Characteristics of Spilled Oils, Fuels, and Petroleum Products: 1. Composition and Properties of Selected Oils

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of Spilled Oils, Fuels, and Petroleum Products: 1. Composition and Properties of Selected Oils EPA/600/R-03/072 July 2003 Characteristics of Spilled Oils, Fuels, and Petroleum Products: 1. Composition and Properties of Selected Oils Zhendi Wang, B.P. Hollebone, M. Fingas, B. Fieldhouse, L. Sigouin, M. Landriault, P. Smith, J. Noonan, and G. Thouin Emergencies Science and Technology Division Environmental Technology Centre Environment Canada 335 River Road, Ottawa, Ontario James W. Weaver Project Officer Ecosystems Research Division Athens, Georgia 30605 National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Agency Research Triangle Park, North Carolina 27711 Notice The U.S. Environmental Protection Agency through its Office of Research and Development funded and managed the research described here under contract (1D-5859-NAFX) to Environment Canada. It has been subjected to the Agency’s peer and administrative review and has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii Foreword The National Exposure Research Laboratory’s Ecosystems Research Division (ERD) in Athens, Georgia, conducts research on organic and inorganic chemicals, greenhouse gas biogeochemical cycles, and land use perturbations that create direct and indirect, chemical and non-chemical stresses, exposures, and potential risks to humans and ecosystems. ERD develops, tests, applies and provides technical support for exposure and ecosystem response models used for assessing and managing risks to humans and ecosystems, within a watershed / regional context. The Regulatory Support Branch (RSB) conducts problem-driven and applied research, develops technology tools, and provides technical support to customer Program and Regional Offices, States, Municipalities, and Tribes. Models are distributed and supported via the EPA Center for Exposure Assessment Modeling (CEAM) and through access to Internet tools (www.epa.gov/athens/onsite). At the request of the US EPA Oil Program Center, ERD is developing an oil spill model that focusses on fate and transport of oil components under various response scenarios. Since crude oils and petroleum products are composed of many chemicals that have varying physical properties, data are required to characterize these fluids for use in models. The data presented in this report provide input to compositional models by characterizing oil composition by several approaches, but also by providing physical transport properties at corresponding levels of weathering and temperature. EPA expects these data to be useful both for modeling and to provide a resource for the oil spill response community as a whole. Rosemarie C. Russo, Ph.D. Director Ecosystems Research Division Athens, Georgia iii Abstract Multicomponent composition and corresponding physical properties data of crude oils and petroleum products are needed as input to environmental fate simulations. Complete sets of such data, however, are not available in the literature due to the complexity and expense of making the measurements. Environment Canada has previously developed a database of various physical and chemical properties of crude oils and petroleum products. In this cooperative project, ten “typical” crude oils and refined products in common use or transport were identified for subsequent characterization. Measured oil physical properties include API gravity, density, sulphur content, water content, flash point, pour point, viscosity, surface and interfacial tension, adhesion, the equation for predicting evaporation, emulsion formation, and simulated boiling point distribution. The chemical composition of the oils are quantified for hydrocarbon groups, volatile organic compounds, n-alkane distribution, distribution of alkylated polyaromatic hydrocarbon (PAH) homologues and other EPA priority PAHs, and biomarker concentrations. This project will provide the most complete and comprehensive database for the selected oils to date. The new composition data will be integrated into the existing Environment Canada oil properties database. The results will be made available to the public both on the world wide web and as a database on disc. iv Table of Contents Notice .................................................................... ii Foreword ................................................................ iii Abstract .................................................................. iv 1. Introduction .......................................................... 1 2. List of Definitions ..................................................... 3 3. Methods for Measurement of Physical and Chemical Properties of Selected Oils ..... 10 4. Summary of Quality Assurance and Quality Control (QA/QC) Plan ............... 28 5. Physical Properties and Chemical Composition of Alaska North Slope Crude Oil (2002) .................................................................. 34 6. Physical Properties and Chemical Composition of Alberta Sweet Mixed Blend (ASMB, Reference #5) ................................................................ 46 7. Physical Properties and Chemical Composition of Arabian Light (2000) ............ 58 8. Physical Properties and Chemical Composition of Sockeye (2000) ................ 70 9. Physical Properties and Chemical Composition of South Louisiana (2001) .......... 82 10. Physical Properties and Chemical Composition of West Texas Intermediate (2002) . 94 11. Physical Properties and Chemical Composition of Fuel Oil No. 2/Diesel (2002) ..... 106 12. Physical Properties and Chemical Composition of Fuel Oil No. 5 (2000) .......... 118 13. Physical Properties and Chemical Composition of Heavy Fuel Oil 6303 (2002) ...... 129 14. Physical Properties and Chemical Composition of Orimulsion-400 (2001) ......... 140 15. Trace Metals ....................................................... 148 v 16. References ......................................................... 149 17. Appendices ........................................................ 153 1 Chemical Abstract Service (CAS) Registry Numbers for Selected Analytes ...... 153 2 Oil Chemical Analysis Protocol ....................................... 156 3 GC Chromatograms for Alaska North Slope Crude Oil ...................... 157 4 GC Chromatograms for Alberta Sweet Mixed Blend #5 Crude Oil ............. 170 5 GC Chromatograms for Arabian Light Crude Oil .......................... 182 6 GC Chromatograms for Sockeye Crude Oil .............................. 194 7 GC Chromatograms for South Louisiana Crude Oil ........................ 208 8 GC Chromatograms for West Texas Intermediate Crude Oil .................. 220 9 GC Chromatograms for Fuel Oil Number 2 .............................. 231 10 GC Chromatograms for Fuel Oil Number 5 ............................. 245 11 GC Chromatograms for HFO 6303 ................................... 257 12 GC Chromatograms for Orimulsion-400 ................................ 270 vi 1. Introduction During any oil spill incident, the properties of the spilled oil, including the oil phase composition and oil compositional changes due to weathering, ideally would be known immediately, so that models could be used to predict the environmental impacts of the spill or various treatment alternatives. Unfortunately, the properties routinely measured by oil producers and refiners are not the ones that on-scene commanders need to know most urgently. Oil producers and refiners typically do not know to what extent or at what rate their oils will evaporate; the detailed chemical composition of the oil and its differential compositional changes over time; how these changes affect its behavior and fate in the environment; the viscosity of the oil at ambient temperature as it evaporates; if the oil likely to sink or submerge; if the use of chemical dispersants can enhance its dispersion; if emulsions will form; the hazard to on-site personnel during cleanup; or the oil toxicity to marine or aquatic organisms. Since 1984, the Emergencies Science and Technology Division (ESTD) of Environment Canada has continued to develop a database on various physical-chemical properties of crude oils and petroleum products. This database addresses the properties and behaviors listed in the previous paragraph and can be queried via the internet at www.etcentre.org/spills. Through many years endeavor, the oil properties database now contains information on over 400 oils from all over the world. Environment Canada is the largest single source of data in the oil properties database. The U.S. EPA’s immediate interest in developing a database of properties and compositions is for use in supporting the development of models for application to accidental spills and releases of petroleum hydrocarbons and other multicomponent oils. This multicomponent composition data is not typically available in the literature nor immediately available on an incident-specific basis due to the complexity and expense of making the measurements. Thus the creation of a database containing both physical property and composition data for various conditions of weathering would be useful for emergency response modeling. In this situation the data could be used for simulation of an example oil that would be chosen for its similarity to the spilled oil. This approach recognizes that performing detailed characterization of an oil during an emergency is more than unlikely. It would further be desirable to have access to similar data for planning purposes in advance of spills. Ten representative
Recommended publications
  • Catalytic Pyrolysis of Plastic Wastes for the Production of Liquid Fuels for Engines
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019 Supporting information for: Catalytic pyrolysis of plastic wastes for the production of liquid fuels for engines Supattra Budsaereechaia, Andrew J. Huntb and Yuvarat Ngernyen*a aDepartment of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand. E-mail:[email protected] bMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand Fig. S1 The process for pelletization of catalyst PS PS+bentonite PP ) t e PP+bentonite s f f o % ( LDPE e c n a t t LDPE+bentonite s i m s n HDPE a r T HDPE+bentonite Gasohol 91 Diesel 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm-1) Fig. S2 FTIR spectra of oil from pyrolysis of plastic waste type. Table S1 Compounds in oils (%Area) from the pyrolysis of plastic wastes as detected by GCMS analysis PS PP LDPE HDPE Gasohol 91 Diesel Compound NC C Compound NC C Compound NC C Compound NC C 1- 0 0.15 Pentane 1.13 1.29 n-Hexane 0.71 0.73 n-Hexane 0.65 0.64 Butane, 2- Octane : 0.32 Tetradecene methyl- : 2.60 Toluene 7.93 7.56 Cyclohexane 2.28 2.51 1-Hexene 1.05 1.10 1-Hexene 1.15 1.16 Pentane : 1.95 Nonane : 0.83 Ethylbenzen 15.07 11.29 Heptane, 4- 1.81 1.68 Heptane 1.26 1.35 Heptane 1.22 1.23 Butane, 2,2- Decane : 1.34 e methyl- dimethyl- : 0.47 1-Tridecene 0 0.14 2,2-Dimethyl- 0.63 0 1-Heptene 1.37 1.46 1-Heptene 1.32 1.35 Pentane,
    [Show full text]
  • 1 Refinery and Petrochemical Processes
    3 1 Refinery and Petrochemical Processes 1.1 Introduction The combination of high demand for electric cars and higher automobile engine effi- ciency in the future will mean less conversion of petroleum into fuels. However, the demand for petrochemicals is forecast to rise due to the increase in world popula- tion. With this, it is expected that modern and more innovative technologies will be developed to serve the growth of the petrochemical market. In a refinery process, petroleum is converted into petroleum intermediate prod- ucts, including gases, light/heavy naphtha, kerosene, diesel, light gas oil, heavy gas oil, and residue. From these intermediate refinery product streams, several fuels such as fuel gas, liquefied petroleum gas, gasoline, jet fuel, kerosene, auto diesel, and other heavy products such as lubricants, bunker oil, asphalt, and coke are obtained. In addition, these petroleum intermediates can be further processed and separated into products for petrochemical applications. In this chapter, petroleum will be introduced first. Petrochemicals will be intro- duced in the second part of the chapter. Petrochemicals – the main subject of this book – will address three major areas, (i) the production of the seven cornerstone petrochemicals: methane and synthesis gas, ethylene, propylene, butene, benzene, toluene, and xylenes; (ii) the uses of the seven cornerstone petrochemicals, and (iii) the technology to separate petrochemicals into individual components. 1.2 Petroleum Petroleum is derived from the Latin words “petra” and “oleum,” which means “rock” and “oil,” respectively. Petroleum also is known as crude oil or fossil fuel. It is a thick, flammable, yellow-to-black mixture of gaseous, liquid, and solid hydrocarbons formed from the remains of plants and animals.
    [Show full text]
  • The Chemistry of Refining Crude Oil SPN#12
    The Chemistry of Refining Crude Oil SPN LESSON #12 LEARNING OUTCOME: Students come to view energy from several viewpoints. They work with the processes of • Phase changes and the many energy transformations and transfers involved in that physical change; • chemical change and the energy it releases. LESSON OVERVIEW: The fractional distillation of crude oil is featured. This major fossil fuel of the modern age is viewed as an example of stored chemical energy. Alcohol and water are separated and recaptured by taking advantage of the differences in the two substances’ boiling points. The many components of crude oil are explored and students are introduced to organic chemical formulas, characteristics of changes in phases, and laboratory distillation procedures. GRADE-LEVEL APPROPRIATENESS: This Level II Physical Setting, technology education lesson is intended for students in grades 5–8. MATERIALS (per group) Safety goggles (per person) Lab apron (per person) Bunsen burner Ring stand with utility clamp Metal pan 3 medium test tubes Test tube rack Boiling chip 2-hole stopper 10 cm glass tubing with 90o bend Thermometer 15 mL of isopropyl alcohol–water mixture nyserda.ny.gov/School-Power-Naturally Stirring rod Graduated cylinder Grease pencil or marker 4 paper strips, 10 cm x 1 cm 60 cm rubber tubing SAFETY Students should be made familiar with proper laboratory safety procedures including the location of fire extinguishers, fire blankets, and safety showers (where available). Instruct students regarding the proper and safe use of Bunsen burners and matches, and stress the importance of keeping the volatile components of the fractional distillation away from the flame during the collection of distillates.
    [Show full text]
  • Olive Oil Jars Left Behind By
    live oil jars left behind by the ancient Greeks are testament to our centuries- old use of cooking oil. Along with salt and pepper, oil Oremains one of the most important and versatile tools in your kitchen. It keeps food from sticking to pans, adds flavor and moisture, and conducts the heat that turns a humble stick of potato into a glorious french fry. Like butter and other fats, cooking oil also acts as a powerful solvent, unleashing fat-soluble nutrients and flavor compounds in everything from tomatoes and onions to spices and herbs. It’s why so many strike recipes begin with heating garlic in oil rather than, say, simmering it in water. The ancient Greeks didn’t tap many cooking oils. (Let’s see: olive oil, olive oil, or—ooh, this is exciting!—how about olive oil?) But you certainly can. From canola to safflower to grapeseed to walnut, each oil has its own unique flavor (or lack thereof), aroma, and optimal cooking temperature. Choosing the right kind for the task at hand can save you money, boost your health, and improve your cooking. OK, so you probably don’t stop to consider your cooking oil very often. But there’s a surprising amount to learn about What’s this? this liquid gold. BY VIRGINIAWILLIS Pumpkin seed oil suspended in corn oil—it looks like a homemade Lava Lamp! 84 allrecipes.com PHOTOS BY KATE SEARS WHERE TO store CANOLA OIL GRAPESEED OIL are more likely to exhibit the characteristic YOUR OIL flavor and aroma of their base nut or seed.
    [Show full text]
  • The Cost of Pipeline Constraints in Canada by Elmira Aliakbari and Ashley Stedman
    FRASER RESEARCH BULLETIN FROM THE CENTRE FOR NATURAL RESOURCE STUDIES May 2018 The Cost of Pipeline Constraints in Canada by Elmira Aliakbari and Ashley Stedman MAIN CONCLUSIONS Despite the steady growth in crude oil From 2013 to 2017, after accounting for available for export, new pipeline proj- quality differences and transportation ects in Canada continue to face delays costs, the depressed price for Canadian related to environmental and regula- heavy crude oil has resulted in CA$20.7 tory impediments as well as political billion in foregone revenues for the Ca- opposition. nadian energy industry. This significant loss is equivalent to almost 1 percent of Canada’s lack of adequate pipeline ca- Canada’s national GDP. pacity has imposed a number of costly constraints on the nation’s energy sec- In 2018, the average price differen- tor including an overdependence on tial (based on the first quarter) was the US market and reliance on more US$26.30 per barrel. If the price differ- costly modes of energy transportation. ential remains at the current level, we These and other factors have resulted estimate that Canada’s pipeline con- in depressed prices for Canadian heavy straints will reduce revenues for Cana- crude (Western Canada Select) relative dian energy firms by roughly CA$15.8 to US crude (West Texas Intermediate) billion in 2018, which is approximately and other international benchmarks. 0.7 percent of Canada’s national GDP. Between 2009 and 2012, the average Insufficient pipeline capacity has re- price differential between Western sulted in substantial lost revenue for Canada Select (WCS) and West Texas the energy industry and thus imposed Intermediate (WTI) was about 13 per- significant costs on the economy as a cent of the WTI price.
    [Show full text]
  • Material Safety Data Sheet Hexamethylbenzene MSDS
    Material Safety Data Sheet Hexamethylbenzene MSDS# 96291 Section 1 - Chemical Product and Company Identification MSDS Name: Hexamethylbenzene Catalog Numbers: AC120570000, AC120570050, AC120570100, AC120570250 Synonyms: None known. Acros Organics BVBA Company Identification: Janssen Pharmaceuticalaan 3a 2440 Geel, Belgium Acros Organics Company Identification: (USA) One Reagent Lane Fair Lawn, NJ 07410 For information in the US, call: 800-ACROS-01 For information in Europe, call: +32 14 57 52 11 Emergency Number, Europe: +32 14 57 52 99 Emergency Number US: 201-796-7100 CHEMTREC Phone Number, US: 800-424-9300 CHEMTREC Phone Number, Europe: 703-527-3887 Section 2 - Composition, Information on Ingredients ---------------------------------------- CAS#: 87-85-4 Chemical Name: Hexamethylbenzene %: 99+ EINECS#: 201-777-0 ---------------------------------------- Hazard Symbols: None listed Risk Phrases: None listed Section 3 - Hazards Identification EMERGENCY OVERVIEW Caution! The toxicological properties of this material have not been fully investigated. May cause eye, skin, and respiratory tract irritation. Target Organs: None known. Potential Health Effects Eye: May cause eye irritation. Skin: May cause skin irritation. May be harmful if absorbed through the skin. Ingestion: May cause irritation of the digestive tract. May be harmful if swallowed. Inhalation: May cause respiratory tract irritation. May be harmful if inhaled. Chronic: No information found. Section 4 - First Aid Measures Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower Eyes: eyelids. If irritation develops, get medical aid. Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and Skin: shoes. Get medical aid if irritation develops or persists. Ingestion: Do not induce vomiting.
    [Show full text]
  • Chlorinated and Polycyclic Aromatic Hydrocarbons in Riverine and Estuarine Sediments from Pearl River Delta, China
    Environmental Pollution 117 (2002) 457–474 www.elsevier.com/locate/envpol Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China Bi-Xian Maia,*, Jia-Mo Fua, Guo-Ying Shenga, Yue-Hui Kanga, Zheng Lina, Gan Zhanga, Yu-Shuan Mina, Eddy Y. Zengb aState Key Lab Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, PO Box 1130, Guangzhou, Guangdong 510640, People’s Republic of China bSouthern California Coastal Water Research Project, 7171 Fenwick Lane, Westminster, CA 92683, USA Received 5 January 2001; accepted 3 July 2001 ‘‘Capsule’’: Sediments of the Zhujiang River and Macao Harbor have the potential to be detrimental to biological systems. Abstract Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and poly- cyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6–1658 ng/g, while concentrations of PCBs are in the range 10–339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic con- dition, and land erosion due to urbanization processes.
    [Show full text]
  • Chemistry 0310 - Organic Chemistry 1 Chapter 3
    Dr. Peter Wipf Chemistry 0310 - Organic Chemistry 1 Chapter 3. Reactions of Alkanes The heterolysis of covalent bonds yields anions and cations, whereas the homolysis creates radicals. Radicals are species with unpaired electrons that react mostly as electrophiles, seeking a single electron to complete their octet. Free radicals are important reaction intermediates and are formed in initiation reactions under conditions that cause the homolytic cleavage of bonds. In propagation steps, radicals abstract hydrogen or halogen atoms to create new radicals. Combinations of radicals are rare due to the low concentration of these reactive intermediates and result in termination of the radical chain. !CHAIN REACTION SUMMARY reactant product initiation PhCH3 HCl Cl 2 h DH = -16 kcal/mol chain-carrying intermediates n o r D (low concentrations) PhCH2 . Cl . propagation PhCH2 . or Cl . PhCH . 2 DH = -15 kcal/mol or Cl . PhCH2Cl or PhCH CH Ph PhCH2Cl Cl2 2 2 PhCH2Cl or Cl2 termination product reactant termination Alkanes are converted to alkyl halides by free radical halogenation reactions. The relative stability of radicals is increased by conjugation and hyperconjugation: R H H H . CH2 > R C . > R C . > H C . > H C . R R R H Oxygen is a diradical. In the presence of free-radical initiators such as metal salts, organic compounds and oxygen react to give hydroperoxides. These autoxidation reactions are responsible for the degradation reactions of oils, fatty acids, and other biological substances when exposed to air. Antioxidants such as hindered phenols are important food additives. Vitamins E and C are biological antioxidants. Radical chain reactions of chlorinated fluorocarbons in the stratosphere are responsible for the "ozone hole".
    [Show full text]
  • Synthetic Turf Scientific Advisory Panel Meeting Materials
    California Environmental Protection Agency Office of Environmental Health Hazard Assessment Synthetic Turf Study Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019 MEETING MATERIALS THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency Agenda Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019, 9:30 a.m. – 4:00 p.m. 1001 I Street, CalEPA Headquarters Building, Sacramento Byron Sher Auditorium The agenda for this meeting is given below. The order of items on the agenda is provided for general reference only. The order in which items are taken up by the Panel is subject to change. 1. Welcome and Opening Remarks 2. Synthetic Turf and Playground Studies Overview 4. Synthetic Turf Field Exposure Model Exposure Equations Exposure Parameters 3. Non-Targeted Chemical Analysis Volatile Organics on Synthetic Turf Fields Non-Polar Organics Constituents in Crumb Rubber Polar Organic Constituents in Crumb Rubber 5. Public Comments: For members of the public attending in-person: Comments will be limited to three minutes per commenter. For members of the public attending via the internet: Comments may be sent via email to [email protected]. Email comments will be read aloud, up to three minutes each, by staff of OEHHA during the public comment period, as time allows. 6. Further Panel Discussion and Closing Remarks 7. Wrap Up and Adjournment Agenda Synthetic Turf Advisory Panel Meeting May 31, 2019 THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency DRAFT for Discussion at May 2019 SAP Meeting. Table of Contents Synthetic Turf and Playground Studies Overview May 2019 Update .....
    [Show full text]
  • Sampling Dynamics for Volatile Organic Compounds Using Headspace Solid-Phase Microextraction Arrow for Microbiological Samples
    separations Communication Sampling Dynamics for Volatile Organic Compounds Using Headspace Solid-Phase Microextraction Arrow for Microbiological Samples Kevin E. Eckert 1, David O. Carter 2 and Katelynn A. Perrault 1,* 1 Laboratory of Forensic and Bioanalytical Chemistry, Forensic Sciences Unit, Division of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Ave., Honolulu, HI 96816, USA; [email protected] 2 Laboratory of Forensic Taphonomy, Forensic Sciences Unit, Division of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI 96816, USA; [email protected] * Correspondence: [email protected] Received: 10 August 2018; Accepted: 27 August 2018; Published: 10 September 2018 Abstract: Volatile organic compounds (VOCs) are monitored in numerous fields using several commercially-available sampling options. Sorbent-based sampling techniques, such as solid-phase microextraction (SPME), provide pre-concentration and focusing of VOCs prior to gas chromatography–mass spectrometry (GC–MS) analysis. This study investigated the dynamics of SPME Arrow, which exhibits an increased sorbent phase volume and improved durability compared to traditional SPME fibers. A volatile reference mixture (VRM) and saturated alkanes mix (SAM) were used to investigate optimal parameters for microbiological VOC profiling in combination with GC–MS analysis. Fiber type, extraction time, desorption time, carryover, and reproducibility were characterized, in addition to a comparison with traditional SPME fibers. The developed method was then applied to longitudinal monitoring of Bacillus subtilis cultures, which represents a ubiquitous microbe in medical, forensic, and agricultural applications. The carbon wide range/polydimethylsiloxane (CWR/PDMS) fiber was found to be optimal for the range of expected VOCs in microbiological profiling, and a statistically significant increase in the majority of VOCs monitored was observed.
    [Show full text]
  • Iridium-Catalyzed Borylation of Arenes and Heteroarenes Via C–H Activation*
    Pure Appl. Chem., Vol. 78, No. 7, pp. 1369–1375, 2006. doi:10.1351/pac200678071369 © 2006 IUPAC Iridium-catalyzed borylation of arenes and heteroarenes via C–H activation* Tatsuo Ishiyama and Norio Miyaura‡ Division of Chemical Process Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan Abstract: Direct C–H borylation of aromatic compounds catalyzed by a transition-metal complex was studied as an economical protocol for the synthesis of aromatic boron deriva- tives. Iridium complexes generated from Ir(I) precursors and 2,2'-bipyridine ligands effi- ciently catalyzed the reactions of arenes and heteroarenes with bis(pinacolato)diboron or pinacolborane to produce a variety of aryl- and heteroarylboron compounds. The catalytic cycle involves the formation of a tris(boryl)iridium(III) species and its oxidative addition to an aromatic C–H bond. Keywords: iridium catalyst; arylboron compounds; C–H activation; pinacolborane; bis(pina- colato)diboron. INTRODUCTION Aromatic boron derivatives are an important class of compounds, the utility of which has been amply demonstrated in various fields of chemistry. Traditional methods for their synthesis are based on the re- actions of trialkylborates with aromatic lithium or magnesium reagents derived from aromatic halides [1]. Pd-catalyzed cross-coupling of aromatic halides with tetra(alkoxo)diborons or di(alkoxo)boranes is a milder variant where the preparation of magnesium and lithium reagents is avoided [2,3]. Alternatively, transition-metal-catalyzed aromatic C–H borylation of aromatic compounds by pina- colborane (HBpin, pin = O2C2Me4) or bis(pinacolato)diboron (B2pin2) is highly attractive as a con- venient, economical, and environmentally benign process for the synthesis of aromatic boron com- pounds without any halogenated reactant, which has been studied extensively by Hartwig, Marder, and η4 Smith [4–6].
    [Show full text]
  • Saturated, Unsaturated, and Trans Fat
    Lifestyle Coach Facilitation Guide: Post-Core Fats - Saturated, Unsaturated, and Trans Fat Content Overview This session answers the question “what is fat?” It explores the different types of fat, and shows which fats are healthy (monounsaturated and polyunsaturated) and which fats are unhealthy (saturated and trans fat). Participants learn tips for choosing foods with healthy fats and avoiding foods with unhealthy fats. More information on cholesterol appears in Post-Core Session: Heart Health. Lifestyle Coach Preparation Checklist Materials Post-core handouts: What is Fat? Healthy Fats: Omega-3, Monounsaturated and Polyunsaturated Fats to Avoid: Saturated and Trans Fat Identifying Healthier Alternatives Tips for Choosing the Best Types of Fat “Food and Activity Trackers” “Lifestyle Coach’s Log” Balance scale Post-Core: Fats – Saturated, Unsaturated, and Trans Fat Key messages to reinforce A completely fat-free diet would not be healthy, yet it is important that fat be consumed in moderation. The main types of “healthy” fats are monounsaturated and polyunsaturated. The main types of “unhealthy” fats are saturated and trans fat. Saturated fats are primarily found in foods that come from animals, such as meat and dairy. Try to switch to lower-fat versions of these foods. In order to avoid trans fat, look on nutrition labels for ingredients such as “partially hydrogenated” oils or shortening. In addition, look for trans fat in the nutritional information in products like commercially baked cookies, crackers, and pies, and fried foods. After the session At the completion of this session, do the following: Use the “Notes and Homework Page” for notes and follow-up tasks.
    [Show full text]