preservation of native germplasm and it focuses on the singular conditions in its centre of origin and diversity. Several biological and socio-economic factors are considered important in the cultivation of maize and its diversity; therefore these are described as well. A. Use as a crop plant In industrialised countries maize is used for two purposes: 1) to feed animals, directly in the form of grain and forage or sold to the feed industry; and 2) as raw material for extractive industries. "In most industrialised countries, maize has little significance as human food" (Morris, 1998; Galinat, 1988; Shaw, 1988). In the European Union (EU) maize is used as feed as well as raw material for industrial products (Tsaftaris, 1995). Thus, maize breeders in the United States and the EU focus on agronomic traits for its use in the animal feed industry, and on a number of industrial traits such as: high fructose corn syrup, fuel alcohol, starch, glucose, and dextrose (Tsaftaris, 1995).
    [Show full text]
  • Mutation Rate Analysis of Complete Chloroplast Genomes
    ABSTRACT PHYLOGENOMIC STUDY OF SELECTED SPECIES WITHIN THE GENUS Zea: MUTATION RATE ANALYSIS OF COMPLETE CHLOROPLAST GENOMES Lauren Orton, M.S. Department of Biological Sciences Northern Illinois University, 2015 Melvin R. Duvall, Director This project examines the relationships within the genus Zea using complete chloroplast genomes (plastomes). Zea mays is one of the most widely cultivated crop species in the world. Billions of dollars have been spent in the commercial agriculture sector to study and improve Z. mays. While Z. mays has been well studied, the congeneric species have yet to be as thoroughly examined. For this study complete plastomes were sequenced in four species (Zea diploperennis, Zea perennis, Zea luxurians, and Zea mays subsp. huehuetenangensis) by Sanger or next- generation methods. An analysis of the microstructural mutations, such as inversions, insertion or deletion mutations (indels) and determination of their frequencies were performed for the complete plastomes. It was determined that 197 indels and 10 inversions occurred across the examined plastomes. The most common mutational mechanism was discovered to be the tandem repeat from slipped strand mispairing events. Mutation rates were calculated to determine a precise rate over time. The mutations rates for the genus fell within the range of 0.00126 to 0.02830 microstructural mutation events per year. These rates are highly variable, corresponding to the close and complex relationships within the genus. Phylogenomic analyses were also conducted to examine the differences between species within Zea. In many cases, much of the previous work examining Zea mitochondrial and nuclear data was confirmed with identical tree topologies. Divergence dates for specific nodes relative to Zea were calculated to fall between 8,700 calendar years before present for the subspecies included in this study and 1,024 calendar years before present for the perennial species included in this study.
    [Show full text]
  • Analyses Reveal Zea Nicaraguensis As a Section Luxuriantes Species Close to Zea Luxurians
    RAPD and Internal Transcribed Spacer Sequence Analyses Reveal Zea nicaraguensis as a Section Luxuriantes Species Close to Zea luxurians Pei Wang, Yanli Lu, Mingmin Zheng, Tingzhao Rong, Qilin Tang* Maize Research Institute, Sichuan Agricultural University, Ya’an, Sichuan, China Abstract Genetic relationship of a newly discovered teosinte from Nicaragua, Zea nicaraguensis with waterlogging tolerance, was determined based on randomly amplified polymorphic DNA (RAPD) markers and the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA using 14 accessions from Zea species. RAPD analysis showed that a total of 5,303 fragments were produced by 136 random decamer primers, of which 84.86% bands were polymorphic. RAPD-based UPGMA analysis demonstrated that the genus Zea can be divided into section Luxuriantes including Zea diploperennis, Zea luxurians, Zea perennis and Zea nicaraguensis, and section Zea including Zea mays ssp. mexicana, Zea mays ssp. parviglumis, Zea mays ssp. huehuetenangensis and Zea mays ssp. mays. ITS sequence analysis showed the lengths of the entire ITS region of the 14 taxa in Zea varied from 597 to 605 bp. The average GC content was 67.8%. In addition to the insertion/deletions, 78 variable sites were recorded in the total ITS region with 47 in ITS1, 5 in 5.8S, and 26 in ITS2. Sequences of these taxa were analyzed with neighbor-joining (NJ) and maximum parsimony (MP) methods to construct the phylogenetic trees, selecting Tripsacum dactyloides L. as the outgroup. The phylogenetic relationships of Zea species inferred from the ITS sequences are highly concordant with the RAPD evidence that resolved two major subgenus clades.
    [Show full text]
  • Identification of Teosinte, Maize, and Tripsacum in Mesoamerica by Using Pollen, Starch Grains, and Phytoliths
    Identification of teosinte, maize, and Tripsacum in Mesoamerica by using pollen, starch grains, and phytoliths Irene Holst*, J. Enrique Moreno*, and Dolores R. Piperno*†§ *Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Republic of Panama; and §Archaeobiology Program, Department of Anthropology, National Museum of Natural History, Washington, DC 20560 Contributed by Dolores R. Piperno, September 18, 2007 (sent for review August 1, 2007) We examined pollen grains and starch granules from a large number They occur in large numbers in storage organs such as seeds, roots, of modern populations of teosinte (wild Zea spp.), maize (Zea mays and rhizomes, and these types of grains, called reserve starches, L.), and closely related grasses in the genus Tripsacum to assess their occur in a diverse array of forms that can be diagnostic to the genus strengths and weaknesses in studying the origins and early dispersals and even species (18–27). Archaeological applications in southern of maize in its Mesoamerican cradle of origin. We report new diag- Central America and South America have shown that the grains nostic criteria and question the accuracy of others used previously by survive for long periods of time on stone implements used to investigators to identify ancient maize where its wild ancestor, process plants, allowing various aspects of prehistoric agriculture, teosinte, is native. Pollen grains from teosinte overlap in size with including maize, to be documented (15, 23–31). The utility of starch those of maize to a much greater degree than previously reported, analysis for identifying maize in its geographic area of origin has not making the differentiation of wild and domesticated maize in pa- yet been investigated.
    [Show full text]
  • Chapter 1 Wild Plant Genetic Resources in North America
    Published by: Springer Nature Switzerland AG 2018 Citation: Greene SL, Khoury CK, and Williams KA (2018). “Wild plant genetic resources in North America: an overview”. In: Greene SL, Williams KA, Khoury CK, Kantar MB, and Marek LF, eds., North American Crop Wild Relatives, Volume 1: Conservation Strategies. Springer, doi: 10.1007/978-3-319-95101-0_1. https://doi.org/10.1007/978-3-319-95101-0_1 https://link.springer.com/chapter/10.1007%2F978-3-319-95101-0_1 Chapter 1 Wild plant genetic resources in North America: an overview Stephanie L. Greene*, Colin K. Khoury, and Karen A. Williams Stephanie L. Greene*, USDA, Agricultural Research Service, Center for Agricultural Resources Research, National Laboratory for Genetic Resources Preservation, Fort Collins, CO, USA, [email protected] *corresponding author Colin K. Khoury, USDA, Agricultural Research Service, Center for Agricultural Resources Research, National Laboratory for Genetic Resources Preservation, Fort Collins, CO, USA and International Center for Tropical Agriculture (CIAT), Cali, Colombia [email protected], [email protected] Karen A. Williams, USDA, Agricultural Research Service, National Germplasm Resources Laboratory, Beltsville Agricultural Research Center ,Beltsville, MD, USA, [email protected] Abstract North America, including Canada, Mexico and the United States, is rich in plant species used by humans in both ancient and modern times. A select number of these have become globally important domesticated crops, including maize, beans, cotton, and sunflower. Many other native and also naturalized species have potential for use, either directly or as genetic resources for breeding agricultural crops. However, despite increasing recognition of their potential value, deficiencies in information, conservation, and access to the diversity in these plants hinder their further use.
    [Show full text]
  • Are Teosinte and Feral Maize Present in the Netherlands?
    Are Teosinte and Feral Maize present in the Netherlands? Ing. H.F. Huiting, dr.ir. M.M. Riemens & dr.ir. R.Y van der Weide WPR-3750364300 | CGM 2018-06 Are Teosinte and Feral Maize present in the Netherlands? Ing. H.F. Huiting, dr.ir. M.M. Riemens & dr.ir. R.Y van der Weide This study was carried out by the Wageningen Research Foundation (WR) business unit AGV and was commissioned and financed by COGEM. WR is part of Wageningen University & Research, the collaboration of Wageningen University and Wageningen Research Foundation. Lelystad, November 2018 Cogem report CGM 2018-06 Report WPR-3750364300 Huiting, H.F., M.M. Riemens, R.Y van der Weide, 2018. Are Teosinte and Feral Maize present in the Netherlands?. Wageningen Research, Report WPR-3750364300. Keywords: Zea, teosinte, maize, feral, volunteer, self-sustaining, the Netherlands ©2018 Wageningen, Stichting Wageningen Research, Wageningen Plant Research, Business Unit Field Crops, P.O. Box 430, 8200 AK Lelystad, The Netherlands; T +31 (0)320 29 11 11; www.wur.eu/plant- research Chamber of Commerce no. 09098104 at Arnhem VAT NL no. 8065.11.618.B01 Stichting Wageningen Research. All rights reserved. No part of this publication may be reproduced, stored in an automated database, or transmitted, in any form or by any means, whether electronically, mechanically, through photocopying, recording or otherwise, without the prior written consent of the Stichting Wageningen Research. Stichting Wageningen Research is not liable for any adverse consequences resulting from the use of data from this publication. Report WPR-3750364300 Photo cover: Wageningen University & Research, Field Crops This report was commissioned by COGEM.
    [Show full text]
  • Cryptic Homoeology Analysis in Species and Hybrids of Genus Zea
    DOI: 10.1007/s10535-012-0299-4 BIOLOGIA PLANTARUM 57 (3): 449-456, 2013 Cryptic homoeology analysis in species and hybrids of genus Zea M. del C. MOLINA1,2*, C.G. LÓPEZ3, S. STALTARI1, S.E. CHORZEMPA3, and V. MORENO FERRERO4 Instituto Fitotécnico de Santa Catalina, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de la Plata, Garibaldi 3400, Llavallol, Buenos Aires, Argentina1 Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, Ciudad Autónoma de Buenos Aires, Argentina2 Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Ruta 4 Km. 2, Buenos Aires, Argentina3 Departamento de Biotecnología, Universidad Politécnica de Valencia and Instituto de Biología Molecular y Celular de Plantas, Valencia, Spain4 Abstract Cryptic intergenomic pairing of genus Zea was induced by the use of a diluted colchicine solution in order to elucidate the phylogenetic relations and differentiation of the homoeologous genomes. Results indicate that in species and hybrids with 2n = 20, there was chromosome pairing between the homoeologous A and B genomes with a maximum of 5IV, with the exception of Zea diploperennis and their interspecific hybrids where cryptic homoeologous chromosome pairing was not induced. In almost all 2n = 30 hybrids, observed cryptic pairing increased to a maximum of 10III although Z. mays × Z. mays with 2n = 30 did not show significant differences between treated and untreated materials. Pairing was also observed in species and hybrids with 2n = 40, in which a maximum of 10IV was observed, with the exception of Z. mays with 2n = 40 where treated and untreated cells did not differ significantly. Additional key words: colchicine, genome, maize, subgenome, teosinte.
    [Show full text]
  • Andrew Doust Xianmin Diao Editors Genetics and Genomics of Setaria Plant Genetics and Genomics: Crops and Models
    Plant Genetics and Genomics: Crops and Models 19 Andrew Doust Xianmin Diao Editors Genetics and Genomics of Setaria Plant Genetics and Genomics: Crops and Models Volume 19 Series Editor Richard A. Jorgensen More information about this series at http://www.springer.com/series/7397 Andrew Doust • Xianmin Diao Editors Genetics and Genomics of Setaria Editors Andrew Doust Xianmin Diao Department of Plant Biology, Ecology, Institute of Crop Sciences and Evolution Chinese Academy of Agricultural Sciences Oklahoma State University Haidian District, Beijing, China Stillwater, OK, USA ISSN 2363-9601 ISSN 2363-961X (electronic) Plant Genetics and Genomics: Crops and Models ISBN 978-3-319-45103-9 ISBN 978-3-319-45105-3 (eBook) DOI 10.1007/978-3-319-45105-3 Library of Congress Control Number: 2016950031 © Springer International Publishing Switzerland 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • With High Species Richness of Potato Wild Relatives Recommendations
    FIGURE 19 Areas identified by Hijmans et al. (2002) with high species richness of potato wild relatives Recommendations t The establishment of potato parks in centres of potato diversity, such as that in the Cusco region of Peru by the indigenous Quechua people working in collaboration with CIP scientists (www.cipotato.org), has focused attention on the in situ protection of landrace diversity, but the continued practice of traditional agriculture will also favour maintenance of wild potato species. Similarly highly diverse cultivars of S. tuberosum subsp. andigena and related cultivated species are found in the Tiahuanaco region of south of Peru and north of Bolivia and this region may be suitable for establishment of a further potato park. t It seems likely that although many Solanum species have restricted distributions they will be found in existing national parks and other protected areas. In situ conservation of potatoes is of considerable importance for the wild species, but since there are a large number of species and they commonly have a restricted distribution, it is clearly impossible to establish reserves for each of them. It would, however, be valuable to establish reserves in the mountains and plains surrounding Mexico City where late blight (Phytophthora infestans) resistant species, such as S. demissum, S. verrucosum and S. stoloniferum, occur. Frost-resistant species, such as S. acaule should also be conserved in southern Peru and northern Bolivia. A thorough review of all current and potential wild species gene donors should be undertaken in order to afford these species high priority status for in situ conservation.
    [Show full text]
  • Nuclear DNA Content in the Genera Zea and Sorghum. Intergeneric, Interspecific and Intraspecific Variation
    Heredity 55 (1985) 307—313 The Genetical Society of Great Britain Received 6 February 1985 Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation D. A. Laurie and Plant Breeding Institute, Mans Lane, Trumpington, M. D. Bennett Cambridge CB2 2LQ, England Microdensitometry measurements showed that 4C DNA content varied significantly both within the genus Zea as a whole and within maize (Zea mays ssp. mays) itself. The DNA contents of diploid teosintes from Mexico and northern Guatemala (Zea mays ssp. mexicana, Zea mays ssp. parviglumis and Zea diploperennis) were within the range recorded for maize (9•84to1349 pg), but the DNA content of a diploid teosinte from southern Guatemala (Zea luxurians) was about 50 per cent higher (18.29 to 18•47 pg). The DNA content of maize was three to four times greater than that of diploid Sorghum bicolor (3.12 to 347 pg). In contrast to the situation in maize no significant differences in DNA content were found between accessions of diploid Sorghum bicolor. INTRODUCTION Apart from Barlow and Rathfelder's (1984) estimate of 71 pg for the 2C DNA content of an Aspart of a cooperative project with CIMMYT* unspecified accession of Euchlaena mexicana to investigate the feasibility of obtaining hybrids (annual teosinte), no published data are available between maize (Zea mays (L.) ssp. mays) and grain on the DNA content of other Zea species or sub- sorghum (Sorghum bicolor (L.) Moench), the range species. It is therefore of interest to determine the of 4C DNA contents within the genera Zea and extent of variation within and between these taxa, Sorghum was investigated.
    [Show full text]