Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations 1 RICE UNIVERSITY Mechanisms underlying the costs and benefits in grass-fungal endophyte symbioses by Andrew James Davitt A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Master of Arts APPROVED, THESIS COMMITTEE: lefinji£r A. Rudgers distant Professor & Committee Chair Ecology and Evolutionary Biology Evan Siemann Professor Ecology and Evolutionary Biology VolkerH.WTRudolf Assistant Professor Ecology and Evolutionary Biology HOUSTON, TEXAS APRIL, 2010 UMI Number: 1486071 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UMI 1486071 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Mechanisms underlying the costs and benefits in grass-fungal endophyte symbioses by Andrew James Davitt Nearly all plants have developed symbiotic associations with microbes above- and belowground. These symbionts often alter the ecology of their hosts by enhancing nutrient uptake, increasing stress tolerance, or providing protection from host enemies. Understanding the dynamics of symbiosis requires testing how ecological factors alter not only the fitness consequences of the symbiosis, but also the rate of symbiont transmission. Here we asked how changes in the biotic and abiotic context alter both the costs and benefits of interactions between grass hosts and symbiotic fungal endophytes and rates of symbiont transmission. First, we assessed how shade and the presence of endophyte symbiosis affected host plant growth across six grass species. Our results demonstrate a novel benefit of endophyte symbiosis via the amelioration of shade stress. Second, we examine how interactions between a fungal endophyte and its grass host change along a gradient of water availability and in the presence versus absence of soil microbes. We show that benefits of the symbiosis were strongest when water was limiting. Together, our results highlight the context dependent nature of grass endophyte symbioses. ACKNOWLEDGEMENTS First and foremost, I would like to thank Jennifer Rudgers for her unwavering support, wisdom, and guidance. I also extend my gratitude to my committee members Evan Siemann and Volker Rudolf for numerous discussions, comments, and advice. I would like to thank Ken Whitney, Sami Hammer, Kerri Crawford, Liz Seifert, Loren Albert, Chris Chen, Robert Jakubowski, and Marcus Stansberry for field and laboratory assistance; my lab mates and friends Jeff Ahern, Amy Savage, and Scott Chamberlain for creating a friendly working environment; Laura Johnson, who was very helpful in many regards; Kelly Lyons for inspiring my love of ecology; and of course, my family for their unconditional love and emotional support. Last, but definitely not least, I thank Kerri Crawford for her love, friendship, and encouragement throughout the process. TABLE OF CONTENTS 1. List of tables v 2. List of figures vi 3. List of appendices vii 4. Chapter 1: Do the costs and benefits of fungal endophyte symbiosis vary with light availability? 1 5. Chapter 2: Understanding context dependency in plant microbe symbioses: the influence of abiotic and biotic contexts on host fitness and the rate of symbiont transmission 44 LIST OF TABLES Table 1.1. List of grass and endophyte species used for the study, including information on original source population location, natural endophyte frequencies, treatment for endophyte removal, and the range of light habitats in which they occurred. 39 Table 1.2. Statistical results from ANOVA analyzing effects of endophyte treatment, shade treatment and species on total biomass, root:shoot ratio, SLA, and endophyte density. 40 Table 2.1. Statistical results from M/ANOVA examining the effects of the endophyte treatment, water treatment, and soil treatment on plant reproductive responses: days to flowering, the number of inflorescences, inflorescences per tiller, seed weight, and reproductive effort. 77 Table 2.2. Statistical results from M/ANOVA examining the effects of the endophyte treatment, water treatment, and soil treatment on plant growth responses: total biomass, belowground biomass, aboveground biomass, root:shoot ratio, and the final number of tillers. 78 LIST OF FIGURES Figure 1.1. Differences in the frequency of endophyte symbiosis for grass species from shaded habitats vs. not restricted to shaded habitats. 35 Figure 1.2. Effects of the shade treatment on total biomass across all species (a) and effect of the shade and endophyte treatment in P. alsodes (POAL) (b). 36 Figure 1.3. Effects of the shade and endophyte treatment on the number of inflorescences in A. perennans (AGPE). 36 Figure 1.4. Effects of the shade and endophyte treatment on specific leaf area. 37 Figure 1.5. Effects of the shade treatment on root:shoot ratio across all species (a) and effects of the endophyte treatment on species grouped by habitat type (b). 38 Figure 1.6. Effects of the shade treatment on endophyte density. 38 Figure 2.1. Effects of the fungal endophyte and water availability on days to flowering in Agrostis hyemalis. 12» Figure 2.2. Effects of the fungal endophyte and water availability on plant reproductive responses. 74 Figure 2.3. Effects of the fungal endophyte and soil type (live or sterile) on total plant biomass. 75 LIST OF APPENDICES Appendix 1. Phylogenetic trees used for examining relationships between endophyte frequency and habitat type. 41 1 CHAPTER 1: DO THE COSTS AND BENEFITS OF FUNGAL ENDOPHYTE SYMBIOSIS VARY WITH LIGHT AVAILABILITY? 2 Summary We examined whether fungal endophytes modulated host plant responses to light availability, a potentially novel benefit of endophyte symbiosis. To look for general patterns across host plant species, we conducted a review of the literature to evaluate whether natural frequencies of endophyte symbiosis in grass species from shaded habitats were higher than frequencies in grass species spanning more diverse habitats. Then, in a greenhouse experiment, we assessed how four levels of shade and the presence of endophyte symbioses affected host plant growth across six grass species, and we compared species restricted to shaded environments to species that occupied a broader range of light environments. In our literature survey, endophytes were more common in grasses from shaded habitats than those that were not. In the greenhouse, we found large benefits of endophyte symbiosis for one species {Poa abodes), and strong negative effects of shade for all but one species (Festuca subverticillata). However, only one species showed evidence of an endophyte-mediated growth response to shade. In Agrostis perennans symbiotic plants produced 22% fewer inflorescences than non-symbiotic plants at the lowest level of shade, but made 53% more inflorescences at the highest level of shade, showing greater benefits of symbiosis under light limitation. Some species exhibited endophyte-mediated allocation to traits in response to shade. Under high shade, symbiotic Poa autumnalis invested in greater specific leaf area than symbiont-free plants, but this effect did not occur under high light. Furthermore, in grass species from broad habitat ranges, symbiosis increased the rootrshoot ratio, whereas species from shade-restricted habitats 3 showed no symbiont-mediated response. Finally, shade increased endophyte density in host leaf tissues across all species tested. Our results demonstrate a novel benefit of endophyte symbiosis via the amelioration of shade stress for one grass host and highlight the potential for symbiosis to alter the plasticity of hosts. Keywords: mutualism, context-dependency, phylogenetically independent contrasts, Epichloe, Neotyphodium, tall fescue 4 Introduction Nearly all plants have developed symbiotic associations with endophytic or mycorrhizal fungi (Petrini, 1986). The fossil record suggests that some of these interactions are older than 400 million years (Redecker et al, 2000), suggesting that fungal associations have played a long and important role in the evolution of life on land. These symbionts have been important in plant evolution because they alter the ecology of their hosts, often by enhancing nutrient uptake, increasing stress tolerance, or providing protection from host enemies (Clay & Schardl, 2002; Smith & Read, 1997; Hartley & Gange, 2009). Furthermore, both mycorrhizal fungi, which occur belowground, and aboveground fungal endophytes can have strong impacts on community composition (Clay & Holah, 1999; Hartnett & Wilson, 1999), succession (Janos, 1980; Rudgers et al, 2007), and nutrient cycling (Franzluebbers et al, 1999; van der Heijden et al, 2008). Given the ecological and evolutionary importance of plant-fungal symbioses, there is great interest in understanding mechanisms through which these symbioses are maintained at high frequencies in plant populations (Rudgers et al, 2009). Isolating these mechanisms necessitates identifying the ecological factors that generate variation in the relative costs and benefits of symbiosis. Positive, negative and neutral effects of symbionts on plant fitness are expected to arise from variation in the relative costs and benefits
Recommended publications
  • Contents Hawthorn Dene, 1, 5-Jul-1924
    Northern Naturalists’ Union Field Meeting Reports- 1924-2005 Contents Hawthorn Dene, 1, 5-jul-1924 .............................. 10 Billingham Marsh, 2, 13-jun-1925 ......................... 13 Sweethope Lough, 3, 11-jul-1925 ........................ 18 The Sneap, 4, 12-jun-1926 ................................... 24 Great Ayton, 5, 18-jun-1927 ................................. 28 Gibside, 6, 23-jul-1927 ......................................... 28 Langdon Beck, 7, 9-jun-1928 ............................... 29 Hawthorn Dene, 8, 5-jul-1928 .............................. 33 Frosterley, 9 ......................................................... 38 The Sneap, 10, 1-jun-1929 ................................... 38 Allenheads, 11, 6-july-1929 .................................. 43 Dryderdale, 12, 14-jun-1930 ................................. 46 Blanchland, 13, 12-jul-1930 .................................. 49 Devil's Water, 14, 15-jun-1931 ............................. 52 Egglestone, 15, 11-jul-1931 ................................. 53 Windlestone Park, 16, June? ............................... 55 Edmondbyers, 17, 16-jul-1932 ............................. 57 Stanhope and Frosterley, 18, 5-jun-1932 ............. 58 The Sneap, 19, 15-jul-1933 .................................. 61 Pigdon Banks, 20, 1-jun-1934 .............................. 62 Greatham Marsh, 21, 21-jul-1934 ........................ 64 Blanchland, 22, 15-jun-1935 ................................ 66 Dryderdale, 23, ..................................................... 68 Raby Park,
    [Show full text]
  • Plant Coefficient Listing.Xlsx
    Wisconsin Native Plants Coefficient of Conservativsm Table August 2013 Coefficient of Latin Name Common Name Family Conservatism Acalypha rhomboidea Rhombic Cooper Leaf Euphorbiaceae 0 Achillea millefolium Yarrow Asteraceae 1 Aconitum columbianum Columbia Monk's Hood Ranunculaceae 10 Aconitum noveboracense Northern Blue Monkshood Ranunculaceae 10 Acorus americanus Sweet flag Acoraceae 7 Actaea pachypoda White baneberry Ranunculaceae 6 Actaea rubra Red baneberry Ranunculaceae 7 Adiantum pendatum Maidenhair Fern Pteridaceae 7 Adlumia fungosa Allegheny Vine Fumariaceae 7 Adoxa moschatellina Moschatel Adoxaceae 10 Agalinis aspera Rough false foxglove Scrophulariaceae 7 Agalinis gattingeri Round-stem False Foxglove Scrophulariaceae 8 Agalinis paupercula Small-flowered False Foxglove Scrophulariaceae 7 Agalinis purpurea Purple False Foxglove Scrophulariaceae 7 Agalinis skinneriana Pale False Foxglove Scrophulariaceae 9 Agalinis tenuifolia Common Foxglove Scrophulariaceae 7 Agastache foeniculum Blue Giant Hyssop Lamiaceae 5 Agastache nepetoides Yellow giant hyssop Lamiaceae 5 Agastache scrophulariaefolia Purple giant hyssop Lamiaceae 4 Agrimonia gryposepala Tall agrimony Rosaceae 2 Agrimonia parviflora Southern Agrimony Rosaceae 4 Agrimonia pubescens Downy Agrimony Rosaceae 5 Agrimonia striata Grooved Agrimony Rosaceae 3 Agrostis hyemalis Ticklegrass Poaceae 4 Aletris farinosa Colic root Liliaceae 9 Alisma gramineum Grass-leaved Water Plantain Alismataceae 5 Alisma subcordatum Common Water Plantain Alismataceae 3 Alisma triviale Northern Water
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings.
    [Show full text]
  • Plant Diversity and Spatial Vegetation Structure of the Calcareous Spring Fen in the "Arkaulovskoye Mire" Protected Area (Southern Urals, Russia)
    Plant diversity and spatial vegetation structure of the calcareous spring fen in the "Arkaulovskoye Mire" Protected Area (Southern Urals, Russia) E.Z. Baisheva1, A.A. Muldashev1, V.B. Martynenko1, N.I. Fedorov1, I.G. Bikbaev1, T.Yu., Minayeva2, A.A. Sirin2 1Ufa Institute of Biology, Russian Academy of Sciences Ufa Federal Research Centre, Ufa, Russian Federation 2Institute of Forest Science, Russian Academy of Sciences, Uspenskoe, Russian Federation _______________________________________________________________________________________ SUMMARY The plant communities of base-rich fens are locally rare and have high conservation value in the Republic of Bashkortostan (Russian Federation), and indeed across the whole of Russia. The flora and vegetation of the calcareous spring fen in the protected area (natural monument) “Arkaulovskoye Mire” (Republic of Bashkortostan, Southern Urals Region) was investigated. The species recorded comprised 182 vascular plants and 87 bryophytes (67 mosses and 20 liverworts), including 26 rare species listed in the Red Data Book of the Republic of Bashkortostan and seven species listed in the Red Data Book of the Russian Federation. The study area is notable for the presence of isolated populations of relict species whose main ranges are associated with humid coastal and mountainous regions in Central Europe. The vegetation cover of the protected area consists of periodically flooded grey alder - bird cherry forests, sedge - reed birch and birch - alder forested mire, sparse pine and birch forested mire with dominance of Molinia caerulea, base-rich fens with Schoenus ferrugineus, islets of meso-oligotrophic moss - shrub - dwarf pine mire communities, aquatic communities of small pools and streams, etc. Examination of the peat deposit indicates the occurrence of both historical and present-day travertine deposition.
    [Show full text]
  • Tarset and Greystead Biological Records
    Tarset and Greystead Biological Records published by the Tarset Archive Group 2015 Foreword Tarset Archive Group is delighted to be able to present this consolidation of biological records held, for easy reference by anyone interested in our part of Northumberland. It is a parallel publication to the Archaeological and Historical Sites Atlas we first published in 2006, and the more recent Gazeteer which both augments the Atlas and catalogues each site in greater detail. Both sets of data are also being mapped onto GIS. We would like to thank everyone who has helped with and supported this project - in particular Neville Geddes, Planning and Environment manager, North England Forestry Commission, for his invaluable advice and generous guidance with the GIS mapping, as well as for giving us information about the archaeological sites in the forested areas for our Atlas revisions; Northumberland National Park and Tarset 2050 CIC for their all-important funding support, and of course Bill Burlton, who after years of sharing his expertise on our wildflower and tree projects and validating our work, agreed to take this commission and pull everything together, obtaining the use of ERIC’s data from which to select the records relevant to Tarset and Greystead. Even as we write we are aware that new records are being collected and sites confirmed, and that it is in the nature of these publications that they are out of date by the time you read them. But there is also value in taking snapshots of what is known at a particular point in time, without which we have no way of measuring change or recognising the hugely rich biodiversity of where we are fortunate enough to live.
    [Show full text]
  • Alien Vascular Plants in Iceland: Diversity, Spatial Patterns, Temporal
    Flora 208 (2013) 648–673 Contents lists available at ScienceDirect Flora j ournal homepage: www.elsevier.com/locate/flora Alien vascular plants in Iceland: Diversity, spatial patterns, temporal trends, and the impact of climate change a,∗ b a Pawel Wasowicz , Ewa Maria Przedpelska-Wasowicz , Hörður Kristinsson a The Icelandic Institute of Natural History, Borgum við Norðurslóð, PO Box 180, IS-600 Akureyri, Iceland b Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland a r t a b i s c l e i n f o t r a c t Article history: The present study provides first comprehensive and up-to-date results on alien plant taxa in Iceland Received 24 May 2013 since 1967. We evidenced the presence of 336 alien vascular plant taxa, including 277 casuals and 59 Accepted 26 September 2013 naturalised taxa, two being invasive. The distribution of the alien flora exhibits a clear spatial pattern Available online 6 October 2013 showing hotspots of occurrence and diversity within areas of major settlement centres. Altitude above sea level and temperature-related variables proved to be the most important factors shaping alien plant Keywords: distribution in Iceland. Predictive modelling evidenced that arctic areas of Iceland and the Central High- Alien flora lands are under serious risk of alien plant invasion due to climate change. The results provide crucial Iceland information for alien and invasive plant management and contribute data for meta-analyses of invasion Climate change processes worldwide. Invasive species Predictive modelling © 2013 Elsevier GmbH. All rights reserved. Maxent Introduction decades northern plant taxa, well adapted to cold environments will come under pressure and have to withdraw from their natural Only a small percent of alien plant taxa have a potential to environments.
    [Show full text]
  • The Williams Prairie: a Prairie Relict in Johnson Counnty
    Proceedings of the Iowa Academy of Science Volume 69 Annual Issue Article 8 1962 The Williams Prairie: A Prairie Relict in Johnson Counnty Paul D. Sorensen University of Iowa Let us know how access to this document benefits ouy Copyright ©1962 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Sorensen, Paul D. (1962) "The Williams Prairie: A Prairie Relict in Johnson Counnty," Proceedings of the Iowa Academy of Science, 69(1), 45-53. Available at: https://scholarworks.uni.edu/pias/vol69/iss1/8 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Sorensen: The Williams Prairie: A Prairie Relict in Johnson Counnty The Williams Prairie: A Prairie Relict in Johnson Counnty PAUL D. SoRENSEN1 Abstract. During the growing seasons of 1960 and 1961 several collections of the vascular plants of the \Villiams Prairie in Johnson County, Iowa were made. A list of the ~ecies is provided along with a statistical summary of the flora. Other aspects of the biology of the prairie are discussed. INTRODUCTION My purpose in preparing this paper is to report on the vas­ cular plants of a prairie relict in Johnson County-one which holds a special interest for the biology students of the Univer­ sity of Iowa due to its proximity to Iowa City. The Williams Prairie, so named after its owner Mr.
    [Show full text]
  • Ecological Checklist of the Missouri Flora for Floristic Quality Assessment
    Ladd, D. and J.R. Thomas. 2015. Ecological checklist of the Missouri flora for Floristic Quality Assessment. Phytoneuron 2015-12: 1–274. Published 12 February 2015. ISSN 2153 733X ECOLOGICAL CHECKLIST OF THE MISSOURI FLORA FOR FLORISTIC QUALITY ASSESSMENT DOUGLAS LADD The Nature Conservancy 2800 S. Brentwood Blvd. St. Louis, Missouri 63144 [email protected] JUSTIN R. THOMAS Institute of Botanical Training, LLC 111 County Road 3260 Salem, Missouri 65560 [email protected] ABSTRACT An annotated checklist of the 2,961 vascular taxa comprising the flora of Missouri is presented, with conservatism rankings for Floristic Quality Assessment. The list also provides standardized acronyms for each taxon and information on nativity, physiognomy, and wetness ratings. Annotated comments for selected taxa provide taxonomic, floristic, and ecological information, particularly for taxa not recognized in recent treatments of the Missouri flora. Synonymy crosswalks are provided for three references commonly used in Missouri. A discussion of the concept and application of Floristic Quality Assessment is presented. To accurately reflect ecological and taxonomic relationships, new combinations are validated for two distinct taxa, Dichanthelium ashei and D. werneri , and problems in application of infraspecific taxon names within Quercus shumardii are clarified. CONTENTS Introduction Species conservatism and floristic quality Application of Floristic Quality Assessment Checklist: Rationale and methods Nomenclature and taxonomic concepts Synonymy Acronyms Physiognomy, nativity, and wetness Summary of the Missouri flora Conclusion Annotated comments for checklist taxa Acknowledgements Literature Cited Ecological checklist of the Missouri flora Table 1. C values, physiognomy, and common names Table 2. Synonymy crosswalk Table 3. Wetness ratings and plant families INTRODUCTION This list was developed as part of a revised and expanded system for Floristic Quality Assessment (FQA) in Missouri.
    [Show full text]
  • Tesis Doctoral, En Desarrollo
    UNIVERSIDAD NACIONAL DEL SUR TESIS DE DOCTORADO EN BIOLOGÍA Estrés genómico y expresión de la apomixis en pasto llorón (Eragrostis curvula (Schrad.) Nees.) Lic. Juan Manuel Rodrigo BAHÍA BLANCA ARGENTINA 2014 Prefacio PREFACIO Esta Tesis se presenta como parte de los requisitos para optar al grado Académico de Doctor en Biología, de la Universidad Nacional del Sur y no ha sido presentada previamente para la obtención de otro título en esta Universidad u otra. La misma contiene los resultados obtenidos en investigaciones llevadas a cabo en el ámbito del Departamento de Biología, Bioquímica y Farmacia durante el período comprendido entre octubre de 2009 y junio de 2014, bajo la dirección de la Dra. Viviana Echenique y la dirección adjunta del Dr. Diego Zappacosta. Lic. Juan Manuel Rodrigo 3 Agradecimientos Agradecimientos Al Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) por haberme otorgado el sustento económico para realizar mis estudios de doctorado. Asimismo deseo agradecer a las autoridades del CERZOS y el Dpto. de Biología, Bioquímica y Farmacia de la Universidad Nacional del Sur por haberme brindado el espacio de trabajo. A Viviana, mi directora de tesis, por estar siempre dispuesta a enseñarme, discutir y brindarme sus cocimientos y experiencia en mi formación como investigador, y sobre todo gracias por confiar en mí. A mi co-director, Diego, por sus valiosas sugerencias, todos los conocimientos brindados y por su invaluable ayuda en el laboratorio. A todos los integrantes del Laboratorio de Biotecnología y Genética Vegetal, por hacer del lugar de trabajo un lugar en el que uno realmente desea estar, gracias por los gratos momentos compartidos.
    [Show full text]
  • Aphids and Their Host Affinity-VIII: Schizaphis Spp
    Available online at www.ijpab.com Rathore and Tiwari Int. J. Pure App. Biosci. 5 (4): 569-576 (2017) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.2937 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 5 (4): 569-576 (2017) Research Article Aphids and their Host Affinity-VIII: Schizaphis spp. Y. S. Rathore1 and S. N. Tiwari2* 1Ex- Principal Scientist, Indian Institute of Pulse Research, Kanpur 208026 (U.P.) 2Professor, Deptt.of Entomology, G.B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar 263145 (Uttarakhand) *Corresponding Author E-mail: [email protected] Received: 2.05.2017 | Revised: xx.xx.2017 | Accepted: xx.xx.2017 ABSTRACT Species of the genus Schizaphis (Aphidinae: Aphidini) are highly restrictive in host plant selection. Out of 40 species, sixteen (40%) showed monophagy, twelve (30%) oligophagy and another twelve (30%) polyphagy. S. chaenometicola hosted only on Rosaceae (Chaenomeles speciosa) in dicotyldons and fifteen species were monophagous in monocotyledons – one on Typhaceae (Typha capensis) in corolliferae and rest fourteen in glumiflorae (Cyperaceae and Poaceae). The GAI values in most of the cases were close to 1.000. In all polyphagous species of Schizaphis host plants from glumiflorae were part of the host range and their GAI values ranged 0.667-1.682. Generalized view of host affinity to taxonomic groups revealed that Schizaphis spp. selected host plants from all the divisions of dicotyledons (5.23%) and monocotyledons (94.77%). However, host species from glumiflorae (Cyperaceae and Poaceae) in monocotyledons alone demonstrated their distinct affinity (87.11%). The most important species was S.
    [Show full text]
  • The Vascular Flora of the Natchez Trace Parkway
    THE VASCULAR FLORA OF THE NATCHEZ TRACE PARKWAY (Franklin, Tennessee to Natchez, Mississippi) Results of a Floristic Inventory August 2004 - August 2006 © Dale A. Kruse, 2007 © Dale A. Kruse 2007 DATE SUBMITTED 28 February 2008 PRINCIPLE INVESTIGATORS Stephan L. Hatch Dale A. Kruse S. M. Tracy Herbarium (TAES), Texas A & M University 2138 TAMU, College Station, Texas 77843-2138 SUBMITTED TO Gulf Coast Inventory and Monitoring Network Lafayette, Louisiana CONTRACT NUMBER J2115040013 EXECUTIVE SUMMARY The “Natchez Trace” has played an important role in transportation, trade, and communication in the region since pre-historic times. As the development and use of steamboats along the Mississippi River increased, travel on the Trace diminished and the route began to be reclaimed by nature. A renewed interest in the Trace began during, and following, the Great Depression. In the early 1930’s, then Mississippi congressman T. J. Busby promoted interest in the Trace from a historical perspective and also as an opportunity for employment in the area. Legislation was introduced by Busby to conduct a survey of the Trace and in 1936 actual construction of the modern roadway began. Development of the present Natchez Trace Parkway (NATR) which follows portions of the original route has continued since that time. The last segment of the NATR was completed in 2005. The federal lands that comprise the modern route total about 52,000 acres in 25 counties through the states of Alabama, Mississippi, and Tennessee. The route, about 445 miles long, is a manicured parkway with numerous associated rest stops, parks, and monuments. Current land use along the NATR includes upland forest, mesic prairie, wetland prairie, forested wetlands, interspersed with numerous small agricultural croplands.
    [Show full text]
  • AR TICLE Ustilago Species Causing Leaf-Stripe Smut Revisited
    doi:10.5598/imafungus.2018.09.01.05 IMA FUNGUS · 9(1): 49–73 (2018) Ustilago species causing leaf-stripe smut revisited ARTICLE Julia Kruse1,2, Wolfgang Dietrich3, Horst Zimmermann4, Friedemann Klenke5, Udo Richter6, Heidrun Richter6, and Marco Thines1,2,4 1Goethe University Frankfurt am Main, Faculty of Biosciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; corresponding authors e-mail: [email protected], [email protected] 2Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany 3Barbara-Uthmann-Ring 68, 09456 Annaberg-Buchholz, Germany 4Cluster for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany 5Grillenburger Str. 8 c, 09627 Naundorf, Germany 6Traubenweg 8, 06632 Freyburg / Unstrut, Germany Abstract: Leaf-stripe smuts on grasses are a highly polyphyletic group within Ustilaginomycotina, Key words: occurring in three genera, Tilletia, Urocystis, and Ustilago. Currently more than 12 Ustilago species DNA-based taxonomy inciting stripe smuts are recognised. The majority belong to the Ustilago striiformis-complex, with about [ 30 different taxa described from 165 different plant species. This study aims to assess whether host molecular species discrimination distinct-lineages can be observed amongst the Ustilago leaf-stripe smuts using nine different loci on a multigene phylogeny representative set. Phylogenetic reconstructions supported the monophyly of the Ustilago striiformis- new taxa complex that causes leaf-stripe and the polyphyly of other leaf-stripe smuts within Ustilago. Furthermore, species complex smut specimens from the same host genus generally clustered together in well-supported clades that Ustilaginaceae often had available species names for these lineages.
    [Show full text]