Grasshopper (Orthoptera: Caelifera)

Total Page:16

File Type:pdf, Size:1020Kb

Grasshopper (Orthoptera: Caelifera) University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2017-01-01 Grasshopper (orthoptera: Caelifera) And Plant Community Relationships On Indio Mountains Research Station, Hudspeth County, Texas Sara Ebrahim Baqla University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Entomology Commons Recommended Citation Baqla, Sara Ebrahim, "Grasshopper (orthoptera: Caelifera) And Plant Community Relationships On Indio Mountains Research Station, Hudspeth County, Texas" (2017). Open Access Theses & Dissertations. 604. https://digitalcommons.utep.edu/open_etd/604 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. GRASSHOPPER (ORTHOPTERA: CAELIFERA) AND PLANT COMMUNITY RELATIONSHIPS ON INDIO MOUNTAINS RESEARCH STATION, HUDSPETH COUNTY, TEXAS SARA EBRAHIM BAQLA Master’s Program in Biological Sciences APPROVED: Jerry D. Johnson, Ph.D., Chair Jennie R. McLaren, Ph.D. Shaun Mahoney, M.M. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Sara Ebrahim Baqla 2017 Dedication I would like to dedicate this project and defense to my mother, Diana Caudillo. GRASSHOPPER (ORTHOPTERA: CAELIFERA) AND PLANT COMMUNITY RELATIONSHIPS ON INDIO MOUNTAINS RESEARCH STATION, HUDSPETH COUNTY, TEXAS by SARA EBRAHIM BAQLA, B.S. THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Departments of Biological Sciences THE UNIVERSITY OF TEXAS AT EL PASO May 2017 Acknowledgements I wish to express my gratitude to Dr. Jerry Johnson for allowing me to study grasshoppers in a herpetology lab. The scrumptious meals and late night hangs at Indio were much needed and greatly appreciated. Thanks are also due to Dr. Jennie McLaren whose guidance and advice were essential for the completion of this project. I would also like to acknowledge and give thanks to Shaun Mahoney for being my outside committee member. His words of encouragement pushed me to finish. I would like to especially thank Julie Schlichte who was my tent mate in the summer of 2015. We learned so much in the field and spent countless hours catching beetles, ants, spiders and grasshoppers. I wish her the best and I am looking forward to seeing what the future holds for her. I would like to acknowledge Dr. Israel Del Toro for giving me the opportunity to travel and work in the field. I gained valuable knowledge and experience that I would otherwise have not been able to get anywhere else. Dr. William Mackay provided fantastic advice and valuable resources for grasshopper identification. Dr. Walsh led me to Dr. Xiogang Su and Dr. Soyoung Jeon who were an immense help with statistical analysis. I wish to extend my deepest gratitude to you. Lastly, I am grateful for everyone in Dr. Johnson’s herpetology lab: Julia Alva, Vicente Mata-Silva, Dominic DeSantis, James Emerson, Kayla Garza and Guillermo Alvarez. v Abstract An ecogeographic analysis of a grasshopper survey was conducted at eight sites on Indio Mountains Research Station (IMRS) in the Chihuahuan Desert during September 2014 through December 2015. Five sites contained ephemeral water sources (earthen tanks), one had perennial water (spring system), and two were open desert. A total of 23 grasshopper species were identified, and six of those were new records for the property. The most species rich site was Echo Tank, with 14 grasshopper species. A UPGMA dendrogram showed Red Tank and Rattlesnake Tank, both wetland sites, to be the most similar (CBR = .84). A poisson model was applied to identify any relationships of temperature, precipitation, vegetation and seasonal patterns between the monsoon and dry season, and between years. The model of species count showed significance for three grasshopper species (p<.03), vegetation coverage among seven grasshopper species (p<.009), and seasonality patterns found in four species (p<.02). Information on variation and spatial pattern of grasshopper biodiversity on IMRS, will allow future studies to compare grasshopper diversity in response to grassland and shrubland ecosystems in an ever increasing arid environment. vi Table of Contents Acknowledgements ..........................................................................................................................v Abstract .......................................................................................................................................... vi Table of Contents .......................................................................................................................... vii List of Tables ................................................................................................................................. ix List of Figures ..................................................................................................................................x Introduction ......................................................................................................................................1 Materials and Methods .....................................................................................................................5 Study Sites ..............................................................................................................................5 Squaw Spring .................................................................................................................5 Rattlesnake Tank ............................................................................................................5 Mesquite Tank ...............................................................................................................7 Echo Tank ......................................................................................................................7 Red Tank ........................................................................................................................7 Lonely Tank ...................................................................................................................8 Woodpecker Well ..........................................................................................................8 Oak Arroyo ..................................................................................................................10 Data Collection .....................................................................................................................10 Data Analysis ........................................................................................................................10 Results ............................................................................................................................................13 Sampling Effort .....................................................................................................................13 Grasshopper Richness and Abundance .................................................................................18 Seasonal Abundance Patterns ...............................................................................................18 Plant Composition and Structure ..........................................................................................23 Grasshopper and Vegetation Species Patterns ......................................................................24 Comparison of Survey Sites - Grasshoppers ........................................................................28 Discussion ......................................................................................................................................31 Sampling Effort .....................................................................................................................31 Grasshopper Richness and Abundance .................................................................................31 Seasonal Abundance Patterns ...............................................................................................32 vii Plant Composition and Structure ..........................................................................................33 Grasshopper and Vegetation Species Patterns ......................................................................33 Comparison of Survey Sites - Grasshoppers ........................................................................34 Future Directions ..................................................................................................................34 Works Cited ...................................................................................................................................37 Vita 41 viii List of Tables Table 1 – Grasshopper species records for the eight survey sites used in this study. An X denotes that the grasshopper species was present. Species in bold are new account records for the property. ........................................................................................................................................ 14 Table 2 – Total number of sampling event, actual and estimated grasshopper species richness and Shannon’s Diversity index per site. .............................................................................................
Recommended publications
  • Temperature-Dependent Phenology and Predation in Arthropod Systems
    ecological modelling 196 (2006) 471–482 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/ecolmodel Temperature-dependent phenology and predation in arthropod systems J. David Logan a,∗, William Wolesensky b, Anthony Joern c a Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0130, Unites States b Program in Mathematics, College of St. Mary, Omaha, NE 68134, Unites States c Division of Biology, Kansas State University, Manhattan, KS 66506, Unites States article info abstract Article history: A central issue in ecology is to determine how environmental variations associated with Received 22 April 2005 global climate change, especially changing temperatures, affect trophic interactions in var- Received in revised form 14 ious ecosystems. This paper develops a temperature-dependent, stage-based, discrete, co- December 2005 hort model of the population dynamics of an insect pest under pressure from a predator. Accepted 9 February 2006 Guided by experimental data, the model is applied specifically to predation of grasshoppers Published on line 17 April 2006 by rangeland lycosid spiders. The development rate of insect arthropods is strongly affected by temperature, and these temperature-dependent phenological effects couple with shifts in Keywords: the daily activity periods for both prey and predator, thereby increasing or decreasing oppor- Predator–prey models tunities for interaction. The model addresses these effects quantitatively by introducing a Temperature temperature-dependent, joint-activity factor that enters the predator’s functional response. Phenology The model also includes a prey mortality rate that is temperature-dependent through the Grasshoppers prey development rate. The model is parameterized using field and experimental data for Lycosid spiders spiders and grasshoppers.
    [Show full text]
  • State-Of-The-Art on Use of Insects As Animal Feed
    State-of-the-art on use of insects as animal feed Harinder P.S. Makkar1, Gilles Tran2, Valérie Heuzé2 and Philippe Ankers1 1 Animal Production and Health Division, FAO, Rome 2 Association Française de Zootechnie, Paris, France Full reference of the paper: Animal Feed Science and Technology, Volume 197, November 2014, pages 1-33 Link: http://www.animalfeedscience.com/article/S0377-8401(14)00232-6/abstract http://dx.doi.org/10.1016/j.anifeedsci.2014.07.008 Abstract A 60-70% increase in consumption of animal products is expected by 2050. This increase in the consumption will demand enormous resources, the feed being the most challenging because of the limited availability of natural resources, ongoing climatic changes and food-feed-fuel competition. The costs of conventional feed resources such as soymeal and fishmeal are very high and moreover their availability in the future will be limited. Insect rearing could be a part of the solutions. Although some studies have been conducted on evaluation of insects, insect larvae or insect meals as an ingredient in the diets of some animal species, this field is in infancy. Here we collate, synthesize and discuss the available information on five major insect species studied with respect to evaluation of their products as animal feed. The nutritional quality of black soldier fly larvae, the house fly maggots, mealworm, locusts- grasshoppers-crickets, and silkworm meal and their use as a replacement of soymeal and fishmeal in the diets of poultry, pigs, fish species and ruminants are discussed. The crude protein contents of these alternate resources are high: 42 to 63% and so are the lipid contents (up to 36% oil), which could possibly be extracted and used for various applications including biodiesel production.
    [Show full text]
  • 197 Section 9 Sunflower (Helianthus
    SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow.
    [Show full text]
  • (Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers
    e-ISSN 1734-9168 Folia Biologica (Kraków), vol. 67 (2019), No 3 http://www.isez.pan.krakow.pl/en/folia-biologica.html https://doi.org/10.3409/fb_67-3.12 The Evaluation of Genetic Relationships within Acridid Grasshoppers (Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers Igor SUKHIKH , Kirill USTYANTSEV , Alexander BUGROV, Michael SERGEEV, Victor FET, and Alexander BLINOV Accepted August 20, 2019 Published online September 11, 2019 Issue online September 30, 2019 Original article SUKHIKH I., USTYANTSEV K., BUGROV A., SERGEEV M., FET V., BLINOV A. 2019. The evaluation of genetic relationships within Acridid grasshoppers (Orthoptera, Caelifera, Acrididae) on the subfamily level using molecular markers. Folia Biologica (Kraków) 67: 119-126. Over the last few decades, molecular markers have been extensively used to study phylogeny, population dynamics, and genome mapping in insects and other taxa. Phylogenetic methods using DNA markers are inexpensive, fast and simple to use, and may help greatly to resolve phylogenetic relationships in groups with problematic taxonomy. However, different markers have various levels of phylogenetic resolution, and it’s important to choose the right set of molecular markers for a studied taxonomy level. Acrididae is the most diverse family of grasshoppers. Many attempts to resolve the phylogenetic relationships within it did not result in a clear picture, partially because of the limited number of molecular markers used. We have tested a phylogenetic resolution of three sets of the most commonly utilized mitochondrial molecular markers available for Acrididae sequences in the database: (i) complete protein-coding mitochondrial sequences, (ii) concatenated mitochondrial genes COI, COII, and Cytb, and (iii) concatenated mitochondrial genes COI and COII.
    [Show full text]
  • Elements for the Sustainable Management of Acridoids of Importance in Agriculture
    African Journal of Agricultural Research Vol. 7(2), pp. 142-152, 12 January, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.912 ISSN 1991-637X ©2012 Academic Journals Review Elements for the sustainable management of acridoids of importance in agriculture María Irene Hernández-Zul 1, Juan Angel Quijano-Carranza 1, Ricardo Yañez-López 1, Irineo Torres-Pacheco 1, Ramón Guevara-Gónzalez 1, Enrique Rico-García 1, Adriana Elena Castro- Ramírez 2 and Rosalía Virginia Ocampo-Velázquez 1* 1Department of Biosystems, School of Engineering, Queretaro State University, C.U. Cerro de las Campanas, Querétaro, México. 2Department of Agroecology, Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, México. Accepted 16 December, 2011 Acridoidea is a superfamily within the Orthoptera order that comprises a group of short-horned insects commonly called grasshoppers. Grasshopper and locust species are major pests of grasslands and crops in all continents except Antarctica. Economically and historically, locusts and grasshoppers are two of the most destructive agricultural pests. The most important locust species belong to the genus Schistocerca and populate America, Africa, and Asia. Some grasshoppers considered to be important pests are the Melanoplus species, Camnula pellucida in North America, Brachystola magna and Sphenarium purpurascens in northern and central Mexico, and Oedaleus senegalensis and Zonocerus variegatus in Africa. Previous studies have classified these species based on specific characteristics. This review includes six headings. The first discusses the main species of grasshoppers and locusts; the second focuses on their worldwide distribution; the third describes their biology and life cycle; the fourth refers to climatic factors that facilitate the development of grasshoppers and locusts; the fifth discusses the action or reaction of grasshoppers and locusts to external or internal stimuli and the sixth refers to elements to design management strategies with emphasis on prevention.
    [Show full text]
  • Grasshoppers and Locusts (Orthoptera: Caelifera) from the Palestinian Territories at the Palestine Museum of Natural History
    Zoology and Ecology ISSN: 2165-8005 (Print) 2165-8013 (Online) Journal homepage: http://www.tandfonline.com/loi/tzec20 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh To cite this article: Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh (2017): Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History, Zoology and Ecology, DOI: 10.1080/21658005.2017.1313807 To link to this article: http://dx.doi.org/10.1080/21658005.2017.1313807 Published online: 26 Apr 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tzec20 Download by: [Bethlehem University] Date: 26 April 2017, At: 04:32 ZOOLOGY AND ECOLOGY, 2017 https://doi.org/10.1080/21658005.2017.1313807 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhana, Zuhair S. Amrb, Manal Ghattasa, Elias N. Handala and Mazin B. Qumsiyeha aPalestine Museum of Natural History, Bethlehem University, Bethlehem, Palestine; bDepartment of Biology, Jordan University of Science and Technology, Irbid, Jordan ABSTRACT ARTICLE HISTORY We report on the collection of grasshoppers and locusts from the Occupied Palestinian Received 25 November 2016 Territories (OPT) studied at the nascent Palestine Museum of Natural History. Three hundred Accepted 28 March 2017 and forty specimens were collected during the 2013–2016 period.
    [Show full text]
  • The Taxonomy of Utah Orthoptera
    Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College.
    [Show full text]
  • Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
    Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae.
    [Show full text]
  • Invertebrate Pest Management for Pacific Northwest Pastures
    Invertebrate Pest Management for Pacific Northwest Pastures A.J. Dreves, N. Kaur. M.G. Bohle, D. Hannaway, G.C. Fisher and S.I. Rondon Photo: Mylen Bohle, © Oregon State University Figure 1. A pasture in the Pacific Northwest. Introduction Amy J. Dreves, Extension A well-managed pasture (Figure 1) has several ecological and economic benefits. pest management However, a variety of pests can diminish those benefits. specialist, University of the Virgin Islands; Several species of arthropods (insects, mites and garden symphylans), and gastropods Navneet Kaur, Extension (slugs) inhabit pastures of the Pacific Northwest of the United States. Newly planted entomologist; Mylen Bohle, pastures are more vulnerable to damage caused by invertebrate pests carried over Extension agronomist; from previous rotations if preventative measures such as tillage practices, adjustment David Hannaway, Extension of planting times, removal of infected plant material and healthy plant-management forage specialist; Glenn tactics are not followed. Infestations in established pastures occur when migrating pest Fisher, emeritus Extension populations attack from adjacent areas. entomologist; and Silvia Either way, an invertebrate pest population can reduce a pasture’s productivity and Rondon, Extension yield when damage exceeds an intolerable level generally referred to as an economic entomology specialist, all of threshold level. Pest populations tend to fluctuate in nature and are heavily regulated Oregon State University. by climate, food availability and ecosystem disturbance. Biological factors such as predators, parasites and entomopathogens also play an important role in pest population suppression (Figure 2, page 2). An integrated pest management strategy can maintain pest populations below economically damaging levels. IPM is a holistic approach that relies on knowledge of pest biology and ecology and their interactions with and within systems.
    [Show full text]
  • SYNAPOMORPHIES ORTHOPTERA, Sensu Stricto Grasshoppers
    The Orthopteridan Orders Orthoptera Phasmatodea Plecoptera PLECOPTERIDA Embioptera Zoraptera Dermaptera POLYORTHOPTERA Grylloblattodea Mantophasmatodea Phasmatodea ORTHOPTERIDA Orthoptera Blattodea Perhaps similar Isoptera development of the gonoplac over 2nd DICTYOPTERA valvulae Mantodea Plecoptera PLECOPTERIDA Embioptera Zoraptera Dermaptera Grylloblattodea Mantophasmatodea Phasmatodea ORTHOPTERIDA Orthoptera • Second valvula reduced, with developmentBlattodea of gonoplac as functional ovipositor • Enlarged precostal field in forewingIsoptera DICTYOPTERA Mantodea ORTHOPTERA, sensu stricto Grasshoppers, Locusts, Katydids, Crickets, Wetas What is a “Weta”? A giant cricket! New Zealand Maori name of wetapunga that was given to the giant weta. Wetapunga translates roughly to "God of ugly things.” Wetas and king crickets occur principally in New Zealand and Australia. Can reach 90 mm (3.5 in) and 70 grams (2.5 oz). Orthoptera Ensifera Stenopelmatoidea Anostostomatidae ORTHOPTERA, sensu stricto Grasshoppers, Locusts, Katydids, Crickets, Wetas SYNAPOMORPHIES • Lateral flange of pronotum largely covering pleuron, which • Hind leg modified for jumping correspondingly becomes by straightening of femoral/tibial desclerotized joint (cryptopleuron) • Femur enlarged to • Hind tibia with 2 dorsal accommodate large tibia rows of teeth extensor muscle ORTHOPTERA, sensu stricto Grasshoppers, Locusts, Katydids, Crickets, Wetas SYNAPOMORPHIES • First thoracic spiracle horizontally divided • Wings inclined over abdomen at rest • Wing pads of late nymphal
    [Show full text]
  • Orthoptera, Acrididae, Oedipodinae) Reveal Convergence of Wing Morphology
    Zoologica Scripta Phylogenetic analyses of band-winged grasshoppers (Orthoptera, Acrididae, Oedipodinae) reveal convergence of wing morphology MARTIN HUSEMANN,SUK NAMKUNG,JAN C. HABEL,PATRICK D. DANLEY &AXEL HOCHKIRCH Submitted: 17 September 2011 Husemann, M., Namkung, S., Habel, J.C., Danley, P.D. & Hochkirch, A. (2012). Accepted: 10 April 2012 Phylogenetic analyses of band-winged grasshoppers (Orthoptera, Acrididae, Oedipodinae) doi:10.1111/j.1463-6409.2012.00548.x reveal convergence of wing morphology. —Zoologica Scripta, 41, 515–526. Historically, morphological traits have been used to examine the relationships of distantly related taxa with global distributions. The use of such traits, however, may be misleading and may not provide the resolution needed to distinguish various hypotheses that may explain the distribution patterns of widely distributed taxa. One such taxon, the Oedipo- dine grasshoppers, contains two tribes principally defined by wing morphologies: the Bry- odemini have broad wings whereas Sphingonotini are narrow-winged. Through the use of morphological features alone, hypotheses concerning the evolution of these tribes cannot be distinguished. To differentiate hypotheses that may explain the distribution of Oedipo- dines, such as vicariance, natural dispersal and anthropogenic translocation, we used two mitochondrial and three nuclear gene fragments to reconstruct the phylogenetic relation- ships within and between the two tribes, and employed a molecular clock to evaluate the hypotheses of vicariance and dispersal. Our results clearly reject monophyly of the tribes and revealed monophyletic Old and New World clades, which is in agreement with previ- ous molecular studies. The split between both clades was dated at 35 Ma (±12 Ma). This clearly rejects the vicariance hypothesis and supports a single invasion via the Beringian land bridge.
    [Show full text]
  • A Comparative Study of Mating Behaviour in Some Neotropical Grasshoppers (Acridoidea)
    Ethology 76, 265-296 (1987) 0 1987 Paul Parey Scientific Publishers, Berlin and Hamburg ISSN 0179-1613 Max-Planck-Institut fur Verhaltensphysiologie, Seewiesen A Comparative Study of Mating Behaviour in Some Neotropical Grasshoppers (Acridoidea) KLAUSRIEUE With 11 figures and one colour plate Received: September 23, 1986 Accepted: January 20, 1987 (W. Wickler) Abstract Aspects of premating and mating behaviour in several South American grasshopppers (Acridoidea) are described and compared. Examples of communication by acoustical, visual and chemical means are given. Acoustic signals are emitted only by species of the subfamilies Gomphocerinae, Acridinae, Romaleinae and Copiocerinae. Each subfamily has distinct sound-producing mechanisms, and the songs occur in different behavioural contexts. In Gomphocerinae and Acridinae the sexes recognize and attract each other by species-specific songs produced by a femuro-tegminal stridulatory mecha- nism. In contrast, Romaleinae produce a simple song by rubbing the hindwings against the forewings. These songs are similar in different species and no attraction of females could be demonstrated, but the behaviour may function in male-male interaction and during copulation. Sexual pheromones also play a role in this subfamily. Acoustic activity during copulation has been observed in Aleuasini (Copiocerinae), but its function is still unclear. No sound production at all exists in the Leptysminae, Rhytidochrotinae, Ommatolampinae, Melanoplinae, Proctolabinae and Bactrophorinae, but conspicuous movements of hindlegs (knee- waving) and antennae were observed. In some species these form part of a soundless courtship display. Ecological constraints have little influence on the basic mating strategies: romaleine, gom- phocerine and melanopline grasshoppers often coexist in various habitats, but show the divergent behaviour patterns characteristic of their respective subfamilies.
    [Show full text]