The CXCL7/CXCR1/2 Axis Is a Key Driver in the Growth of Clear Cell Renal Cell Carcinoma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. -
Exploration of Prognostic Biomarkers and Therapeutic Targets in the Microenvironment of Bladder Cancer Based on CXC Chemokines
Exploration of Prognostic Biomarkers and Therapeutic Targets in The Microenvironment of Bladder Cancer Based on CXC Chemokines Xiaoqi Sun Department of Urology, Kaiping Central Hospital, Kaiping, 529300, China Qunxi Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Lihong Zhang Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Jiewei Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Xinke Zhang ( [email protected] ) Sun Yat-sen University Cancer Center Research Keywords: Bladder cancer, Biomarkers, CXC Chemokines, Microenvironment Posted Date: February 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-223127/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/29 Abstract Background: Bladder cancer (BLCA) has a high rate of morbidity and mortality, and is considered as one of the most malignant tumors of the urinary system. Tumor cells interact with surrounding interstitial cells, playing a key role in carcinogenesis and progression, which is partly mediated by chemokines. CXC chemokines exert anti‐tumor biological roles in the tumor microenvironment and affect patient prognosis. Nevertheless, their expression and prognostic values patients with BLCA remain unclear. Methods: We used online tools, including Oncomine, UALCAN, GEPIA, GEO databases, cBioPortal, GeneMANIA, DAVID 6.8, Metascape, TRUST (version 2.0), LinkedOmics, TCGA, and TIMER2.0 to perform the relevant analysis. Results: The mRNA levels of C-X-C motif chemokine ligand (CXCL)1, CXCL5, CXCL6, CXCL7, CXCL9, CXCL10, CXCL11, CXCL13, CXCL16, and CXCL17 were increased signicantly increased, and those of CXCL2, CXCL3, and CXCL12 were decreased signicantly in BLCA tissues as assessed using the Oncomine, TCGA, and GEO databases. -
Ncomms1239.Pdf
ARTICLE Received 10 Nov 2010 | Accepted 15 Feb 2011 | Published 15 Mar 2011 DOI: 10.1038/ncomms1239 Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer Ole Audun Werner Haabeth1, Kristina Berg Lorvik1, Clara Hammarström2, Ian M. Donaldson3,4, Guttorm Haraldsen2, Bjarne Bogen1 & Alexandre Corthay1 The immune system can both promote and suppress cancer. Chronic inflammation and proinflammatory cytokines such as interleukin (IL)-1 and IL-6 are considered to be tumour promoting. In contrast, the exact nature of protective antitumour immunity remains obscure. Here, we quantify locally secreted cytokines during primary immune responses against myeloma and B-cell lymphoma in mice. Strikingly, successful cancer immunosurveillance mediated by tumour-specific CD4 + T cells is consistently associated with elevated local levels of both proinflammatory (IL-1α, IL-1β and IL-6) and T helper 1 (Th1)-associated cytokines (interferon-γ (IFN-γ), IL-2 and IL-12). Cancer eradication is achieved by a collaboration between tumour- specific Th1 cells and tumour-infiltrating, antigen-presenting macrophages. Th1 cells induce secretion of IL-1β and IL-6 by macrophages. Th1-derived IFN-γ is shown to render macrophages directly cytotoxic to cancer cells, and to induce macrophages to secrete the angiostatic chemokines CXCL9/MIG and CXCL10/IP-10. Thus, inflammation, when driven by tumour- specific Th1 cells, may prevent rather than promote cancer. 1 Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway. 2 Department of Pathology, Institute of Pathology, Oslo University Hospital Rikshospitalet and University of Oslo, PO Box 4950 Nydalen, 0424 Oslo, Norway. -
Cxcl9l and Cxcr3.2 Regulate Recruitment of Osteoclast Progenitors to Bone Matrix in a Medaka Osteoporosis Model
Cxcl9l and Cxcr3.2 regulate recruitment of osteoclast progenitors to bone matrix in a medaka osteoporosis model Quang Tien Phana,b,1, Wen Hui Tana,b,1, Ranran Liua,b, Sudha Sundarama,b, Anita Buettnera,b, Susanne Kneitzc, Benedict Cheonga,b, Himanshu Vyasa,b, Sinnakaruppan Mathavand,e, Manfred Schartlc,f, and Christoph Winklera,b,2 aDepartment of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; bCentre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore; cDepartment of Developmental Biochemistry, Biocenter, University of Würzburg, 97080 Würzburg, Germany; dGenome Institute of Singapore, Singapore 138672, Singapore; eLee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore; and fThe Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666 Edited by Clifford J. Tabin, Harvard Medical School, Boston, MA, and approved July 4, 2020 (received for review April 1, 2020) Bone homeostasis requires continuous remodeling of bone matrix demonstrating RANKL’s important role as a coupling factor to maintain structural integrity. This involves extensive communi- (6–8). However, more coupling factors remain to be identified as cation between bone-forming osteoblasts and bone-resorbing os- osteoclasts also form in a RANKL-independent manner (9). teoclasts to orchestrate balanced progenitor cell recruitment and Zebrafish and medaka have become popular models for hu- activation. Only a few mediators controlling progenitor activation man skeletal disorders (10). Both species are amenable to ad- are known to date and have been targeted for intervention of vanced forward and reversed genetics and genome modification bone disorders such as osteoporosis. To identify druggable path- and uniquely suited for live bioimaging, which makes them ideal ways, we generated a medaka (Oryzias latipes) osteoporosis for bone research. -
Platelet-Derived Chemokine CXCL7 Dimer Preferentially Exists in the Glycosaminoglycan-Bound Form: Implications for Neutrophil–Platelet Crosstalk
ORIGINAL RESEARCH published: 02 October 2017 doi: 10.3389/fimmu.2017.01248 Platelet-Derived Chemokine CXCL7 Dimer Preferentially Exists in the Glycosaminoglycan-Bound Form: Implications for Neutrophil–Platelet Crosstalk Aaron J. Brown1,2, Krishna Mohan Sepuru1,2, Kirti V. Sawant1 and Krishna Rajarathnam1,2,3* 1 Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States, 2 Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States, 3 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States Platelet-derived chemokine CXCL7 (also known as NAP-2) plays a crucial role in orches- trating neutrophil recruitment in response to vascular injury. CXCL7 exerts its function by activating the CXC chemokine receptor 2 (CXCR2) receptor and binding sulfated glycosaminoglycans (GAGs) that regulate receptor activity. CXCL7 exists as monomers, dimers, and tetramers, and previous studies have shown that the monomer dominates Edited by: Deirdre R. Coombe, at lower and the tetramer at higher concentrations. These observations then raise the Curtin University, Australia question: what, if any, is the role of the dimer? In this study, we make a compelling Reviewed by: observation that the dimer is actually the favored form in the GAG-bound state. Further, James R. Whiteford, we successfully characterized the structural basis of dimer binding to GAG heparin using Queen Mary University of London, United Kingdom solution nuclear magnetic resonance (NMR) spectroscopy. The chemical shift assign- Philipp Von Hundelshausen, ments were obtained by exploiting heparin binding-induced NMR spectral changes Ludwig-Maximilians-Universität München, Germany in the WT monomer and dimer and also using a disulfide-linked obligate dimer. -
Human CXCL4/PF4 Immunoassay Quantikine
Quantikine® ELISA Human CXCL4/PF4 Immunoassay Catalog Number DPF40 For the quantitative determination of human Platelet Factor 4 (PF4) concentrations in cell culture supernates, serum, and platelet-poor plasma. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. TABLE OF CONTENTS SECTION PAGE INTRODUCTION ....................................................................................................................................................................1 PRINCIPLE OF THE ASSAY ..................................................................................................................................................2 LIMITATIONS OF THE PROCEDURE ................................................................................................................................2 TECHNICAL HINTS ................................................................................................................................................................2 MATERIALS PROVIDED & STORAGE CONDITIONS ..................................................................................................3 OTHER SUPPLIES REQUIRED ............................................................................................................................................3 PRECAUTIONS ........................................................................................................................................................................4 SAMPLE -
And Nuclear Factor-Κb–Regulated CXC Chemokine Gene Expression in Lung Carcinogenesis
Cancer Prevention Research Cyclic AMP-Responsive Element Binding Protein– and Nuclear Factor-κB–Regulated CXC Chemokine Gene Expression in Lung Carcinogenesis Hongxia Sun, Wen-Cheng Chung, Seung-Hee Ryu, Zhenlin Ju, Hai T. Tran, Edward Kim, Jonathan M. Kurie and Ja Seok Koo Abstract The recognition of the importance of angiogenesis in tumor progression has led to the development of antiangiogenesis as a new strategy for cancer treatment and prevention. By modulating tumor microenvironment and inducing angiogenesis, the proinflammatory cytokine interleukine (IL)-1β has been reported to promote tumor development. However, the factors mediating IL-1β–induced angiogenesis in non–small cell lung cancer (NSCLC) and the regulation of these angiogenicfactorsby IL-1 β are less clear. Here, we report that IL-1β up-regulated an array of proangiogenic CXC chemokine genes in the NSCLC cell line A549 and in normal human tracheobronchial epithelium cells, as determined by microarray analysis. Further analysis revealed that IL-1β induced much higher protein levels of CXC chemokines in NSCLC cells than in normal human tracheobronchial epithelium cells. Con- ditioned medium from IL-1β–treated A549 cells markedly increased endothelial cell migra- tion, which was suppressed by neutralizing antibodies against CXCL5 and CXCR2. We also found that IL-1β–induced CXC chemokine gene overexpression in NSCLC cells was abro- gated with the knockdown of cyclic AMP-responsive element binding protein (CREB) or nuclear factor κB (NF-κB). Moreover, the expression of the CXC chemokine genes as well as CREB and NF-κB activities was greatly increased in the tumorigenic NSCLC cell line compared with normal, premalignant immortalized or nontumorigenic cell lines. -
COMPREHENSIVE INVITED REVIEW Chemokines and Their Receptors
COMPREHENSIVE INVITED REVIEW Chemokines and Their Receptors Are Key Players in the Orchestra That Regulates Wound Healing Manuela Martins-Green,* Melissa Petreaca, and Lei Wang Department of Cell Biology and Neuroscience, University of California, Riverside, California. Significance: Normal wound healing progresses through a series of over- lapping phases, all of which are coordinated and regulated by a variety of molecules, including chemokines. Because these regulatory molecules play roles during the various stages of healing, alterations in their presence or function can lead to dysregulation of the wound-healing process, potentially leading to the development of chronic, nonhealing wounds. Recent Advances: A discovery that chemokines participate in a variety of disease conditions has propelled the study of these proteins to a level that potentially could lead to new avenues to treat disease. Their small size, ex- posed termini, and the fact that their only modifications are two disulfide Manuela Martins-Green, PhD bonds make them excellent targets for manipulation. In addition, because they bind to G-protein-coupled receptors (GPCRs), they are highly amenable to Submitted for publication January 9, 2013. *Correspondence: Department of Cell Biology pharmacological modulation. and Neuroscience, University of California, Riv- Critical Issues: Chemokines are multifunctional, and in many situations, their erside, Biological Sciences Building, 900 Uni- functions are highly dependent on the microenvironment. Moreover, each versity Ave., Riverside, CA 92521 (email: [email protected]). specific chemokine can bind to several GPCRs to stimulate the function, and both can function as monomers, homodimers, heterodimers, and even oligo- mers. Activation of one receptor by any single chemokine can lead to desen- Abbreviations sitization of other chemokine receptors, or even other GPCRs in the same cell, and Acronyms with implications for how these proteins or their receptors could be used to Ang-2 = angiopoietin-2 manipulate function. -
CXC Chemokines and Their Receptors in Early Metanephric Development
BASIC RESEARCH www.jasn.org ELR؉-CXC Chemokines and Their Receptors in Early Metanephric Development Zoia B. Levashova,* Nirmala Sharma,* Olga A. Timofeeva,* Jeffrey S. Dome,† and Alan O. Perantoni* *Laboratory of Comparative Carcinogenesis, National Cancer Institute, National Institutes of Health, Frederick, Maryland; and †Division of Oncology, Children’s National Medical Center, Washington, DC ABSTRACT Although originally identified as mediators of inflammation, it is now apparent that chemokines play a ϩ fundamental role in tissue development. In this study, ELR -CXC chemokine family members CXCL2 and CXCL7, along with their preferred receptor CXCR2, were expressed at the earliest stages of metaneph- ric development in the rat, and signaling through this receptor was required for the survival and maintenance of the undifferentiated metanephric mesenchyme (MM). A specific antagonist of the CXCR2 receptor SB225002 induced apoptosis in this population but did not affect more mature structures or cells in the ureteric bud. CXCL7 treatment of isolated MM elicited an angiogenic response by upregulation of matrix metalloprotease 9 and endothelial and mesangial markers (platelet-endothelial cell adhesion molecule, Megsin, Thy-1, PDGF receptor ␣, and vascular ␣-actin) and induced SB225002- sensitive cell invasion through a matrix. Because Wilms’ tumor cells may similarly depend on CXCR2 signaling for survival, primary tumor samples were analyzed, and 15 of 16 Wilms’ tumors were found to be CXCR2 positive, whereas grossly normal kidney tissues from tumor patients or renal cell carcinomas were CXCR2 negative. Furthermore, cell lines derived from Wilms’ tumors but not those from renal cell carcinomas were sensitive to SB225002-induced apoptosis. These data provide evidence for a prosur- ϩ vival and proangiogenic role of ELR -CXC chemokines and their receptor CXCR2 during metanephric development and suggest a novel mechanism for chemotherapeutic intervention in Wilms’ tumor. -
Defining a Transcriptional Fingerprint of Murine Splenic B-Cell Development
Genes and Immunity (2008) 9, 706–720 & 2008 Macmillan Publishers Limited All rights reserved 1466-4879/08 $32.00 www.nature.com/gene ORIGINAL ARTICLE Defining a transcriptional fingerprint of murine splenic B-cell development I Debnath1, KM Roundy1, DM Dunn2, RB Weiss2, JJ Weis1 and JH Weis1 1Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA and 2Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA B-cell development occurs in a stepwise fashion that can be followed by the expression of B cell-specific surface markers. In this study, we wished to identify proteins that could contribute to the changes in expression of such markers. By using RNA from freshly isolated B220 þ cells, we hoped to reduce the effect of artifacts that occur during the isolation and amplification steps necessary to use flow cytometry analysis-sorted subsets in microarray experiments. Analyses comparing expression patterns from B220 þ 2-week bone marrow (pro-B, pre-B, immature B cells), 2-week spleen (predominantly transitional cells) and 8-week spleen (mainly mature B cells) yielded hundreds of genes. We also examined the B cell-activating factor (BAFF)- dependent effects on immature splenic B cells by comparing expression patterns in the spleen between 2-week A/J vs 2-week A/WySnJ mice, which lack functional BAFF receptor signaling. Genes that showed the expression differences between spleen and bone marrow samples were then analyzed through quantitative PCR on B-cell subsets isolated using two different sorting protocols. -
Products for Chemokine Research
RnDSy-lu-2945 Products for Chemokine Research The Chemokine Superfamily Chemokines are small cell surface-localized or secreted chemotactic cytokines that bind to and activate specific G protein-coupled chemokine receptors. Most chemokines have at least four conserved N-terminal cysteine residues that form two intramolecular disulfide bonds. Four chemokine subfamilies (CXC, CC, C and CX3C) have been defined based upon the placement of the first two cysteine residues. The CXC chemokine subfamily is characterized by two cysteine residues separated by one amino acid. Within this subfamily, two CXC classes are further defined by the presence or absence of an ELR motif sequence. ELR– CXC chemokines act as chemoattractants for lymphocytes, while ELR+ CXC chemokines are chemoattractants for neutrophils. Additionally, CXC chemokines can mediate angiogenesis.1 The CC chemokine subfamily is defined by two adjacent cysteine CCR1 H: CCL3-5, 7, 8, 13-16, 23, CCL3L1, CCL3L3, CCL4L1, CCL4L2 M: CCL3-7, 9/10 residues. CC chemokines induce inflammatory H: XCL1, 2 XCR1 responses via regulation of monocyte, M: XCL1 macrophage, mast cell, and T cell migration.2 H: CCL2, 7, 8, 13, 16 CCR2 (A or B) M: CCL2, 7, 12 C chemokines are characterized by a single H: CCL26 CX3CR1 cysteine residue and are constitutively expressed H: CX3CL1 in the thymus where they regulate T cell H: CCL5, 7, 8, 11, 13, 14, 15, 24, 26, 28, CCL3L1, CCL3L3 M: CX3CL1 CCR3 M: CCL5, 7, 9/10, 11, 24 differentiation.3 The CX3C chemokine subfamily is defined by two cysteine residues separated by H: CXCL6-8 CXCR1 three amino acids. -
Mouse and Human Immunology of Mice and Not Men: Differences
Of Mice and Not Men: Differences between Mouse and Human Immunology Javier Mestas and Christopher C. W. Hughes This information is current as J Immunol 2004; 172:2731-2738; ; of September 25, 2021. doi: 10.4049/jimmunol.172.5.2731 http://www.jimmunol.org/content/172/5/2731 Downloaded from References This article cites 101 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/172/5/2731.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. THE JOURNAL OF IMMUNOLOGY BRIEF REVIEWS Of Mice and Not Men: Differences between Mouse and Human Immunology Javier Mestas and Christopher C. W. Hughes1 Mice are the experimental tool of choice for the majority of sarily true in humans. By making such assumptions we run the immunologists and the study of their immune responses risk of overlooking aspects of human immunology that do not has yielded tremendous insight into the workings of the occur, or cannot be modeled, in mice.