RESEARCH ARTICLE TGFβ signaling related genes are involved in hormonal mediation during termite soldier differentiation Yudai Masuoka1,2, Hajime Yaguchi1,3, Kouhei Toga4, Shuji Shigenobu5, Kiyoto Maekawa1* 1 Graduate School of Science and Engineering, University of Toyama, Toyama, Japan, 2 Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan, 3 Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan, 4 Department of a1111111111 Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan, 5 Functional Genomics a1111111111 Facility, National Institute for Basic Biology, Okazaki, Japan a1111111111 a1111111111 *
[email protected] a1111111111 Abstract A working knowledge of the proximate factors intrinsic to sterile caste differentiation is nec- OPEN ACCESS essary to understand the evolution of eusocial insects. Genomic and transcriptomic analy- Citation: Masuoka Y, Yaguchi H, Toga K, ses in social hymenopteran insects have resulted in the hypothesis that sterile castes are Shigenobu S, Maekawa K (2018) TGFβ signaling generated by the novel function of co-opted or recruited universal gene networks found in related genes are involved in hormonal mediation during termite soldier differentiation. PLoS Genet solitary ancestors. However, transcriptome analysis during caste differentiation has not 14(4): e1007338. https://doi.org/10.1371/journal. been tested in termites, and evolutionary processes associated with acquiring the caste are pgen.1007338 still unknown. Termites possess the soldier caste, which is regarded as the first acquired Editor: Claude Desplan, New York University, permanently sterile caste in the taxon. In this study, we performed a comparative transcrip- UNITED STATES tome analysis in termite heads during 3 molting processes, i.e., worker, presoldier and sol- Received: December 27, 2017 dier molts, under natural conditions in an incipient colony of the damp-wood termite Accepted: March 27, 2018 Zootermopsis nevadensis.