CXC Chemokines and Their Receptors in Early Metanephric Development

Total Page:16

File Type:pdf, Size:1020Kb

CXC Chemokines and Their Receptors in Early Metanephric Development BASIC RESEARCH www.jasn.org ELR؉-CXC Chemokines and Their Receptors in Early Metanephric Development Zoia B. Levashova,* Nirmala Sharma,* Olga A. Timofeeva,* Jeffrey S. Dome,† and Alan O. Perantoni* *Laboratory of Comparative Carcinogenesis, National Cancer Institute, National Institutes of Health, Frederick, Maryland; and †Division of Oncology, Children’s National Medical Center, Washington, DC ABSTRACT Although originally identified as mediators of inflammation, it is now apparent that chemokines play a ϩ fundamental role in tissue development. In this study, ELR -CXC chemokine family members CXCL2 and CXCL7, along with their preferred receptor CXCR2, were expressed at the earliest stages of metaneph- ric development in the rat, and signaling through this receptor was required for the survival and maintenance of the undifferentiated metanephric mesenchyme (MM). A specific antagonist of the CXCR2 receptor SB225002 induced apoptosis in this population but did not affect more mature structures or cells in the ureteric bud. CXCL7 treatment of isolated MM elicited an angiogenic response by upregulation of matrix metalloprotease 9 and endothelial and mesangial markers (platelet-endothelial cell adhesion molecule, Megsin, Thy-1, PDGF receptor ␣, and vascular ␣-actin) and induced SB225002- sensitive cell invasion through a matrix. Because Wilms’ tumor cells may similarly depend on CXCR2 signaling for survival, primary tumor samples were analyzed, and 15 of 16 Wilms’ tumors were found to be CXCR2 positive, whereas grossly normal kidney tissues from tumor patients or renal cell carcinomas were CXCR2 negative. Furthermore, cell lines derived from Wilms’ tumors but not those from renal cell carcinomas were sensitive to SB225002-induced apoptosis. These data provide evidence for a prosur- ϩ vival and proangiogenic role of ELR -CXC chemokines and their receptor CXCR2 during metanephric development and suggest a novel mechanism for chemotherapeutic intervention in Wilms’ tumor. J Am Soc Nephrol 18: 2359–2370, 2007. doi: 10.1681/ASN.2006040380 Metanephric development requires mutual interac- presence of an N-terminal tripeptide motif gluta- tions between the ureteric bud (UB) and the meta- mate-leucine-arginine (ELR) adjacent to the CXC nephric mesenchyme (MM). MM induces growth motif. All ELRϩ-CXC chemokines act through and branching of the UB, whereas survival and dif- CXC chemokine receptor type 1 or type 2 (CXCR1 ferentiation of the MM into nephronic epithelia de- and CXCR2), which are rhodopsin-like seven- pends on factors secreted by the UB.1 Nephron-in- transmembrane G-protein–coupled receptors. ducing UB-secreted factors have been identified CXCR1 exhibits a high affinity for CXCL8 (IL-8) and include leukemia inhibitory factor and TGF- but a 10- to 100-fold lower affinity for CXCL6 ␤2.2,3 In a search for new UB-secreted inductive (GCP-2), CXCL7 (NAP-2), or CXCL1 (GRO-␣/ molecules, we applied microarray technology to a MGSA-␣).6,7 Rat species possess two homologous rat UB-derived cell line4 and implicated chemo- receptors, CXCR1 and CXCR2, and four ELRϩ- kines as novel participants in kidney development. Chemokines belong to one of four families of Received April 20, 2006. Accepted May 9, 2007. secreted polypeptides, initially identified for their Published online ahead of print. Publication date available at ability to induce migration of leukocytes.5 The CXC www.jasn.org. family is defined by four conserved cysteine resi- Correspondence: Dr. Alan O. Perantoni, NCI-Frederick, Building dues; the first two are separated by one noncon- 538, Room 205E, Frederick, MD 21702-1201. Phone: 301-846- served residue (hence the CXC designation). This 6529; Fax: 301-846-5946; E-mail: [email protected] group can be further subdivided on the basis of the Copyright © 2007 by the American Society of Nephrology J Am Soc Nephrol 18: 2359–2370, 2007 ISSN : 1046-6673/1808-2359 2359 BASIC RESEARCH www.jasn.org CXC chemokines (CXCL1, CXCL2, CXCL5, and CXCL7). mokine expression in both the UB and cortical MM (Figure 1E, However, they lack an equivalent for CXCL8, the key human purple staining). These studies demonstrate that ELRϩ-CXC ϩ ELR -CXC chemokine. family members are expressed at the earliest stages of meta- Besides their “classical” function of providing migrational nephric development in both inductor UB and nephron pro- ϩ signals for leukocytes in adults, ELR -CXC chemokines pro- genitor MM, and they persist throughout renal development. mote angiogenesis, cell proliferation, and survival during de- To assess renal cell competence to respond to ELRϩ chemo- velopment.8–10 CXCL8 stimulated cell migration, prolifera- kines, we evaluated kidney tissues at various stages of develop- tion, and differentiation in the developing intestine and central ment by immunoblotting for CXCR1 and 2. By RT-PCR and nervous system11,12 and enhanced endothelial cell survival and immunoblotting, both receptors were expressed in rat kidney proliferation and the production of matrix metalloproteinases from 13 dpc through birth but not in adult kidney (Figure 1, C for matrix reconstruction and angiogenesis.10 and D). The data indicate that both UB and MM progenitor Because they are expressed by UB cells, we hypothesized ϩ populations express Cxcr1 and 2, and this is supported by the that ELR -CXC chemokines may also function in metaneph- observation that CXCR2 is detectable by immunoblotting and ric differentiation, cell proliferation, survival, angiogenesis, or RT-PCR (data not shown) in the RUB1 and RIMM-18 cell migration. In this study, we demonstrate that these chemo- lines. Immunohistochemistry with anti-CXCR2 antibody re- kines are expressed in the metanephros and that they promote vealed a prominent staining in UB, cortical mesenchyme, and survival, angiogenesis, and cell migration. Furthermore, we re- newly formed epithelia such as S-shaped bodies (Figure 1F). port that Wilms’ tumors express CXCR2, suggesting that tu- These findings indicate that this receptor is widely expressed in morigenesis may depend in part on these factors. metanephric progenitors during development and suggest that both UB and MM progenitors are capable of responding to ELRϩ chemokines. RESULTS CXC Chemokines Do Not Induce Differentiation in MM Expression of CXC Chemokines and Their Receptors in Because CXC chemokines have been implicated in a number of Rat Embryonic Kidney biologic processes relevant to embryogenesis (progenitor cell Because metanephric inductive factors have heretofore been differentiation, cell survival and proliferation, cell migration/ identified primarily through tedious protein purification invasion, and angiogenesis), we assessed their effects on these methods, we sought to elucidate the majority of factors various processes. For this, we used an explant culture system through genomic analysis. We applied Affymetrix Microarray of isolated uninduced MM from 13-dpc rat kidneys or intact Gene Chip technology (Affymetrix, Santa Clara, CA) to our metanephroi of the same age. Culture conditions require the cell lines RUB1 and, for comparative purposes, RIMM-18. addition of fibroblast growth factor 2 (FGF2) and TGF-␣, From these studies, we found that besides known UB cell known survival factors for MM13,14 and endothelial cells.15,16 markers (e.g., Claudin 3, Claudin 9, Bmp3, Bmp7, c-Met, Cyto- keratins 18 and 19 [data not shown]), RUB1 cells expressed To minimize their inductive and angiogenic effects, we sought members of the ELRϩ group of chemokines, namely, Cxcl1, to limit levels of these factors in the culture medium. We found ␣ Cxcl2, and Cxcl5. Expression of these chemokines in unin- that 30 ng/ml FGF2 and 20 ng/ml TGF- maintained the sur- duced RIMM-18 cells was negligible in comparison with RUB1 vival of explanted MM but did not induce morphologic cells, and both lines failed to express ELRϪ chemokines Cxcl4 changes in the explants. However, such concentrations slightly and Cxcl10 (Figure 1A). induced expression of Cxcl1 and Cxcl2 (Figure 2, second col- Because immortalized RUB1 cell expression profiles may umn versus first), so tissues were unavoidably exposed to these differ from those of primary tissues, we also evaluated expres- chemokines as a result of endogenous production when culti- sion in freshly isolated 13-d postcoitus (dpc) UB or MM, 16- or vated ex vivo. Conversely, Cxcl7 was downregulated in cultured 19-dpc metanephroi, and adult kidneys from rats by reverse MM under these conditions. In efforts to control for endoge- transcriptase–PCR (RT-PCR) for all members of the ELRϩ- nous exposure, experiments included both uncultured and ex- CXC subfamily and their common receptors Cxcr1 and Cxcr2. plant cultured MM and the specific CXCR2 inhibitor RNA from RUB1 or RIMM-18 cells was included to confirm SB22500217 in some studies. ϩ microarray findings. At 13 dpc, both MM and UB expressed For testing whether ELR -CXC chemokines function in tu- Cxcl2, Cxcl5, and Cxcl7 (Figure 1B), although levels by semi- bular development, explanted MM was treated with CXCL7 quantitative RT-PCR were higher for all of these in the MM. and examined on subsequent days for markers of tubular dif- Whereas the RIMM-18 cell line expressed Cxcl7 like its MM ferentiation, sFrp2, Lim1, and E-cadherin. Whereas treatment progenitor, the RUB1 cell line differed significantly from the of control cultures of MM with conditioned medium from UB progenitor cells in that Cxcl1 (and not Cxcl7) was highly RUB1 cells induced expression of these markers (Figure 3A) expressed, suggesting
Recommended publications
  • The CXCL7/CXCR1/2 Axis Is a Key Driver in the Growth of Clear Cell Renal Cell Carcinoma
    Published OnlineFirst December 12, 2013; DOI: 10.1158/0008-5472.CAN-13-1267 Cancer Therapeutics, Targets, and Chemical Biology Research The CXCL7/CXCR1/2 Axis Is a Key Driver in the Growth of Clear Cell Renal Cell Carcinoma Renaud Grepin 5,Melanie Guyot1, Sandy Giuliano1, Marina Boncompagni1, Damien Ambrosetti1,2, Emmanuel Chamorey3, Jean-Yves Scoazec4, Sylvie Negrier4,Hel ene Simonnet4, and Gilles Pages 1 Abstract Mutations in the von Hippel–Lindau gene upregulate expression of the central angiogenic factor VEGF, which drives abnormal angiogenesis in clear cell renal cell carcinomas (ccRCC). However, the overexpression of VEGF in these tumors was not found to correlate with overall survival. Here, we show that the proangiogenic, proin- flammatory cytokine CXCL7 is an independent prognostic factor for overall survival in this setting. CXCL7 antibodies strongly reduced the growth of ccRCC tumors in nude mice. Conversely, conditional overexpression of CXCL7 accelerated ccRCC development. CXCL7 promoted cell proliferation in vivo and in vitro, in which expression of CXCL7 was induced by the central proinflammatory cytokine interleukin (IL)-1b. ccRCC cells normally secrete low amounts of CXCL7; it was more highly expressed in tumors due to high levels of IL-1b there. We found that a pharmacological inhibitor of the CXCL7 receptors CXCR1 and CXCR2 (SB225002) was sufficient to inhibit endothelial cell proliferation and ccRCC growth. Because CXCR1 and CXCR2 are present on both endothelial and ccRCC cells, their inhibition affected both the tumor vasculature and the proliferation of tumor cells. Our results highlight the CXCL7/CXCR1/CXCR2 axis as a pertinent target for the treatment of ccRCC.
    [Show full text]
  • The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
    International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8.
    [Show full text]
  • Exploration of Prognostic Biomarkers and Therapeutic Targets in the Microenvironment of Bladder Cancer Based on CXC Chemokines
    Exploration of Prognostic Biomarkers and Therapeutic Targets in The Microenvironment of Bladder Cancer Based on CXC Chemokines Xiaoqi Sun Department of Urology, Kaiping Central Hospital, Kaiping, 529300, China Qunxi Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Lihong Zhang Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Jiewei Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Xinke Zhang ( [email protected] ) Sun Yat-sen University Cancer Center Research Keywords: Bladder cancer, Biomarkers, CXC Chemokines, Microenvironment Posted Date: February 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-223127/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/29 Abstract Background: Bladder cancer (BLCA) has a high rate of morbidity and mortality, and is considered as one of the most malignant tumors of the urinary system. Tumor cells interact with surrounding interstitial cells, playing a key role in carcinogenesis and progression, which is partly mediated by chemokines. CXC chemokines exert anti‐tumor biological roles in the tumor microenvironment and affect patient prognosis. Nevertheless, their expression and prognostic values patients with BLCA remain unclear. Methods: We used online tools, including Oncomine, UALCAN, GEPIA, GEO databases, cBioPortal, GeneMANIA, DAVID 6.8, Metascape, TRUST (version 2.0), LinkedOmics, TCGA, and TIMER2.0 to perform the relevant analysis. Results: The mRNA levels of C-X-C motif chemokine ligand (CXCL)1, CXCL5, CXCL6, CXCL7, CXCL9, CXCL10, CXCL11, CXCL13, CXCL16, and CXCL17 were increased signicantly increased, and those of CXCL2, CXCL3, and CXCL12 were decreased signicantly in BLCA tissues as assessed using the Oncomine, TCGA, and GEO databases.
    [Show full text]
  • Ncomms1239.Pdf
    ARTICLE Received 10 Nov 2010 | Accepted 15 Feb 2011 | Published 15 Mar 2011 DOI: 10.1038/ncomms1239 Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer Ole Audun Werner Haabeth1, Kristina Berg Lorvik1, Clara Hammarström2, Ian M. Donaldson3,4, Guttorm Haraldsen2, Bjarne Bogen1 & Alexandre Corthay1 The immune system can both promote and suppress cancer. Chronic inflammation and proinflammatory cytokines such as interleukin (IL)-1 and IL-6 are considered to be tumour promoting. In contrast, the exact nature of protective antitumour immunity remains obscure. Here, we quantify locally secreted cytokines during primary immune responses against myeloma and B-cell lymphoma in mice. Strikingly, successful cancer immunosurveillance mediated by tumour-specific CD4 + T cells is consistently associated with elevated local levels of both proinflammatory (IL-1α, IL-1β and IL-6) and T helper 1 (Th1)-associated cytokines (interferon-γ (IFN-γ), IL-2 and IL-12). Cancer eradication is achieved by a collaboration between tumour- specific Th1 cells and tumour-infiltrating, antigen-presenting macrophages. Th1 cells induce secretion of IL-1β and IL-6 by macrophages. Th1-derived IFN-γ is shown to render macrophages directly cytotoxic to cancer cells, and to induce macrophages to secrete the angiostatic chemokines CXCL9/MIG and CXCL10/IP-10. Thus, inflammation, when driven by tumour- specific Th1 cells, may prevent rather than promote cancer. 1 Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway. 2 Department of Pathology, Institute of Pathology, Oslo University Hospital Rikshospitalet and University of Oslo, PO Box 4950 Nydalen, 0424 Oslo, Norway.
    [Show full text]
  • Cxcl9l and Cxcr3.2 Regulate Recruitment of Osteoclast Progenitors to Bone Matrix in a Medaka Osteoporosis Model
    Cxcl9l and Cxcr3.2 regulate recruitment of osteoclast progenitors to bone matrix in a medaka osteoporosis model Quang Tien Phana,b,1, Wen Hui Tana,b,1, Ranran Liua,b, Sudha Sundarama,b, Anita Buettnera,b, Susanne Kneitzc, Benedict Cheonga,b, Himanshu Vyasa,b, Sinnakaruppan Mathavand,e, Manfred Schartlc,f, and Christoph Winklera,b,2 aDepartment of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; bCentre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore; cDepartment of Developmental Biochemistry, Biocenter, University of Würzburg, 97080 Würzburg, Germany; dGenome Institute of Singapore, Singapore 138672, Singapore; eLee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore; and fThe Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666 Edited by Clifford J. Tabin, Harvard Medical School, Boston, MA, and approved July 4, 2020 (received for review April 1, 2020) Bone homeostasis requires continuous remodeling of bone matrix demonstrating RANKL’s important role as a coupling factor to maintain structural integrity. This involves extensive communi- (6–8). However, more coupling factors remain to be identified as cation between bone-forming osteoblasts and bone-resorbing os- osteoclasts also form in a RANKL-independent manner (9). teoclasts to orchestrate balanced progenitor cell recruitment and Zebrafish and medaka have become popular models for hu- activation. Only a few mediators controlling progenitor activation man skeletal disorders (10). Both species are amenable to ad- are known to date and have been targeted for intervention of vanced forward and reversed genetics and genome modification bone disorders such as osteoporosis. To identify druggable path- and uniquely suited for live bioimaging, which makes them ideal ways, we generated a medaka (Oryzias latipes) osteoporosis for bone research.
    [Show full text]
  • Platelet-Derived Chemokine CXCL7 Dimer Preferentially Exists in the Glycosaminoglycan-Bound Form: Implications for Neutrophil–Platelet Crosstalk
    ORIGINAL RESEARCH published: 02 October 2017 doi: 10.3389/fimmu.2017.01248 Platelet-Derived Chemokine CXCL7 Dimer Preferentially Exists in the Glycosaminoglycan-Bound Form: Implications for Neutrophil–Platelet Crosstalk Aaron J. Brown1,2, Krishna Mohan Sepuru1,2, Kirti V. Sawant1 and Krishna Rajarathnam1,2,3* 1 Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States, 2 Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States, 3 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States Platelet-derived chemokine CXCL7 (also known as NAP-2) plays a crucial role in orches- trating neutrophil recruitment in response to vascular injury. CXCL7 exerts its function by activating the CXC chemokine receptor 2 (CXCR2) receptor and binding sulfated glycosaminoglycans (GAGs) that regulate receptor activity. CXCL7 exists as monomers, dimers, and tetramers, and previous studies have shown that the monomer dominates Edited by: Deirdre R. Coombe, at lower and the tetramer at higher concentrations. These observations then raise the Curtin University, Australia question: what, if any, is the role of the dimer? In this study, we make a compelling Reviewed by: observation that the dimer is actually the favored form in the GAG-bound state. Further, James R. Whiteford, we successfully characterized the structural basis of dimer binding to GAG heparin using Queen Mary University of London, United Kingdom solution nuclear magnetic resonance (NMR) spectroscopy. The chemical shift assign- Philipp Von Hundelshausen, ments were obtained by exploiting heparin binding-induced NMR spectral changes Ludwig-Maximilians-Universität München, Germany in the WT monomer and dimer and also using a disulfide-linked obligate dimer.
    [Show full text]
  • Human CXCL4/PF4 Immunoassay Quantikine
    Quantikine® ELISA Human CXCL4/PF4 Immunoassay Catalog Number DPF40 For the quantitative determination of human Platelet Factor 4 (PF4) concentrations in cell culture supernates, serum, and platelet-poor plasma. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. TABLE OF CONTENTS SECTION PAGE INTRODUCTION ....................................................................................................................................................................1 PRINCIPLE OF THE ASSAY ..................................................................................................................................................2 LIMITATIONS OF THE PROCEDURE ................................................................................................................................2 TECHNICAL HINTS ................................................................................................................................................................2 MATERIALS PROVIDED & STORAGE CONDITIONS ..................................................................................................3 OTHER SUPPLIES REQUIRED ............................................................................................................................................3 PRECAUTIONS ........................................................................................................................................................................4 SAMPLE
    [Show full text]
  • And Nuclear Factor-Κb–Regulated CXC Chemokine Gene Expression in Lung Carcinogenesis
    Cancer Prevention Research Cyclic AMP-Responsive Element Binding Protein– and Nuclear Factor-κB–Regulated CXC Chemokine Gene Expression in Lung Carcinogenesis Hongxia Sun, Wen-Cheng Chung, Seung-Hee Ryu, Zhenlin Ju, Hai T. Tran, Edward Kim, Jonathan M. Kurie and Ja Seok Koo Abstract The recognition of the importance of angiogenesis in tumor progression has led to the development of antiangiogenesis as a new strategy for cancer treatment and prevention. By modulating tumor microenvironment and inducing angiogenesis, the proinflammatory cytokine interleukine (IL)-1β has been reported to promote tumor development. However, the factors mediating IL-1β–induced angiogenesis in non–small cell lung cancer (NSCLC) and the regulation of these angiogenicfactorsby IL-1 β are less clear. Here, we report that IL-1β up-regulated an array of proangiogenic CXC chemokine genes in the NSCLC cell line A549 and in normal human tracheobronchial epithelium cells, as determined by microarray analysis. Further analysis revealed that IL-1β induced much higher protein levels of CXC chemokines in NSCLC cells than in normal human tracheobronchial epithelium cells. Con- ditioned medium from IL-1β–treated A549 cells markedly increased endothelial cell migra- tion, which was suppressed by neutralizing antibodies against CXCL5 and CXCR2. We also found that IL-1β–induced CXC chemokine gene overexpression in NSCLC cells was abro- gated with the knockdown of cyclic AMP-responsive element binding protein (CREB) or nuclear factor κB (NF-κB). Moreover, the expression of the CXC chemokine genes as well as CREB and NF-κB activities was greatly increased in the tumorigenic NSCLC cell line compared with normal, premalignant immortalized or nontumorigenic cell lines.
    [Show full text]
  • COMPREHENSIVE INVITED REVIEW Chemokines and Their Receptors
    COMPREHENSIVE INVITED REVIEW Chemokines and Their Receptors Are Key Players in the Orchestra That Regulates Wound Healing Manuela Martins-Green,* Melissa Petreaca, and Lei Wang Department of Cell Biology and Neuroscience, University of California, Riverside, California. Significance: Normal wound healing progresses through a series of over- lapping phases, all of which are coordinated and regulated by a variety of molecules, including chemokines. Because these regulatory molecules play roles during the various stages of healing, alterations in their presence or function can lead to dysregulation of the wound-healing process, potentially leading to the development of chronic, nonhealing wounds. Recent Advances: A discovery that chemokines participate in a variety of disease conditions has propelled the study of these proteins to a level that potentially could lead to new avenues to treat disease. Their small size, ex- posed termini, and the fact that their only modifications are two disulfide Manuela Martins-Green, PhD bonds make them excellent targets for manipulation. In addition, because they bind to G-protein-coupled receptors (GPCRs), they are highly amenable to Submitted for publication January 9, 2013. *Correspondence: Department of Cell Biology pharmacological modulation. and Neuroscience, University of California, Riv- Critical Issues: Chemokines are multifunctional, and in many situations, their erside, Biological Sciences Building, 900 Uni- functions are highly dependent on the microenvironment. Moreover, each versity Ave., Riverside, CA 92521 (email: [email protected]). specific chemokine can bind to several GPCRs to stimulate the function, and both can function as monomers, homodimers, heterodimers, and even oligo- mers. Activation of one receptor by any single chemokine can lead to desen- Abbreviations sitization of other chemokine receptors, or even other GPCRs in the same cell, and Acronyms with implications for how these proteins or their receptors could be used to Ang-2 = angiopoietin-2 manipulate function.
    [Show full text]
  • Defining a Transcriptional Fingerprint of Murine Splenic B-Cell Development
    Genes and Immunity (2008) 9, 706–720 & 2008 Macmillan Publishers Limited All rights reserved 1466-4879/08 $32.00 www.nature.com/gene ORIGINAL ARTICLE Defining a transcriptional fingerprint of murine splenic B-cell development I Debnath1, KM Roundy1, DM Dunn2, RB Weiss2, JJ Weis1 and JH Weis1 1Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA and 2Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA B-cell development occurs in a stepwise fashion that can be followed by the expression of B cell-specific surface markers. In this study, we wished to identify proteins that could contribute to the changes in expression of such markers. By using RNA from freshly isolated B220 þ cells, we hoped to reduce the effect of artifacts that occur during the isolation and amplification steps necessary to use flow cytometry analysis-sorted subsets in microarray experiments. Analyses comparing expression patterns from B220 þ 2-week bone marrow (pro-B, pre-B, immature B cells), 2-week spleen (predominantly transitional cells) and 8-week spleen (mainly mature B cells) yielded hundreds of genes. We also examined the B cell-activating factor (BAFF)- dependent effects on immature splenic B cells by comparing expression patterns in the spleen between 2-week A/J vs 2-week A/WySnJ mice, which lack functional BAFF receptor signaling. Genes that showed the expression differences between spleen and bone marrow samples were then analyzed through quantitative PCR on B-cell subsets isolated using two different sorting protocols.
    [Show full text]
  • Products for Chemokine Research
    RnDSy-lu-2945 Products for Chemokine Research The Chemokine Superfamily Chemokines are small cell surface-localized or secreted chemotactic cytokines that bind to and activate specific G protein-coupled chemokine receptors. Most chemokines have at least four conserved N-terminal cysteine residues that form two intramolecular disulfide bonds. Four chemokine subfamilies (CXC, CC, C and CX3C) have been defined based upon the placement of the first two cysteine residues. The CXC chemokine subfamily is characterized by two cysteine residues separated by one amino acid. Within this subfamily, two CXC classes are further defined by the presence or absence of an ELR motif sequence. ELR– CXC chemokines act as chemoattractants for lymphocytes, while ELR+ CXC chemokines are chemoattractants for neutrophils. Additionally, CXC chemokines can mediate angiogenesis.1 The CC chemokine subfamily is defined by two adjacent cysteine CCR1 H: CCL3-5, 7, 8, 13-16, 23, CCL3L1, CCL3L3, CCL4L1, CCL4L2 M: CCL3-7, 9/10 residues. CC chemokines induce inflammatory H: XCL1, 2 XCR1 responses via regulation of monocyte, M: XCL1 macrophage, mast cell, and T cell migration.2 H: CCL2, 7, 8, 13, 16 CCR2 (A or B) M: CCL2, 7, 12 C chemokines are characterized by a single H: CCL26 CX3CR1 cysteine residue and are constitutively expressed H: CX3CL1 in the thymus where they regulate T cell H: CCL5, 7, 8, 11, 13, 14, 15, 24, 26, 28, CCL3L1, CCL3L3 M: CX3CL1 CCR3 M: CCL5, 7, 9/10, 11, 24 differentiation.3 The CX3C chemokine subfamily is defined by two cysteine residues separated by H: CXCL6-8 CXCR1 three amino acids.
    [Show full text]
  • Mouse and Human Immunology of Mice and Not Men: Differences
    Of Mice and Not Men: Differences between Mouse and Human Immunology Javier Mestas and Christopher C. W. Hughes This information is current as J Immunol 2004; 172:2731-2738; ; of September 25, 2021. doi: 10.4049/jimmunol.172.5.2731 http://www.jimmunol.org/content/172/5/2731 Downloaded from References This article cites 101 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/172/5/2731.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. THE JOURNAL OF IMMUNOLOGY BRIEF REVIEWS Of Mice and Not Men: Differences between Mouse and Human Immunology Javier Mestas and Christopher C. W. Hughes1 Mice are the experimental tool of choice for the majority of sarily true in humans. By making such assumptions we run the immunologists and the study of their immune responses risk of overlooking aspects of human immunology that do not has yielded tremendous insight into the workings of the occur, or cannot be modeled, in mice.
    [Show full text]