"¤$# %圻' &)(102﹝34 5("36(7¤ ¡18¥ 9@36&A¨ 36扣&Cbd0

Total Page:16

File Type:pdf, Size:1020Kb

Mem. S.A.It. Vol. 75, 282 c SAIt 2004 Memorie della ¡£¢¥¤§¦©¨ ¡£ ¨ ¨¡¤ ¨ §¦ ¡£!" #!$%¤¡&¥'(!$)¨ !$¦©+*,¨-/.0!$1 ¨2§¦ 3/ 4¤§¥5¦67¡8¨9¦4: ¨-¦ Fabio Reale1, Susanna Parenti2, Kathy K. Reeves3, Mark Weber3, Monica G. Bobra3, Marco Barbera1, Ryohei Kano4, Noriyuki Narukage5, Masumi Shimojo6, Taro Sakao5, Giovanni Peres1, and Leon Golub3 1 Dipartimento di Scienze Fisiche & Astronomiche, Sezione di Astronomia, Universita` di Palermo, Piazza Parlamento 1, 90134 Palermo, Italy and INAF-Osservatorio Astronomico di Palermo, Piazza Parlamento 1, 90134 Palermo, Italy 2 Royal Observatory of Belgium, 3 Circular Avenue, B-1180 Brussels, Belgium 3 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA 4 National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan 5 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan 6 Nobeyama Solar Radio Observatory, National Astronomical Observatory, Nobeyama, Nagano 384-1305, Japan Abstract. The structure, dynamics and evolution of the solar corona are governed by the magnetic field. In spite of significant progresses in our insight of the physics of the so- lar corona, several problems are still under debate, e.g. the role of impulsive events and waves in coronal heating, and the origin of eruptions, flares and CMEs. The Hinode mis- sion has started on 22 september 2006 and aims at giving new answers to these questions. The satellite contains three main instruments, two high resolution telescopes, one in the optical and one in the X-ray band, and an EUV imaging spectrometer. On the Italian side, INAF/Osservatorio Astronomico di Palermo has contributed with the ground-calibration of the filters of the X-ray telescope. We present some preliminary mission results, with partic- ular attention to the X-ray telescope data. Key words. Sun: corona – Sun: magnetic field – Sun: X-rays – Sun: UV 1. Introduction (Vaiana etal. 1973) first monitored the corona for significant parts of a solar rotation and led The study of the colar corona has made large to a first breakthrough in our insight of the steps forwards since the launch of the first structure, dynamics and physics of the corona. telescopes outside the earth atmosphere, which The Solar Maximum Mission (SMM, Bohlin have allowed us to collect the X-ray radia- et al. 1980) addressed the most dynamic and tion from the Sun. In the 70s the S054 X- energetic events on the Sun, the flares, and ray telescope on board the Skylab mission achieved high resolution X-ray spectroscopy, by means of Bragg crystal spectrometers. The Send offprint requests to: F. Reale Reale: Solar corona from Hinode 283 Yohkoh mission (1991-2001, Ogawara et al. on 23 September 2006 (Fig. 1). The mis- 1991) monitored and imaged the solar corona sion consists of a coordinated set of opti- during a whole solar cycle The SoHO mission cal, X-ray and EUV telescopes. The satel- (Domingo et al. 1995), an ESA/NASA corner- lite had been coordinated and developed by stone, has been launched in 1995 and is still the United Kingdom, the United States and active, with more than ten instruments. It is ca- Japan, each with the following main respon- pable of EUV spectroscopy and imaging. The sibilities: the satellite systems were developed TRACE mission (Handy et al. 1999), launched by JAXA and Mitsubishi Electric Corporation. in 1998 and still operating, images the EUV The large solar optical telescope (SOT) was Sun with very high spatial resolution (0.5”). jointly developed by the United States and All these missions have enphasized the Japan. JAXA and the National Astronomical crucial role of the solar magnetic field in Observatory of Japan worked on the tele- confining, heating and accelerating the coro- scope optics and the U.S. National Aeronautics nal plasma. In typical coronal conditions the and Space Administration (NASA) devel- plasma moves and transports energy along oped the focal-plane package (FPP). For the magnetic field lines. Since it is optically the X-ray telescope (XRT), NASA provided thin, and the emission scales as the square of grazing-incidence mirror optics, and JAXA the the density, the brightest part of the corona CCD camera. Development of the Extreme consists of regions full of closed magnetic Ultraviolet (EUV) Imaging Spectrometer is be- structures, the so-called coronal loops, where ing led by the Particle Physics and Astronomy the plasma is strongly confined and therefore Research Council (PPARC) of the United denser. Coronal loops can be found on several Kingdom with the support of NASA and spatial scales, from ∼ 108 cm (bright points) to JAXA. > 10 ∼ 10 cm (large scale structures) and typically The Hinode spacecraft is built around the live on time scales of several hours, longer than optical telescope assembly (OTA). The focal the typical cooling time scales (e.g. Vaiana et plane package (FPP) of the OTA, the XRT and al. 1973a, Serio et al. 1981). Therefore, coronal EIS are strapped to the sides of the OTA. The heating mechanisms are invoked to act on time payload has a dry weight of 875 kg. The so- scales as long as to maintain the coronal struc- lar arrays provide 1000 W of power and the tures steady. On the other hand coronal loops telemetry system has a downlink capability of are the site of very dynamic events, from fast 4.2 Mbps. ESA is providing 15 contacts per brightening, to explosive flares, lasting from day from Svalbard to supplement the four day several minutes to many hours. Although the passes at Kashima for a total of ∼ 7 GB per space missions have provided a wealth of use- day. ful observational data and have contributed to The optical telescope (SOT) is a diffrac- explain many aspects of the link between the tion limited, aplanatic Gregorian in the band dynamic and heated corona and the solar mag- 388-670 nm, with an aperture of 0.5 m. It pro- netic field, the details of how the magnetic field vides angular resolution of about 0.2 arcsec at releases its energy and determines the plasma 400 nm over the field of view of about 4 x 4 dynamics is still unclear and under debate (e.g. arcmin2. The focal plane package of the opti- Reale & Ciaravella 2006, Klimchuk 2006). cal telescope consists of a filter vector magne- Further questions have been opened by new tograph and a spectro-polarimeter. This com- dynamic phenomena detected thanks to the bination is able to provide a continuous se- higher temporal and spatial resolution achieved ries of high-precision vector magnetograms, by the new missions. Dopplergrams, and filtergrams with sub-arcsec resolution. 2. The Hinode mission The Extreme Ultraviolet Imaging Spectrometer (EIS) provides spatially re- Hinode is the successor to the orbiting so- solved high resolution spectra and aims at lar observatory Yohkoh and was launched determining velocity fields and other plasma 284 Reale: Solar corona from Hinode parameters in the corona and transition region. transmission tests showed that the results were It is sensitive in the wavebands 170-210 Åand within 5-10% of the predicted values. 250-290 Å, where intense Fe lines are present. The spatial and spectral resolution are about 3. XRT observations 1 arcsec, and 2.23 mÅ/pixel respectively. The minimum slit is 1 × 512 arcsec2. The X-ray telescope has been designed to The grazing-incidence X-ray telescope achieve several scientific goals. The main ones (XRT, Golub et al. 2007) images the high tem- include the origin and triggering of Coronal perature (1 to 30 MK) corona with high angu- Mass Ejections, the heating of coronal struc- lar resolution, a few times better than the soft tures, the presence of waves and the role of the X-ray telescope on board Yohkoh, through sev- interaction between the structures, the details eral filters so to provide temperature and den- of magnetic reconnection, the dynamics and sity diagnostics. The telescope is a modified energetics of flares, the coupling of the corona Wolter I with a 35 cm aperture and a 2.71 m to the photosphere, the energy transfer to the focal length. It provides a flare flag to alert corona. To these purposes several observation the other instruments. The angular resolution is modes have been set up; the analysis of the ≈ 1 arcsec, the encircled energy is 68% within coronal dynamics requires sensitivity to rapid a 2 arcsec diameter circle at 0.523 keV. The evolution and therefore frequent sampling at CCD is 2048×2048 pixels corresponding to a high cadence; the study of the plasma energet- field of view of 35×35 arcmin. It includes a ics requires the capability to recover the ther- visible light optic. The optics are mounted at mal structure and evolution and this can be ob- one end of the telescope tube. At the other end tained from observations with multiple filters; there are two filter wheels with analysis filter, the analysis of the coronal structure topology the main shutter and a camera. XRT enables requires the monitoring of the magnetic activ- several algorithms to maximize the quality of ity on a large scale and therefore the obser- the observations. vation with large field of view and with long and short exposures to achieve a large dynamic range of emission. 2.1. XRT calibration at Palermo Here we present a preliminary result which OAPa/XACT shows the kind of diagnostics expected from the X-ray data of Hinode/XRT. Fig. 2 shows Several of the ight focal plane lters for the the map of the ratio of the emission in two XRT XRT were tested at the X-Ray Astronomy filter passbands of the active region observed Calibration and Testing (XACT) facility of with Hinode on 12 November 2006.
Recommended publications
  • XIII Publications, Presentations
    XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys.
    [Show full text]
  • Hinode Project and Science Center (Hinode-SC)
    Hinode Project and Science Center (Hinode-SC) Shinsuke Imada (Nagoya Univ., ISEE) Characteristics of the Advanced Telescopes | Hinode Science Center at NAOJ 2019/10/13 22(30 For Researchers 日本語 シェア Tweet “Hinode” Unveils To do research Information Gallery For Researchers the Mysteries of the Sun using Hinode data TOP "Hinode" Unveils the Mysteries of the Sun Characteristics of the Advanced Telescopes Solar Observing Satellite "Hinode" (SOLAR-B) | Hinode Science Center at NAOJ 2019/10/13 22(29 "Hinode" Unveils Characteristics of the Advanced Telescopes the Mysteries of the For Researchers 日本語 Sun Tweet シェア Overview of “Hinode” “Hinode” Unveils To do research Characteristics of the Advanced Telescopes Solar Observing Information Gallery For Researchers Satellite "Hinode" the Mysteries of the Sun using Hinode data (SOLAR-B) The Sun's atmosphere is comprised of layers. The layers beneath the surface (photosphere) cannot be TOP "Hinode" UnveilsSolar the Mysteries of the Sun ObservingSolar Observing Satellite "Hinode" (SOLAR-B) Satelliteseen “ directly,Hinode but the upper layers ”above (SOLAR the photosphere each emit- differentB) wavelengths of lights. So, About the "Hinode" Project you can see each layer by changing the observing wavelength. By loading three telescopes observing in "Hinode" Unveils Solar Observing Satellite "Hinode" (SOLAR-B) different wavelengththe Mysteries ranges, of the Hinode can simultaneously observe from the photosphere to the corona (upper atmosphere).Sun Characteristics of the Advanced Telescopes Overview of “Hinode”
    [Show full text]
  • Building the Coolest X-Ray Satellite
    National Aeronautics and Space Administration Building the Coolest X-ray Satellite 朱雀 Suzaku A Video Guide for Teachers Grades 9-12 Probing the Structure & Evolution of the Cosmos http://suzaku-epo.gsfc.nasa.gov/ www.nasa.gov The Suzaku Learning Center Presents “Building the Coolest X-ray Satellite” Video Guide for Teachers Written by Dr. James Lochner USRA & NASA/GSFC Greenbelt, MD Ms. Sara Mitchell Mr. Patrick Keeney SP Systems & NASA/GSFC Coudersport High School Greenbelt, MD Coudersport, PA This booklet is designed to be used with the “Building the Coolest X-ray Satellite” DVD, available from the Suzaku Learning Center. http://suzaku-epo.gsfc.nasa.gov/ Table of Contents I. Introduction 1. What is Astro-E2 (Suzaku)?....................................................................................... 2 2. “Building the Coolest X-ray Satellite” ....................................................................... 2 3. How to Use This Guide.............................................................................................. 2 4. Contents of the DVD ................................................................................................. 3 5. Post-Launch Information ........................................................................................... 3 6. Pre-requisites............................................................................................................. 4 7. Standards Met by Video and Activities ...................................................................... 4 II. Video Chapter 1
    [Show full text]
  • Co-Aligned IRIS, SDO and Hinode Data Cubes Release 1.0
    Co-aligned IRIS, SDO and Hinode data cubes Release 1.0 Milan Gošic´ Feb 26, 2020 CONTENTS 1 Introduction 1 1.1 About this Guide.............................................1 1.2 Synopsis of the IRIS, Hinode and SDO missions............................1 1.3 Hinode and SDO data cubes co-aligned with IRIS observations....................2 2 Finding and downloading IRIS-SDO-Hinode co-aligned data cubes5 2.1 Using the IRIS Webpage (HCR).....................................5 2.2 Using SSWIDL..............................................5 3 Reading and browsing IRIS-SDO-Hinode co-aligned data cubes 11 3.1 Reading level 2 co-aligned SDO and Hinode datasets.......................... 11 3.2 Browsing co-aligned SDO and Hinode data cubes with CRISPEX................... 13 i ii CHAPTER ONE INTRODUCTION 1.1 About this Guide The purpose of this guide is to provide detailed instructions on how users can find, download, browse, and analyze co-aligned level 2 data obtained with The Interface Region Imaging Spectrograph (IRIS), the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), and Hinode/SOT level 2 data. The IRIS team at the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL) created new data cubes consisting of the Hinode/SOT and SDO/AIA images co-aligned with the simultaneous IRIS observations. These datasets all have the same IRIS level 2 FITS format, therefore can be accessed and examined using the IRIS SolarSoft software. In this guide, we provide step by step instructions how to access, read, and visualize these newly created co-aligned data cubes. In particular, we describe: • How to find data using SolarSoft IDL routines; • How to acquire data sets using either SolarSoft or Heliophysics Coverage Registry (HCR); • How to read data and visualize them using SolarSoft routines or Crisp Spectral Explorer (CRISPEX).
    [Show full text]
  • Development of 60Μm Pitch Cdte Double-Sided Strip Detector for FOXSI-3 Rocket Experiment
    Development of 60µm pitch CdTe double-sided strip detector for FOXSI-3 rocket experiment Kento Furukawa(U-Tokyo, ISAS/JAXA) Shin'nosuke Ishikawa, Tadayuki Takahashi, Shin Watanabe(ISAS/JAXA), Koichi Hagino(Tokyo University of Science), Shin'ichiro Takeda(OIST), P.S. Athiray, Lindsay Glesener, Sophie Musset, Juliana Vievering (U. of Minnesota), Juan Camilo Buitrago Casas , Säm Krucker (SSL/UCB), and Steven Christe (NASA/GSFC) 1 2 CdTe semiconductor and diode device Cadmium Telluride semiconductor : • High density • Large atomic number • High efficiency Issue : small µτ product especially for holes 260eV(FWHM) • Uniform & thin device @6.4keV 1400V,-40℃ • Schottky Diode (Takahashi et al. 1998 ) High bias voltage full charge collection + high energy resolution Takahashi et al. (2005) 3 Application of CdTe Diode Double-sided Strip Detector Watanabe et al. 2009 Anode(Pt): Ohmic contact Cathode(Al): Schottky contact Astrophysical Application • Hard X-ray Imager(HXI) onboard Hitomi(ASTRO-H) satellite • FOXSI rocket mission Medical Application • Small animal SPECT system (OIST/JAXA) 4 Hard X-ray study of the Sun Observation Target : the Sun Corona and flare Scientific Aim • Coronal Heating (thermal emission) • Particle Acceleration (non-thermal emission ) →Sensitive Hard X-ray imaging and spectral observation is the key especially for small scale flares study Soft X-ray image by Hinode (micro and nano) (NAOJ/JAXA) So far only Indirect Imaging e.g. RHESSI spacecraft (Rotational Modulation collimator) No direct imaging in hard X-ray band for solar mission 5 FOXSI rocket mission FOXSI experiment (UCB/SSL, NASA, UMN, ISAS/JAXA) Indirect Direct Imaging Spectroscopy with Focusing Optics in Hard X-ray Hard X-ray telescopes + CdTe focal plane detectors FOXSI’s hard X-ray telescope clearly identified a micro-flare with high S/N ratio Direct Telescope Angular resolution : 5 arcsec (FWHM) Focal plane detector 50µm on focal plane Krucker et al.
    [Show full text]
  • Message from the Director General September 2017 Saku Tsuneta Director General
    Message from the Director General September 2017 Saku Tsuneta Director General Institute of Space and Astronautical Science Japan Aerospace Exploration Agency On April 28, 2016, the Japan former ISAS project managers, and levels, the satellite was declared to Aerospace Exploration Agency an Action Plan for Reforming ISAS have entered into its scheduled orbit (JAXA) made the difficult decision Based on the Anomaly Experienced in March 2017. The successful start to terminate attempts to restore by Hitomi was developed. In of the ARASE mission is a testament communication with the X-ray addition, “town hall meetings” were to the dedication and skills across Astronomy Satellite ASTRO-H (also held to share the spirit and practice JAXA. known as HITOMI), which was of the action plan with all ISAS ISAS is currently operating six launched on February 17, 2016, due employees. The plan, which was satellites and space probes: ARASE, to the communication anomalies applied to launch preparations of Hayabusa2, HISAKI, AKATSUKI, that occurred on March 26, 2016. the geospace exploration satellite HINODE, and GEOTAIL. Asteroid Since that time, in consultation with ARASE, contributed to the successful Explorer Hayabusa2, which is experts inside as well as outside and stable operation of that satellite, currently on its planned trajectory JAXA, the Institute of Space and and will be applied to other projects towards the 162173 Ryugu asteroid Astronautical Science (ISAS) has such as the Smart Lander for under ion engine power, is equipped been making every possible effort Investigating Moon (SLIM). The plan- with new technologies for solar to determine what went wrong, and do-check-act (PDCA) cycle should system exploration such as long- what can be done to prevent this work to further refine both current distance communication using Ka- from happening again in the future.
    [Show full text]
  • Solar Flares
    https://ntrs.nasa.gov/search.jsp?R=20150005791 2019-08-31T11:04:12+00:00Z Solar Flares Sabrina Savage (NASA/MSFC) Heliophysics System Observatory (HSO) • Fleet of solar, heliospheric, geospace, and planetary satellites designed to work independently while enabling large-scale collaborative investigations. http://www.nasa.gov/mission_pages/sunearth/missions/ Heliophysics System Observatory (HSO): http://www.nasa.gov/mission_pages/sunearth/missions/ The Sun in Layers Converts 4 million tons of matter into energy every second. Core is as dense as lead. Interplay between magnetic pressure and gas (plasma) pressure. 15 000 000 ∘C “Mysteries of the Sun”: NASA / Jenny Mottar Sun Facts: http://solarscience.msfc.nasa.gov/ The Sun in Layers 15 000 000 ∘C European Space Agency (ESA) Smithsonian Astrophysical Observatory (SAO) “Mysteries of the Sun”: NASA / Jenny Mottar Sun Facts: http://solarscience.msfc.nasa.gov/ Sunspots & Active Regions 1625 May: Christoph Scheiner 2014 April 14: SDO HMI 6173 A European Space Agency (ESA) / Royal Observatory Belgium (ROB) NOAA Active Regions: SolarMonitor.org PROBA2 Science Center (ROB): http://proba2.sidc.be/ Sunspots & Active Regions Formation 4500 A 193 A 131 A SDO / AIA 2014 Apr 13 - 15 JHelioviewer — Explore the Sun: http://jhelioviewer.org/ Sunspots & Active Regions Hinode SOT: NASA / JAXA / NAOJ Sunspot Magnetic fields ~ 3000-6000 times stronger than Earth’s field. Magnetic pressure dominates gas pressure in spot, thus inhibiting convective flow of heat. JHelioviewer SDO / AIA 2014 Apr 04 SOT (CN line 3883 A); 2007 May 2 SOHO animation gallery SOT Picture of the Day (POD): http://sot.lmsal.com/pod?cmd=view-gallery Sunspots & Active Regions Solar Dynamics Observatory (GSFC) Jewel Box: http://svs.gsfc.nasa.gov/vis/a000000/a004100/a004117/ Sunspots & Active Regions Courtesy of Milo Littenberg Sunspots & Active Regions “SDO Jewel Box” Solar features as seen with 10 different filters (i.e., plasma at different temperatures).
    [Show full text]
  • Smallsat Solar Axion X-Ray Imager (SSAXI)
    SSC18-VII-02 SmallSat Solar Axion X-ray Imager (SSAXI) Jaesub Hong Harvard University Cambridge, MA 02138; 617-496-7512 [email protected] Suzanne Romaine, Christopher S. Moore, Katharine Reeves, Almus Kenter Smithsonian Astrophysical Observatory Cambridge, MA 02138; 617-496-7719 [email protected] Brian D. Ramsey, Kiranmayee Kilrau NASA Marshall Space Flight Center Huntsville, AL 35812; 256-961-7784 [email protected] Kerstin Perez Massachusetts Institute of Technology Cambridge, MA 02139; 617-324-1522 [email protected] Julia Vogel, Jaime Ruz Armendariz Lawrence Livermore National Laboratory Livermore, CA 94550; 925-424-4815 [email protected] Hugh Hudson Space Science Laboratory UC Berkeley, CA 94720; 510-643-0333 [email protected] ABSTRACT The axion is a promising dark matter candidate as well as a solution to the strong charge-parity (CP) problem in quantum chromodynamics (QCD). Therefore, discovery of axions will have far-reaching consequences in astrophysics, cosmology and particle physics. We describe a new concept for SmallSat Solar Axion X-ray Telescope (SSAXI) to search for solar axions or axion-like particles (ALPs). Axions or ALPs are expected to emerge abundantly from the core of stars like the Sun. SSAXI employs Miniature lightweight Wolter-I focusing X-ray optics (MiXO) and monolithic CMOS X-ray sensors to form a sensitive X-ray imaging spectrometer in a compact package (~10 x 10 x 60 cm). The wide energy range (~0.5 – 5 keV) of SSAXI is suitable for capturing the prime spectral feature of axion-converted X-rays (peaking at ~3 – 4 keV) from solar X-ray spectra.
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • Arxiv:0710.2934V2 [Astro-Ph] 17 Oct 2007
    PASJ: Publ. Astron. Soc. Japan , 1–??, c 2018. Astronomical Society of Japan. A Tale Of Two Spicules: The Impact of Spicules on the Magnetic Chromosphere Bart De Pontieu1, Scott McIntosh2,3, Viggo H. Hansteen4,1, Mats Carlsson4 [email protected], [email protected], [email protected],[email protected] C.J. Schrijver1, T.D. Tarbell1, A.M. Title1, R.A. Shine1 [email protected], [email protected], [email protected], [email protected] Y. Suematsu5, S. Tsuneta5, Y. Katsukawa5, K. Ichimoto5, T. Shimizu6 S. Nagata7 [email protected],[email protected], [email protected], [email protected], [email protected], [email protected] 1Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304, USA 2High Altitude Observatory, National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307, USA 3Department of Space Studies, Southwest Research Insititute, 1050 Walnut St, Suite 400, Boulder, CO 80302, USA 4Institute of Theoretical Astrophysics, University of Oslo, PB 1029 Blindern, 0315 Oslo Norway 5National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588, Japan 6ISAS/JAXA, Sagamihara, Kanagawa, 229-8510, Japan 7Kwasan and Hida Observatories, Kyoto University,Yamashina, Kyoto, 607-8471, Japan (Received 2007 June 10; accepted accepted for Hinode special issue) Abstract We use high-resolution observations of the Sun in Ca II H (3968A)˚ from the Solar Optical Telescope on Hinode to show that there are at least two types of spicules that dominate the structure of the magnetic solar chromosphere. Both types are tied to the relentless magnetoconvective driving in the photosphere, but have very different dynamic properties.
    [Show full text]
  • Abundances 164 ACE (Advanced Composition Explorer) 1, 21, 60, 71
    Index abundances 164 CIR (corotating interaction region) 3, ACE (Advanced Composition Explorer) 1, 14À15, 32, 36À37, 47, 62, 108, 151, 21, 60, 71, 170À171, 173, 175, 177, 254À255 200, 251 energetic particles 63, 154 SWICS 43, 86 Climax neutron monitor 197 ACRs (anomalous cosmic rays) 10, 12, 197, CME (coronal mass ejection) 3, 14À15, 56, 258À259 64, 86, 93, 95, 123, 256, 268 CIRs 159 composition 268 pickup ions 197 open flux 138 termination shock 197, 211 comets 2À4, 11 active longitude 25 ComptonÀGetting effect 156 active region 25 convection equation tilt 25 diffusion 204 activity cycle (see also solar cycle) 1À2, corona 1À2 11À12 streamers 48, 63, 105, 254 Advanced Composition Explorer see ACE temperature 42 Alfve´n waves 116, 140, 266 coronal hole 30, 42, 104, 254, 265 AMPTE (Active Magnetospheric Particle PCH (polar coronal hole) 104, 126, 128 Tracer Explorer) mission 43, 197, coronal mass ejections see CME 259 corotating interaction regions see CIR anisotropy telescopes (AT) 158 corotating rarefaction region see CRR Cosmic Ray and Solar Particle Bastille Day see flares Investigation (COSPIN) 152 bow shock 10 cosmic ray nuclear composition (CRNC) butterfly diagram 24À25 172 cosmic rays 2, 16, 22, 29, 34, 37, 195, 259 Cassini mission 181 anomalous 195 CELIAS see SOHO charge state 217 CH see coronal hole composition 196, 217 CHEM 43 convection–diffusion model 213 282 Index cosmic rays (cont.) Energetic Particle Composition Experiment drift 101, 225 (EPAC) 152 force-free approximation 213 energetic particle 268 galactic 195 anisotropy 156,
    [Show full text]
  • MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
    MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole.
    [Show full text]