Best Practices of Concrete Pavement Transition Design and Construction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Module 6. Hov Treatments
Manual TABLE OF CONTENTS Module 6. TABLE OF CONTENTS MODULE 6. HOV TREATMENTS TABLE OF CONTENTS 6.1 INTRODUCTION ............................................ 6-5 TREATMENTS ..................................................... 6-6 MODULE OBJECTIVES ............................................. 6-6 MODULE SCOPE ................................................... 6-7 6.2 DESIGN PROCESS .......................................... 6-7 IDENTIFY PROBLEMS/NEEDS ....................................... 6-7 IDENTIFICATION OF PARTNERS .................................... 6-8 CONSENSUS BUILDING ........................................... 6-10 ESTABLISH GOALS AND OBJECTIVES ............................... 6-10 ESTABLISH PERFORMANCE CRITERIA / MOES ....................... 6-10 DEFINE FUNCTIONAL REQUIREMENTS ............................. 6-11 IDENTIFY AND SCREEN TECHNOLOGY ............................. 6-11 System Planning ................................................. 6-13 IMPLEMENTATION ............................................... 6-15 EVALUATION .................................................... 6-16 6.3 TECHNIQUES AND TECHNOLOGIES .................. 6-18 HOV FACILITIES ................................................. 6-18 Operational Considerations ......................................... 6-18 HOV Roadway Operations ...................................... 6-20 Operating Efficiency .......................................... 6-20 Considerations for 2+ Versus 3+ Occupancy Requirement ............. 6-20 Hours of Operations .......................................... -
Pedestrian and Light Traffic Applications Introduction Brick Pavers Are Arranged Cost Savings That Upon the Bedding Sand in Supplement the Savings the Desired Pattern
Flexible Brick Industry Brick Paving Association Pedestrian and Light Traffic Applications Traffic Light and Pedestrian Introduction brick pavers are arranged cost savings that upon the bedding sand in supplement the savings the desired pattern. Sand afforded by the brick is then spread into the itself. In addition, spaces between the pavers replacement of pavers as jointing material. after repair of utilities beneath a flexible brick As the whole paving pavement is easily system compacts with time achieved. and use, the bricks interact with the jointing sand and base materials to achieve the unique quality of “interlock.” Interlock holds the pavers in place Brick paving has been used for thousands and distributes the load of years. The Romans laid brick in roads through the layers down crisscrossing their vast empire, some of to the subgrade, enabling which still exist. Americans have employed the surface to contribute the material since the earliest Colonial days, to the strength of the and brick pathways and sidewalks thread whole system. When through the landmark sites and properly installed, brick As an architect’s medium, historic areas across the country. interlocking pavements are brick is equally flexible. highly stable and durable. Its basic aesthetic appeal is legendary as a material Today, as many property the flexible nature of its This basic advantage begets that exudes warmth and owners and architects foundation and the action others. Because flexible elegance through the attest, brick paving is of the pavers themselves. brick paving provides permanent color of fired timeless, especially for In such flexible pavements, interlock, no rigid concrete clay or shale. -
Pavements and Surface Materials
N O N P O I N T E D U C A T I O N F O R M U N I C I P A L O F F I C I A L S TECHNICAL PAPER NUMBER 8 Pavements and Surface Materials By Jim Gibbons, UConn Extension Land Use Educator, 1999 Introduction Traffic Class Type of Road Pavements are composite materials that bear the weight of 1 Parking Lots, Driveways, Rural pedestrian and vehicular loads. Pavement thickness, width and Roads type should vary based on the intended function of the paved area. 2 Residential Streets 3 Collector Roads Pavement Thickness 4 Arterial roads 5 Freeways, Expressways, Interstates Pavement thickness is determined by four factors: environment, traffic, base characteristics and the pavement material used. Based on the above classes, pavement thickness ranges from 3" for a Class 1 parking lot, to 10" or more for Class 5 freeways. Environmental factors such as moisture and temperature significantly affect pavement. For example, as soil moisture Sub grade strength has the greatest effect in determining increases the load bearing capacity of the soil decreases and the pavement thickness. As a general rule, weaker sub grades require soil can heave and swell. Temperature also effects the load thicker asphalt layers to adequately bear different loads associated bearing capacity of pavements. When the moisture in pavement with different uses. The bearing capacity and permeability of the freezes and thaws, it creates stress leading to pavement heaving. sub grade influences total pavement thickness. There are actually The detrimental effects of moisture can be reduced or eliminated two or three separate layers or courses below the paved wearing by: keeping it from entering the pavement base, removing it before surface including: the sub grade, sub base and base. -
Replacement of Davis Avenue Bridge Over Indian Harbor Bridge No
REPLACEMENT OF DAVIS AVENUE BRIDGE OVER INDIAN HARBOR BRIDGE NO. 05012 November 19, 2019 1 MEETING AGENDA • Project Team • Project Overview • Existing Conditions • Alternatives Considered • Traffic Impacts • Proposed Alternative • Railing Options • Construction Cost / Schedule • Contact Information • Questions 2 PROJECT TEAM Town of Greenwich Owner Alfred Benesch & Company Prime Consultant, Structural, Highway, Hydraulic, Drainage Design GZA GeoEnvironmantal Inc. Environmental Permitting Didona Associates Landscape Architects, LLC Landscaping Services, Planning 3 LOCATION MAP EXIT 4 EXIT 3 BRIDGE LOCATION 4 AERIAL VIEW BRIDGE LOCATION 5 PROJECT TIMELINE CURRENT PROJECT STATUS INVESTIGATION ALTERNATIVES PRELIMINARY FINAL CONSTRUCTION PHASE ASSESSMENT DESIGN DESIGN Spring to Fall 2020 February 2018 to June 2018 to January 2019 to May 2019 to May 2018 January 2019 April 2019 December 2019 6 PROJECT GOALS • Correct Existing Deficiencies of the Bridge (Structural and Functional) • Improve Multimodal Traffic Flow at Bridge Crossing (Vehicles / Bicycles / Pedestrians) • Maintain / Enhance Safety at Bridge Crossing • Meet Local, State, and Federal Requirements 7 EXISTING BRIDGE – BRIDGE PLAN 8 EXISTING BRIDGE – CURRENT PLAN VIEW 9 EXISTING BRIDGE Existing Bridge Data • Construction Year: 1934 • Structure Type: Concrete Slab Supported on Stone Masonry Abutments and Pier • Structure Length: 37’‐3” (17’‐1” Span Lengths) • Bridge Width: 43’+ (Outside to Outside) • Lane Configuration: Two Lanes, Two 4’ Sidewalks • Existing Utilities: Water, Gas (Supported -
PASER Manual Asphalt Roads
Pavement Surface Evaluation and Rating PASER ManualAsphalt Roads RATING 10 RATING 7 RATING 4 RATING PASERAsphalt Roads 1 Contents Transportation Pavement Surface Evaluation and Rating (PASER) Manuals Asphalt PASER Manual, 2002, 28 pp. Introduction 2 Information Center Brick and Block PASER Manual, 2001, 8 pp. Asphalt pavement distress 3 Concrete PASER Manual, 2002, 28 pp. Publications Evaluation 4 Gravel PASER Manual, 2002, 20 pp. Surface defects 4 Sealcoat PASER Manual, 2000, 16 pp. Surface deformation 5 Unimproved Roads PASER Manual, 2001, 12 pp. Cracking 7 Drainage Manual Patches and potholes 12 Local Road Assessment and Improvement, 2000, 16 pp. Rating pavement surface condition 14 SAFER Manual Rating system 15 Safety Evaluation for Roadways, 1996, 40 pp. Rating 10 & 9 – Excellent 16 Flagger’s Handbook (pocket-sized guide), 1998, 22 pp. Rating 8 – Very Good 17 Work Zone Safety, Guidelines for Construction, Maintenance, Rating 7 – Good 18 and Utility Operations, (pocket-sized guide), 1999, 55 pp. Rating 6 – Good 19 Wisconsin Transportation Bulletins Rating 5 – Fair 20 #1 Understanding and Using Asphalt Rating 4 – Fair 21 #2 How Vehicle Loads Affect Pavement Performance Rating 3 – Poor 22 #3 LCC—Life Cycle Cost Analysis Rating 2 – Very Poor 23 #4 Road Drainage Rating 1 – Failed 25 #5 Gravel Roads Practical advice on rating roads 26 #6 Using Salt and Sand for Winter Road Maintenance #7 Signing for Local Roads #8 Using Weight Limits to Protect Local Roads #9 Pavement Markings #10 Seal Coating and Other Asphalt Surface Treatments #11 Compaction Improves Pavement Performance #12 Roadway Safety and Guardrail #13 Dust Control on Unpaved Roads #14 Mailbox Safety #15 Culverts-Proper Use and Installation This manual is intended to assist local officials in understanding and #16 Geotextiles in Road Construction/Maintenance and Erosion Control rating the surface condition of asphalt pavement. -
CONCRETE Pavingtechnology Concrete Intersections a Guide for Design and Construction
CONCRETE PAVINGTechnology Concrete Intersections A Guide for Design and Construction Introduction Traffic causes damage to pavement of at-grade street and road intersections perhaps more than any other location. Heavy vehicle stopping and turning can stress the pavement surface severely along the approaches to an intersection. The pavement within the junction (physical area) of an intersection also may receive nearly twice the traffic as the pavement on the approaching roadways. At busy intersections, the added load and stress from heavy vehicles often cause asphalt pavements to deteriorate prematurely. Asphalt surfaces tend to rut and shove under the strain of busses and trucks stopping and turning. These deformed surfaces become a safety concern for drivers and a costly maintenance problem for the roadway agency. Concrete pavements better withstand the loading and turning movements of heavy vehicles. As a result, city, county and state roadway agencies have begun rebuilding deteriorated asphalt intersections with con- crete pavement. These agencies are extending road and street system maintenance funds by eliminating the expense of intersections that require frequent maintenance. At-grade intersections along business, industrial and arterial corridor routes are some of the busiest and most vital pavements in an urban road network. Closing these roads and intersections for pavement repair creates costly traffic delays and disruption to local businesses. Concrete pavements provide a long service life for these major corridors and intersections. Concrete pavements also offer other advantages for As a rule, it is important to evaluate the existing pave- intersections: ment condition before choosing limits for the new concrete pavement. On busy routes, it may be desir- 1. -
Concrete Sidewalk Specifications
CONCRETE SIDEWALK SPECIFICATIONS GENERAL Concrete sidewalks shall be constructed in accordance with these specifications and the requirements of the State of Wisconsin, Department of Transportation, Standard Specifications for Road and Bridge Construction, Current Edition (hereafter “Standard Specifications”). Concrete sidewalks shall conform to the lines and grades established by the City Engineer. All removal and replacements will be made as ordered by the City Engineer. The Contractor shall construct one-course sidewalks of a minimum thickness of four (4) inches in accordance with the plans and specifications. Sidewalk through a driveway section shall be a minimum thickness of six (6) inches. Concrete driveway approaches shall be a minimum thickness of six (6) inches. SUBGRADE A new sub-base may be required by the Engineer if, in his opinion, the soil in the subgrade is soft or spongy in places and will swell or shrink with changes in its moisture content. If a new sub- base is required, it shall consist of granular material and shall be spread to a depth of at least three (3) inches and thoroughly compacted. While compacting the sub-base the material shall be thoroughly wet and shall be wet when the concrete is deposited but shall not show any pools of water. If the Contractor undercuts the subgrade two (2) inches or more, he shall, at his expense, bring the subgrade to grade by using gravel fill and it shall be thoroughly compacted. Where sidewalk is placed over excavations such as tree roots or sewer laterals, four (4) one-half (1/2) inch reinforcing bars shall be placed to prevent settling or cracking of the sidewalk. -
Concrete Pavementspavements N a a T T I I O O N N a a L L
N N a a t t i i o o n n a a Technical Services l l , R R o o u u n n d d a a b b o o Vail, Colorado u u t t May 22-25, 2005 Steve Waalkes, P.E. C C o o n n f f e e r r e e Managing Director n n c American Concrete Pavement Association c e e 2 2 0 0 0 0 5 5 TRB National Roundabouts Conference D D Concrete Roundabouts R R Concrete Roundabouts A A F F T T N N a a Flexible Uses liquid asphalt as binder Pro: usually lower cost Con: requires frequent maintenance & rehabilitation t t i i Asphalt o o n n a a l l R R o o u u n n d d a a b b o o u u t t C C Terminology Terminology o o n n f f e e r r e e n n c c e e 2 2 0 0 0 0 5 5 D D R R A A Rigid Uses cement as binder Pro: longer lasting Con: higher cost Concrete F F T T N N a a t t i i o o n n a a l l R R o o u u n n d d a a b b o o u u t t C C o o s n n c f f e i e r r t e e n n e y c c t e h e t 2 2 e 0 0 f s 0 0 aterials onstructability a e conomics 5 erformance (future maintenance) 5 Why Concrete Roundabouts? Why Concrete Roundabouts? D D E C P M R R • • • • •S •A A A F F T T Realize there is a choice N N a a t t i i o o n n a a l l R R o o u u n n d d a a b b o o u u t t C C o o n n f f e e r r e e n n c c e e 2 2 0 0 0 0 What performance characteristics of Where do we typically use concrete pavement? (situations, traffic conditions, applications, etc.) concrete pavement make it the best choice for roundabouts? 5 5 Why Concrete Roundabouts? Why Concrete Roundabouts? D D R R 1. -
Asphalt Concrete Pavement Design a Subsystem to Consider the Fatigue Mode of Distress
Asphalt Concrete Pavement Design A Subsystem to Consider the Fatigue Mode of Distress D. A. KASIANCHUK, Associate Professor of Engineering, Carleton University, Ottawa; C. L. MONISMITH, Professor of Civil Engineering, Institute of Transportation and Traffic Engineering, University of California, Berkeley; and W. A. GARRISON, Materials Testing Engineer, Contra Costa County Public Works Department, Martinez, California In this paper a working model is presented for a subsystem to consider the fatigue mode of distress for asphalt concrete pavements. The de sign subsystem is divided into three general sections-(a) preliminary data acquisition, (b) materials characterization, and (c) analysis and evaluation. In developing a particular design with this subsystem, use is made of traffic and wheel load distributions, environmental condi tions based on available weather records for the vicinity of the pro posed design, multilayer elastic theory, resilient response of untreated granular materials and fine-grained soils, stiffness and fatigue char acteristics of the asphalt concrete, and a cumulative damage hypothesis based on the simple linear summation of cycle ratios. To expedite the design process, the majority of the design computations have been pro grammed for use with a high-speed digital computer. An example shows the use of the design procedure for a structural pavement section consisting of asphalt concrete resting directly on the subgrade soil. The design developed is shown for conventional mate rials and traffic to result in a thickness that is quite reasonable based on comparisons with other design methods. This particular subsystem would appear to have some advantages, however, in that it can be ex tended to consider loading conditions and material characteristics for which experience is not available. -
Caltrans Proves Effectiveness of Pavement Renewal Approach 14
TR NEWS NUMBER 232 MAY–JUNE 2004 3 Get In, Get Out, Stay Out! Caltrans Proves Effectiveness of Pavement Renewal Approach Kirsten R. Stahl and Mario A. Gutierrez Six years ago, a national workshop convened to discuss and develop innovative 3 approaches to the timely repair of crowded freeways. The California Department of Transportation, host of the workshop, immediately set out to apply the most workable concepts. Here is a report on the successful results with asphalt concrete and portland cement concrete projects. 4 Renewal Program Awaiting Launch Ann M. Brach 5 Birth of the Accelerated Construction Technology Transfer Team Frederick D. Hejl 6 Accelerated Construction Technology Transfer Workshops: 14 Completing Projects Faster, Safer, and Better Bill Bolles 8 Mix and Structure of I-710’s Long-Lasting Pavement Carl L. Monismith 12 CA4PRS Software Generates Pavement Rehabilitation Strategies Eul-Bum Lee, John T. Harvey, and Michael M. Samadian 14 The AASHO Road Test: Living Legacy for Highway Pavements 35 Kurt D. Smith, Kathryn A. Zimmerman, and Fred N. Finn The AASHO Road Test, conducted more than four decades ago, established many standards and protocols and helped define many pavement design, construction, and evaluation practices for rigid and flexible pavements. How did the pioneering project originate, gain support, develop, proceed, and produce such long-lasting, influential results? 23 Withstanding the Test of Time Fred N. Finn 24 Smithsonian to Archive Road Test Records Linda Mason 25 TRANSIT COOPERATIVE RESEARCH PROGRAM REPORT Cover: The new Transit Capacity and Quality of Service Manual assists The New Transit Capacity and Quality of Service Manual: planners in setting transit service Tour of the Expanded Guide for Transit Planners and Operators goals for a community. -
Standard Specifications for Street and Drainage Construction
STANDARD SPECIFICATIONS FOR STREET AND DRAINAGE CONSTRUCTION 2 of 114 DIVISION 100. GENERAL PROVISIONS ................................ 6 Section 101. Definitions and Terms........................................................................ 6 Section 102. Control of Material ............................................................................. 9 Section 103. Quality Control Requirements.......................................................... 11 Section 104. Measurement and Payment............................................................. 15 Section 105. Roadway Construction Control........................................................ 18 Section 106. Trench and Excavation Safety Systems .......................................... 20 DIVISION 200. EARTHWORK ............................................... 21 Section 201. Clearing and Grubbing .................................................................... 21 Section 202. Excavation and Embankment.......................................................... 22 Section 203. Subgrade Preparation ..................................................................... 27 Section 204. Select Grading................................................................................. 28 DIVISION 300. STORM DRAINAGE..................................... 30 Section 301. Storm Drainage Pipe ....................................................................... 30 Section 302. Drop Inlets and Junction Boxes....................................................... 33 Section 303. Concrete -
Chapter 3 : Transportation (V1)
Town of Aberdeen - Development Guide Chapter 3 : Transportation (v1) Chapter 3 : Transportation 3.1. - Traffic Impact Analysis 3 3.1.1. - Purpose 3 3.1.2. - Threshold 3 3.1.3. - Review 4 3.1.4. - Format 4 3.2. - Driveway Design Standards 7 3.2.1. - Non-residential Driveways 7 3.2.2. - Residential Driveways 7 3.3. - Separation Standards 8 3.4. - Street Construction Standards 9 3.4.1. - General Standards. 9 3.4.2. - Trench Backfill Standards 10 3.4.3. - Subgrade Standards 11 3.4.4. - Proof Roll 11 3.4.5. - Other Standards 12 3.4.6. - Fire Apparatus Requirements 13 3.4.7. - Intersections 13 3.5. - Sight Distances 15 3.5.1. - Intersection Sight Distance 15 3.5.2. - Minimum Stopping Sight Distance 15 3.5.3. - Intersection Sight Distance 15 3.5.4. - Greenway Sight Distance 17 3.6. - Right-of-way Design 17 3.6.1. - Arterial Streets 17 3.6.2. - Collector Streets 18 3.6.3. - Sub-Collector Streets 19 3.6.4. - Local Streets 20 3.6.5. - Alleys 21 3.7. - Dead-End Streets 22 3.7.1. - Dead-End Street Standards 22 3.7.2. - Turnaround Standards 22 3.8. - Street Signs 23 3.8.1. - Street Name and Traffic Control Signs. 23 3.8.2. - Street Name Sign Fees 23 3.8.3. - Standards for All Street Signs 23 3-1 Town of Aberdeen - Development Guide Chapter 3 : Transportation (v1) 3.8.4. - Specialty Street Signs 24 3.8.5. - Standards for Street Name Signs 25 3.8.6.