Functional Genomics of Diapause in Two Temperate Butterflies

Total Page:16

File Type:pdf, Size:1020Kb

Functional Genomics of Diapause in Two Temperate Butterflies Functional genomics of diapause in two temperate butterflies Peter Pruisscher Academic dissertation for the Degree of Doctor of Philosophy in Population Genetics at Stockholm University to be publicly defended on Wednesday 5 June 2019 at 10.00 in Vivi Täckholmsalen (Q-salen), NPQ-huset, Svante Arrhenius väg 20. Abstract Natural selection will act on a given phenotype to maximize fitness in a particular environment, even if this would result in reduced fitness in other environments. In insects some of the strongest selection pressures act on timing life cycles to seasonal variation in environmental conditions, in order to maximize growth, reproduction, and to anticipate the onset of winter. Many temperate insects survive winter by entering a pre-programmed state of developmental arrest, called diapause. The decision to induce diapause is predominantly based on measuring day length. Populations have adapted to latitudinal variation in photoperiod, thereby synchronizing with local seasonal variation. However, there is no general understanding of the genetic basis for controlling diapause induction, maintenance and termination. In this thesis I aimed to gain a better understanding of the genetic basis underlying variation in the induction decision, as well as to gain insights into gene expression changes during diapause in temperate butterflies. I started by revealing local adaptation in the photoperiodic response of two divergent populations of Pieris napi (Paper I). I found that variation in diapause induction among populations of both P. napi and Pararge aegeria showed strong sex-linked inheritance in inter-population crosses (Paper I and II). The genome-wide variation across populations was relatively low in both species. However, there was strong divergence in genomic regions containing the circadian clock genes timeless and period in P. aegeria, and period, cycle, and clock in P. napi. The genetic variation in these specific regions segregated between diapausing and direct developing individuals of inter-population crosses, showing that allelic variation at few genes with known functions in the circadian clock correlated to variation in diapause induction (Paper II and III). Furthermore, I investigated the transcriptional dynamics in two tissues (head and abdomen) during diapause (Paper IV). Already at the first day of pupal development there are on average 409 differentially expressed genes (DEG) each up and down regulated between the direct development and diapause pathways, and this increases dramatically across these formative stages to an average of 2695. Moreover, gene expression is highly dynamic during diapause, showing more than 2600 DEG’s in the first month of diapause development, but only 20 DEG’s in the third month. Moreover, gene expression is independent of environmental conditions, revealing a pre-programmed transcriptional landscape that is active during the winter. Still, adults emerging from either the direct or diapause pathways do not show large transcriptomic differences, suggesting the adult phenotype is strongly canalized. Thus, by integrating whole-genome scans with targeted genotyping and bulk-segregant analyses in population crosses, I demonstrate that adaptive variation in seasonal life cycle regulation in the two butterflies P. napi and P. aegeria both converge on genes of the circadian clock, suggesting convergent evolution in these distantly related butterflies. Moreover, the diapause program is a dynamic process with a distinct transcriptional profile in comparison to direct development, showing that on a transcriptome level diapause development and direct development are two distinct developmental strategies. Keywords: diapause induction, adaptation, genomics, transcriptomics. Stockholm 2019 http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-168042 ISBN 978-91-7797-719-3 ISBN 978-91-7797-720-9 Department of Zoology Stockholm University, 106 91 Stockholm FUNCTIONAL GENOMICS OF DIAPAUSE IN TWO TEMPERATE BUTTERFLIES Peter Pruisscher Functional genomics of diapause in two temperate butterflies Peter Pruisscher ©Peter Pruisscher, Stockholm University 2019 ISBN print 978-91-7797-719-3 ISBN PDF 978-91-7797-720-9 Cover image is copyright of Julie Horner. http://www.hornerartstudio.com Printed in Sweden by Universitetsservice US-AB, Stockholm 2019 The thesis is based on the following articles, which are referred to in the text by their Roman numerals: I. Pruisscher, P., Larsdotter-Mellström, H., Stefanescu, C., Nylin, S., Wheat, C. W., & Gotthard, K. (2017). Sex-linked inheritance of diaPause induction in the butterfly Pieris napi. Physiological Entomology, 42(3), 257-265. II. Pruisscher, P., Nylin, S., Gotthard, K., & Wheat, C. W. (2018). Genetic Variation underlying local adaptation of diaPause induction along a cline in a butterfly. Molecular ecology, 27(18), 3613-3626. III. Pruisscher, P., Nylin, S., Wheat, C. W., & Gotthard, K. (2019). A chromosomal block containing clock genes associates with Variation in diaPause induction. Manuscript. IV. Pruisscher, P., Lehmann, P., Celorio-Mancera, M., Nylin, S., Gotthard, K., & Wheat, C. W. (2019). TranscriPtomic Profiling of PuPal diaPause in the butterfly Pieris napi. Manuscript. Candidate contributions to thesis articles* I II III IV ConceiVed the study Substantial Minor Substantial Significant Designed the study Substantial Significant Substantial Significant Collected the data Substantial Significant Substantial Minor Analysed the data Substantial Substantial Substantial Substantial ManuscriPt preParation Substantial Substantial Substantial Substantial * Contribution ExPlanation Minor: contributed in some way, but contribution was limited. Significant: ProVided a significant contribution to the work. Substantial: took the lead role and Performed the majority of the work. I am also a co-author in the following articles that were written during my doctoral studies, but are not included in this thesis: Hill, J.A., Neethiraj, R., Rastas, P., Clark, N., Morehouse, N., de la Paz Celorio-Mancera, M., Keehnen, N. P., Pruisscher, P., Cols, J.C., Dircksen, H., Meslin, C., Sikkink, K., ViVes, M., and Wheat C.W. (2019). CryPtic, extensiVe and non-random chromosome reorganization reVealed by a butterfly chromonome. Science Advances in press. Lehmann, P., Pruisscher, P., Koštál, V., Moos, M., Šimek, P., Nylin, S., Agren, R., Väremo, L., Wiklund, C., Wheat, C.W. and Gotthard, K. (2018). Metabolome dynamics of diaPause in the butterfly Pieris napi: distinguishing maintenance, termination and Post-diapause Phases. Journal of Experimental Biology 221 (2), jeb169508 Lehmann, P., Pruisscher, P., Posledovich, D., Carlsson, M., Kakela, R., Tang, P., Nylin, S., Wheat, C.W., Wiklund, C., and Gotthard, K. (2016). Energy and liPid metabolism during direct and diaPause deVelopment in a pierid butterfly. Journal of Experimental Biology 219: 3049-3060. Stålhandske, S., Lehmann, P., Pruisscher, P., and Leimar, O. (2015). Effect of winter cold duration on spring Phenology of the orange tiP butterfly, Anthocharis cardamines. Ecology and Evolution 5: 5509–5520. SterVander, M., Illera, J. C., KVist, L., Barbosa, P., Keehnen, N. P., Pruisscher, P., Bensch, S., and Hansson, B. (2015). Disentangling the comPlex evolutionary history of the Western Palearctic blue tits (Cyanistes spP.) – phylogenomic analyses suggest radiation by multiple colonization events and subsequent isolation. Molecular Ecology 24: 2477–2494. CONTENTS INTRODUCTION ........................................................................................................................ 10 Local adaptation ................................................................................................................... 10 Genetic basis of local adaptation ......................................................................................... 10 Diapause induction and the circadian clock ........................................................................ 12 Diapause is a process ............................................................................................................ 12 The study system................................................................................................................... 13 OBJECTIVES OF THIS THESIS..................................................................................................... 14 METHODS ................................................................................................................................. 15 MAJOR FINDINGS AND CONCLUSIONS.................................................................................... 16 Photoperiodic response ........................................................................................................ 16 Mode of inheritance ............................................................................................................. 17 Candidate genes for diapause induction ............................................................................. 17 Gene expression differences between the pathways .......................................................... 20 Transcriptomic profiling of diapause. .................................................................................. 21 The end-product of two alternative developmental pathways .......................................... 21 Concluding remarks .............................................................................................................. 21 REFERENCES ............................................................................................................................
Recommended publications
  • Disruption of Insect Diapause Using Agonists and an Antagonist of Diapause Hormone
    Disruption of insect diapause using agonists and an antagonist of diapause hormone Qirui Zhanga,b, Ronald J. Nachmanc,1, Krzysztof Kaczmarekc,d, Janusz Zabrockic,d, and David L. Denlingera,b,1 Departments of aEntomology and bEvolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210; cAreawide Pest Management Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture–Agriculture Research Service, College Station, TX 77845; and dInstitute of Organic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland Contributed by David L. Denlinger, August 24, 2011 (sent for review July 20, 2011) The dormant state known as diapause is widely exploited by several hyperpotent agonists of DH capable of terminating dia- insects to circumvent winter and other adverse seasons. For an pause as well as preventing entry into diapause. In addition, we insect to survive, feed, and reproduce at the appropriate time of report an antagonist of DH, an agent with a unique structure that year requires fine coordination of the timing of entry into and exit blocks the action of DH in terminating diapause. The rationally from diapause. One of the hormones that regulates diapause in developed peptide agonists and antagonist that we report here moths is the 24-aa neuropeptide, diapause hormone (DH). Among offer previously undescribed tools that could be directed against members of the Helicoverpa/Heliothis complex of agricultural this group of agriculturally important pests. pests, DH prompts the termination of pupal diapause. Based on the structure of DH, we designed several agonists that are much Results and Discussion more active than DH in breaking diapause.
    [Show full text]
  • Potential Impacts of Climate Change on Monarch Butterflies, Danaus Plexippus
    Potential impacts of climate change on monarch butterflies, Danaus plexippus A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Rebecca Victoria Batalden IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Dr. Karen S. Oberhauser, Advisor August 2011 © Rebecca Batalden, 2011 ACKNOWLEDGEMENTS I am incredibly grateful for the guidance, support and encouragement that my advisor, Karen Oberhauser, has given me. Her constant backing—both financial and intellectual—has far surpassed anything I could have expected. Thank you. I am also grateful to my initial committee, Don Alstad, George Heimpel and Joe McFadden for their help shaping the direction of my research, and to my new committee member, Ken Kozak, for helping me finish my graduate degree. Thank you to A. Townsend Peterson for the crash course in ecological niche modeling. Thank you to all the MLMP volunteers throughout Texas who hosted my field study. They were generous with their time, knowledge, milkweed and caterpillars. In particular, Mary Kennedy lent me the use of her front porch to rear larvae and her yard for large mating cages and insisted I stay in her spare room. Jolene Lushine and Sarah Kempke provided assistance with the Texas field studies and many laughs along the road. I am so thankful to everyone who makes up the Monarch Lab. You made my graduate career so much fun that I didn’t want it to end! Thank you especially to Grant Bowers. I never imagined I would laugh so hard while doing lab work. Thank you to all the undergraduate and high school students that have passed through the lab.
    [Show full text]
  • Susceptibility of Adult Colorado Potato Beetle (Leptinotarsa Decemlineata) to the Fungal Entomopathogen Beauveria Bassiana Ellen Klinger
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 8-2003 Susceptibility of Adult Colorado Potato Beetle (Leptinotarsa Decemlineata) to the Fungal Entomopathogen Beauveria Bassiana Ellen Klinger Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Agricultural Science Commons, Agriculture Commons, Entomology Commons, and the Environmental Sciences Commons Recommended Citation Klinger, Ellen, "Susceptibility of Adult Colorado Potato Beetle (Leptinotarsa Decemlineata) to the Fungal Entomopathogen Beauveria Bassiana" (2003). Electronic Theses and Dissertations. 386. http://digitalcommons.library.umaine.edu/etd/386 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. SUSCEPTIBILITY OF ADULT COLORADO POTATO BEETLE (LEPTINOTARSA DECEMLINEATA) TO THE FUNGAL ENTOMOPATHOGEN BEAUVERIA BASSIANA BY Ellen Klinger B.S. Lycoming College, 2000 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Ecology and Environmental Sciences) The Graduate School The University of Maine August, 2003 Advisory Committee: Eleanor Groden, Associate Professor of Entomology, Advisor Francis Drumrnond, Professor of Entomology Seanna Annis, Assistant Professor of Mycology SUSCEPTIBILITY OF ADULT COLORADO POTATO BEETLE (LEPTINOTARSA DECEMLINEATA) TO THE FUNGAL ENTOMOPATHOGEN BEAUVERIA BASSIANA By Ellen Klinger Thesis Advisor: Dr. Eleanor Groden An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Ecology and Environmental Sciences) August, 2003 Factors influencing the susceptibility of adult Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), to the fungal entomopathogen, Beauveria bassiana (Bals.), were studied.
    [Show full text]
  • Diapause Research in Insects: Historical Review and Recent Work Perspectives
    DOI: 10.1111/eea.12753 MINI REVIEW Diapause research in insects: historical review and recent work perspectives Kevin Tougeron* Department of Biology, The University of Wisconsin – La Crosse, 1725 State street, La Crosse, WI 54601, USA Accepted: 15 November 2018 Key words: seasonal ecology, phenology, dormancy, physiology, ecology, overwintering Abstract All organisms on Earth have evolved biological rhythms to face alternation of periods of favorable and unfavorable environmental conditions, at various temporal scales. Diapause is a state of seasonal dormancy adapted to recurring periods of adverse environmental conditions and triggered by biotic and abiotic factors that precede the arrival of these conditions. Several monographs already review the mechanisms of diapause expression in arthropods, from initiation to termination phases. Rather than adding another review to the literature on this topic, this paper primarily aims to link past con- cepts on seasonal strategies with new perspective on diapause research in arthropods. By focusing on insects, I examine the legacy of diapause history research in terrestrial arthropods since antiquity but mostly over the past 3 centuries, its contribution to the understanding of insect seasonal ecology, and I explore some of the reasons why it is still relevant to study diapause. I highlight some of the topical issues on which current work focuses to better understand and integrate arthropod diapause with their ecology, especially in the climate change context and for the provision of ecosystem services. variable than temperate areas, although dry and wet sea- Introduction sons follow one another. In temperate areas, the need to Most aspects of organismal physiology, metabolism, and survive winter has a particularly significant impact on an behavior are clock-controlled and result in daily or sea- organisms’ life cycles.
    [Show full text]
  • A Nutritional Profile of the Social Wasp Polistes Metricus
    Journal of Insect Physiology 56 (2010) 42–56 Contents lists available at ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys A nutritional profile of the social wasp Polistes metricus: Differences in nutrient levels between castes and changes within castes during the annual life cycle Timothy M. Judd a,*, Roxane M. Magnus a, Matthew P. Fasnacht b a Department of Biology, Southeast Missouri State University, Cape Girardeau MO, 63701, USA b Department of Chemistry, Southeast Missouri State University, Cape Girardeau MO, 63701, USA ARTICLE INFO ABSTRACT Article history: In wasps, nutrition plays a vital role for colony cohesion and caste determination. However, there is no Received 5 July 2009 baseline data set for the nutritional levels of wasps during the different stages of the colony cycle. Here Received in revised form 30 August 2009 we examined the levels of carbohydrates, lipids, protein, Ca, Cu, Fe, K, Mg, Mn, Na, and Zn in the wasp Accepted 9 September 2009 Polistes metricus at different stages of the wasp’s lifecycle. Individuals were collected at the following stages (1) spring gynes, (2) foundress colonies, (3) early worker colonies, (4) late worker colonies, (5) Keywords: emerging reproductives (gynes and males), (6) early fall reproductives, and (7) late fall reproductives. All Polistes eggs, larvae, pupae and adults were analyzed for their nutritional content to determine if there were any Nutrition differences between the nutrient levels in the different castes and how these nutrients changed within a Caste Cations caste during its lifetime. The results show there are differences in macro and micronutrient levels Macronutrients between the reproductive females and workers during development.
    [Show full text]
  • Appendix A: Monarch Biology and Ecology
    Appendix A: Monarch Biology and Ecology Materials for this appendix were adapted from MonarchNet.org, MonarchJointVenture.org, MonarchLab.org, and MonarchParasites.org. Monarch Life Cycle Biology: Overview: All insects change in form as they grow; this process is called metamorphosis. Butterflies and moths undergo complete metamorphosis, in which there are four distinct stages: egg, larva (caterpillar) pupae (chrysalis) and adult. It takes monarchs about a month to go through the stages from egg to adult, and it is hormones circulating within the body that trigger the changes that occur during metamorphosis. Once adults, monarchs will live another 3-6 weeks in the summer. Monarchs that migrate live all winter, or about 6-9 months. Monarch larvae are specialist herbivores, consuming only host plants in the milkweed family (Asclepiadacea). They utilize most of the over 100 North American species (Woodson 1954) in this family, breeding over a broad geographical and temporal range that covers much of the United States and southern Canada. Adults feed on nectar from blooming plants. Monarchs have specific habitat needs: Milkweed provides monarchs with an effective chemical defense against many predators. Monarchs sequester cardenolides (also called cardiac glycosides) present in milkweed (Brower and Moffit 1974), rendering them poisonous to most vertebrates. However, many invertebrate predators, as well as some bacteria and viruses, may be unharmed by the toxins or able to overcome them. The extent to which milkweed protects monarchs from non-vertebrate predators is not completely understood, but a recent finding that wasps are less likely to prey on monarchs consuming milkweed with high levels of cardenolides suggests that this defense is at least somewhat effective against invertebrate predators (Rayor 2004).
    [Show full text]
  • A Mechanical Signal Biases Caste
    Please cite this article in press as: Suryanarayanan et al., A Mechanical Signal Biases Caste Development in a Social Wasp, Current Biology (2011), doi:10.1016/j.cub.2011.01.003 Current Biology 21, 1–5, February 8, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2011.01.003 Report A Mechanical Signal Biases Caste Development in a Social Wasp Sainath Suryanarayanan,1,4,* John C. Hermanson,3 Experimental Procedures). The subset of the wasps that were and Robert L. Jeanne2 third instar or younger when the piezo treatment started were 1Department of Entomology analyzed separately in order to distinguish the effect of treat- 2546 Russell Labs ment on younger larvae from that on older larvae and pupae. 1630 Linden Drive, University of Wisconsin, Newly emerged wasps from three untreated, late-season, Madison WI 53706, USA field-collected colonies were also analyzed for their fat stores. 3USDA Forest Service, Forest Products Laboratory, Laboratory colonies were videotaped to obtain frequencies of One Gifford Pinchot Drive, Madison, WI 53726-2398, USA AD behavior and of feeding prey-liquid to larvae. All newly emerged wasps were analyzed for treatment effects on body- size parameters (Figure S3, available online). In a different Summary experiment with a separate set of colonies, we analyzed effects on newly emerged females that were pupae when first Understanding the proximate mechanisms of caste develop- subjected to the treatment (Supplemental Information). ment in eusocial taxa can reveal how social species evolved Mixed model analysis of variance adjusted for random nest- from solitary ancestors [1]. In Polistes wasps, the current para- to-nest variation showed that treatment significantly affected digm holds that differential amounts of nutrition during the percentage of fat stores (n = 33 wasps, 6 colonies, F1,4 = larval stage cause the divergence of worker and gyne (poten- 14.2, p = 0.019, Figure 2; power = 0.85, see Supplementary tial queen) castes [2].
    [Show full text]
  • Examination of Reproductive Arrest in the Monarch Butterfly, Danaus Plexippus
    A Re-examination of Reproductive Arrest in the Monarch Butterfly, Danaus plexippus. BY Victoria M. Pocius Submitted to the graduate degree program in the Department of Ecology and Evolutionary Biology and the Graduate Faculty of the University of Kansas In partial fulfillment of the requirements for the degree of Master of Arts ______________________________________ Chairperson: Dr. Orley Taylor _____________________________________ Dr. Jennifer Gleason _____________________________________ Dr. Justin Blumenstiel Date Defended: August 20, 2014 The Thesis committee for Victoria M. Pocius certifies that this is the approved version of the following thesis: A Re-examination of Reproductive Arrest in the Monarch Butterfly, Danaus plexippus. __________________________________ Chairperson: Dr. Orley Taylor Date Accepted: 8/20/2014 ii Abstract Migratory and overwintering monarch butterflies, Danaus plexippus, are observed in a non-reproductive state classified as either reproductive diapause or oligopause. The stimuli that lead to this reproductive condition have been characterized as changes in photoperiod, declining host plant quality, and temperature (Goehring and Oberhauser 2002), and in another study simply as temperature (James 1982). This study was conducted to examine cool temperature as the stimulus for the induction of reproductive arrest and to correctly classify reproductive arrest as either reproductive diapause or oligopause. Reproductive arrest was studied using monarchs reared in the laboratory. Butterflies were allowed to fly, bask, and nectar freely within screened cages. Cages were kept in temperature controlled growth chambers. Oocyte presence and ovarian development score were used to determine reproductive status. The mean number of mature oocytes was dependent on temperature. Females exposed to a mean temperature of 15°C failed to develop mature oocytes during the course of the experiment.
    [Show full text]
  • Mechanisms of Animal Diapause: Recent Developments from Nematodes, Crustaceans, Insects, and fish
    Am J Physiol Regul Integr Comp Physiol 310: R1193–R1211, 2016. First published April 6, 2016; doi:10.1152/ajpregu.00250.2015. Review Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish Steven C. Hand,1* David L. Denlinger,2* Jason E. Podrabsky,3* and Richard Roy4* 1Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana; 2Departments of Entomology and Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio; 3Department of Biology, Portland State University, Portland, Oregon; and 4Department of Biology, McGill University, Montréal, Québec, Canada Submitted 5 June 2015; accepted in final form 11 March 2016 Hand SC, Denlinger DL, Podrabsky JE, Roy R. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. Am J Physiol Regul Integr Comp Physiol 310: R1193–R1211, 2016. First published Downloaded from April 6, 2016; doi:10.1152/ajpregu.00250.2015.—Life cycle delays are beneficial for opportunistic species encountering suboptimal environments. Many animals display a programmed arrest of development (diapause) at some stage(s) of their development, and the diapause state may or may not be associated with some degree of metabolic depression. In this review, we will evaluate current advance- ments in our understanding of the mechanisms responsible for the remarkable phenotype, as well as environmental cues that signal entry and termination of the http://ajpregu.physiology.org/ state. The developmental stage at which diapause occurs dictates and constrains the mechanisms governing diapause. Considerable progress has been made in clarify- ing proximal mechanisms of metabolic arrest and the signaling pathways like insulin/Foxo that control gene expression patterns.
    [Show full text]
  • Heliothis Virescens (Lepidoptera: Noctuidae): Initiation of Summer Diapause
    Heliothis virescens (Lepidoptera: Noctuidae): Initiation of Summer Diapause G. D. BUTLER, JR., L. T. WILSON,' AND T. J. HENNEBERRY Western Cotton Research Laboratory, Agricultural Research Service, US. Department of Agriculture, Phoenix, Arizona 85040 J. Econ. Entomol. 78: 320-324 (1985) ABSTRACT Summer diapause of the tobacco budworm, Heliothis vlrescens (F.),is a period of extended duration of the pupal stage, particularly of males, initiated by high temperature. In summer insectary studies, up to 95% of the male pupae exhibited delayed development. The number entering summer diapause was associated with high temperatures before pupation. Almost all pupae that had entered summer diapause over a period of several months emerged during the last part of September and the first part of October. In laboratory studies, high fluctuating temperatures caused the highest percentage of individ- uals to enter summer diapause. An analysis of variance showed that the effect of temperature was much greater than photoperiod, but with a significant interaction between these two factors. A daily 8-h exposure at 43°C caused an average of 95.6%of males to diapause and 58.7% of females. Summer diapause only occurred when the maximum temperature ex- ceeded 32°C. When exposed to a fluctuating temperature of 23.9 to 40.6"C for all of the larval stage, all male pupae diapaused, while only 50% of the females entered summer diapause. When exposed for just the week before pupation, from 63 to 85% of the males diapaused compared to 15 to 50% of the females. Exposure of pupae 2 days after pupation still caused 24% of males to diapause (1% females) and 3 to 4 days after pupation, 8 to 9% to diapause (1-5%of females).
    [Show full text]
  • Calliphora Vicina
    THE PHYSIOLOGY AND ECOLOGY OF DIAPAUSE UNDER PRESENT AND FUTURE CLIMATE CONDITIONS IN THE BLOW FLY, CALLIPHORA VICINA By Paul C Coleman A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY School of Biosciences College of Life and Environmental Sciences University of Birmingham June 2014 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract __________________________________________________ Virtually all temperate insects overwinter in diapause, a pre-emptive response to adverse environmental conditions and for many species a pre-requisite of winter survival. Increased global temperatures have the potential to disrupt the induction and maintenance of diapause. In the first part of this thesis, a four year phenological study of the blow fly, Calliphora vicina, identifies that diapause is already being delayed due to high temperatures experienced by larvae within the soil layer. Laboratory studies identified that non-diapause life stages are capable of heightening cold tolerance through a rapid cold hardening ability, and winter acclimated adults maintain locomotion at lower temperatures than summer acclimated adults. A previously unrecognised threat, however, is that higher adult temperatures have the transgenerational effect of reducing the cold tolerance of diapausing progeny.
    [Show full text]
  • Diapause/ Dormancy
    Chapter 6 Diapause/ Dormancy Ivo Hodek Institute of Entomology, Academy of Sciences, CZ 370 05, Cˇ esk é Bud eˇ jovice, Czech Republic Ecology and Behaviour of the Ladybird Beetles (Coccinellidae), First Edition. Edited by I. Hodek, H.F. van Emden, A. Honeˇk. © 2012 Blackwell Publishing Ltd. Published 2012 by Blackwell Publishing Ltd. 275 6.1 INTRODUCTION: MECHANISMS induces 50% response, i.e. in half of the sample AND DEFINITIONS diapause is induced, in the other half it is not. It should be stressed that potentially multivoltine species Some generalities need to be explained to make the may show a univoltine life cycle in regions where the reading of this chapter easier. The adaptive functions period of suitable conditions is unfavourably short. By of diapause are: (i) to synchronize the development contrast, ‘ obligatory ’ diapause is entered by virtually of active stages with favourable conditions and (ii) to every individual in each generation of the so - called enhance the survival potential during unfavourable obligatory univoltines, regardless of the environ- periods. The modern defi nitions were coined by Lees ment (Lees 1955 ). (1955) . He defi ned quiescence as direct inhibition of The original defi nition of obligatory diapause has development, caused by the direct effect of ambient become outdated by experiments with changing conditions (low temperature, lack of humidity), which photoperiods. Changing conditions (e.g. exposure to can be terminated immediately by favourable condi- short days followed by long days) for insects entering tions. Diapause is caused by conditions which do not ‘ obligatory ’ diapause under, for example, a constant directly prevent development, but which are merely photoperiod in the laboratory, may be a prerequisite for signals of seasonal changes (cues, seasonal tokens; a their development.
    [Show full text]