Manuscript Click here to download Manuscript: Kimber et al Elasmobranch cognitive ability (Animal Cognition) revised (April 2013).docx Click here to view linked References 1 2 3 4 5 1 Elasmobranch cognitive ability: using electroreceptive 6 2 foraging behaviour to demonstrate learning, habituation and 7 8 3 memory in a benthic shark 9 4 10 † † 11 5 JOEL A. KIMBER* , DAVID W. SIMS , PATRICIA H. BELLAMY*, ANDREW 12 6 B. GILL* 13 7 14 8 * Department of Environmental Science and Technology, Cranfield University, 15 9 Cranfield, Bedfordshire, MK43 0AL, UK 16 † 17 10 Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, 18 11 Plymouth, Devon, PL1 2PB, UK 19 12 20 21 13 22 14 23 15 24 16 25 17 26 27 18 28 19 29 20 30 21 31 32 22 33 23 34 24 35 25 36 26 37 38 27 39 28 40 29 41 30 42 31 43 44 32 45 33 46 34 47 35 48 49 36 50 37 51 38 *†Author for correspondence (Email:
[email protected]; Tel: 0151 3277177) 52 39 53 54 40 55 41 56 42 57 58 43 59 60 44 61 62 1 63 64 65 1 2 3 4 45 ABSTRACT 5 6 7 46 Top predators inhabiting a dynamic environment, such as coastal waters, should 8 9 47 theoretically possess sufficient cognitive ability to allow successful foraging despite 10 11 12 48 unpredictable sensory stimuli. The cognition-related hunting abilities of marine mammals 13 14 49 have been widely demonstrated. Having been historically underestimated, teleost 15 16 50 cognitive abilities have also now been significantly demonstrated.