STREAMS Programming Guide

Total Page:16

File Type:pdf, Size:1020Kb

STREAMS Programming Guide STREAMS Programming Guide Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303 U.S.A. Part No: 805-7478–05 August 1999 Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, tags does not print or display in your document. Do not modify any text except the attributions you type.–> and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements. RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a). DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun. Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun. CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU. Please Recycle Contents xv Part I Application Programming Interface 1. Overview of STREAMS 3 What Is STREAMS? 3 STREAMS Definitions 4 Stream 5 Stream Head 5 Module 5 Driver 5 Messages 5 Queues 6 streamio 6 Multiplexing 7 Polling 7 Flow Control 7 When to Use STREAMS 7 How STREAMS Works—Application Interface 8 Opening a Stream 8 Closing a Stream 9 Contents iii Controlling Data Flow 9 Simple Stream Example 9 How STREAMS Works—Kernel-level 10 Stream Head 10 Modules 11 Drivers 13 Messages 13 Message Queueing Priority 14 Queues 15 Multiplexing 16 Multithreading 17 STREAMS in Operation 17 Service Interfaces 17 Manipulating Modules 17 2. STREAMS Application-Level Components 21 STREAMS Interfaces 21 STREAMS System Calls 21 Action Summary 23 Opening a STREAMS Device File 23 Initializing Details 24 Queueing 24 Adding and Removing Modules 24 Closing the Stream 25 Closing Delay Details 25 Stream Construction Example 26 Inserting Modules 26 Module and Driver Control 28 3. STREAMS Application-Level Mechanisms 31 iv STREAMS Programming Guide ♦ August 1999 Message Handling 31 Modifying Messages 31 Message Types 32 Control of Stream Head Processing 32 Message Queueing and Priorities 34 Controlling Flow and Priorities 34 Accessing the Service Provider 35 Closing the Service Provider 38 Sending Data to the Service Provider 38 Receiving Data 39 Input and Output Polling 40 Synchronous Input and Output 41 Asynchronous Input and Output 45 Signals 46 Stream as a Controlling Terminal 47 Job Control 47 Allocation and Deallocation 50 Hungup Streams 51 Hangup Signals 51 Accessing the Controlling Terminal 51 4. STREAMS Driver and Module Interfaces 53 System Calls Used 53 Module and Driver ioctl(2) 54 General ioctl(2) Processing 56 I_STR ioctl(2) Processing 56 Transparent ioctl(2) Processing 57 I_LIST ioctl(2) 57 Other ioctl(2) Commands 59 Contents v Message Direction 61 Flush Handling 62 Flushing Priority Bands 62 5. STREAMS Administration 65 Tools Available 65 Autopush Facility 66 Application Interface 67 Administration Tool Description 69 strace(1M) 69 strlog(9F) 69 strqget(9F) 70 strqset(9F) 70 strerr(1M) 70 6. Pipes and Queues 71 Overview of Pipes and FIFOs 71 Creating and Opening Pipes and FIFOs 72 Using Pipes and FIFOs 74 Flushing Pipes and FIFOs 76 Named Streams 77 Unique Connections 77 Part II Kernel Interfaces 7. STREAMS Framework –Kernel Level 83 Overview of Streams in Kernel Space 83 Stream Head 84 Kernel–Level Messages 84 Message Types 84 Message Structure 86 Message Linkage 89 vi STREAMS Programming Guide ♦ August 1999 Queued Messages 89 Shared Data 90 Sending and Receiving Messages 91 Message Queues and Message Priority 92 Queues 94 queue(9S) Structure 94 Using Queue Information 96 Entry Points 97 open Routine 98 close Routine 101 The put Procedure 102 service Procedure 105 qband(9S) Structure 107 Message Processing 109 Flow Control in Service Procedures 111 8. Messages - Kernel Level 115 ioctl(2) Processing 115 Message Allocation and Freeing 116 Recovering From No Buffers 118 Releasing Callback Requests 120 Extended STREAMS Buffers 121 esballoc(9F) Example 122 General ioctl(2) Processing 124 STREAMS ioctl Issues 125 I_STR ioctl(2) Processing 126 Transparent ioctls 128 Transparent ioctl(2) Messages 128 Transparent ioctl(2) Examples 131 Contents vii Flush Handling 143 Flushing Priority Bands 143 Driver and Module Service Interfaces 148 Service Interface Library Example 150 Message Type Change Rules 156 Well-known ioctl Interfaces 157 FIORDCHK 157 FIONREAD 157 I_NREAD 157 Signals 158 9. STREAMS Drivers 159 STREAMS Device Drivers 159 Basic Driver 160 STREAMS Driver Topics 160 STREAMS Configuration Entry Points 161 STREAMS Initialization Entry Points 162 STREAMS Table-Driven Entry Points 162 STREAMS Queue Processing Entry Points 163 STREAMS Interrupt Handlers 164 Driver Unloading 164 STREAMS Driver Code Samples 164 Printer Driver Example 165 Cloning 177 Loop-Around Driver 181 Summary 192 Answers to Frequently Asked Questions 192 10. Modules 195 Module Overview 195 viii STREAMS Programming Guide ♦ August 1999 STREAMS Module Configuration 195 Module Procedures 196 Filter Module Example 199 Flow Control 202 Design Guidelines 204 htonl(3N) and ntohl(3N) 204 Answers to Frequently Asked Questions 205 11. Configuration 207 Configuring STREAMS Drivers and Modules 207 modlinkage(9S) 208 modldrv(9S) 208 modlstrmod(9S) 209 dev_ops(9S) 209 cb_ops(9S) 209 streamtab(9S) 210 qinit(9S) 210 Entry Points 211 pts(7D) example 211 STREAMS Module Configuration 215 Compilation 216 Kernel Loading 216 Checking Module Type 216 Tunable Parameters 217 autopush(1M) Facility 217 Application Interface 218 STREAMS Anchors 220 12. MultiThreaded STREAMS 225 MultiThreaded (MT) STREAMS Overview 225 Contents ix MT STREAMS Framework 226 STREAMS Framework Integrity 227 Message Ordering 227 MT Configurations 228 MT SAFE modules 228 MT UNSAFE Modules 228 Preparing to Port 229 Porting to the SunOS 5 System 230 MT SAFE Modules 231 MT STREAMS Perimeters 231 Perimeter options 233 MT Configuration 234 qprocson(9F)/ qprocsoff(9F) 234 qtimeout(9F)/ qunbufcall(9F) 234 qwriter(9F) 234 qwait(9F) 235 Asynchronous Callbacks 235 Close Race Conditions 236 Module Unloading and esballoc(9F) 236 Use of q_next 236 MT SAFE Modules Using Explicit Locks 237 Constraints When Using Locks 237 Preserving Message Ordering 238 Sample Multithreaded Device Driver 238 Sample Multithreaded Module with Outer Perimeter 244 13.
Recommended publications
  • SYSTEM V RELEASE 4 Migration Guide
    - ATlaT UN/~ SYSTEM V RELEASE 4 Migration Guide UNIX Software Operation Copyright 1990,1989,1988,1987,1986,1985,1984,1983 AT&T All Rights Reserved Printed In USA Published by Prentice-Hall, Inc. A Division of Simon & Schuster Englewood Cliffs, New Jersey 07632 No part of this publication may be reproduced or transmitted in any form or by any means-graphic, electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­ ing, by any computer or information storage and retrieval systems, etc., without prior permissions in writing from AT&T. IMPORTANT NOTE TO USERS While every effort has been made to ensure the accuracy of all information in this document, AT&T assumes no liability to any party for any loss or damage caused by errors or omissions or by state­ ments of any kind in this document, its updates, supplements, or special editions, whether such er­ rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth­ er assumes no liability arising out of the application or use of any product or system described herein; nor any liability for incidental or consequential damages arising from the use of this docu­ ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed, implied or statutory, including implied warranties of merchantability or fitness for a particular purpose. AT&T makes no representation that the interconnection of products in the manner described herein will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting or license to make, use or sell equipment constructed in accordance with this description.
    [Show full text]
  • Fast Linux I/O in the Unix Tradition
    — preprint only: final version will appear in OSR, July 2008 — PipesFS: Fast Linux I/O in the Unix Tradition Willem de Bruijn Herbert Bos Vrije Universiteit Amsterdam Vrije Universiteit Amsterdam and NICTA [email protected] [email protected] ABSTRACT ory wall” [26]). To improve throughput, it is now essential This paper presents PipesFS, an I/O architecture for Linux to avoid all unnecessary memory operations. Inefficient I/O 2.6 that increases I/O throughput and adds support for het- primitives exacerbate the effects of the memory wall by in- erogeneous parallel processors by (1) collapsing many I/O curring unnecessary copying and context switching, and as interfaces onto one: the Unix pipeline, (2) increasing pipe a result of these cache misses. efficiency and (3) exploiting pipeline modularity to spread computation across all available processors. Contribution. We revisit the Unix pipeline as a generic model for streaming I/O, but modify it to reduce overhead, PipesFS extends the pipeline model to kernel I/O and com- extend it to integrate kernel processing and complement it municates with applications through a Linux virtual filesys- with support for anycore execution. We link kernel and tem (VFS), where directory nodes represent operations and userspace processing through a virtual filesystem, PipesFS, pipe nodes export live kernel data. Users can thus interact that presents kernel operations as directories and live data as with kernel I/O through existing calls like mkdir, tools like pipes. This solution avoids new interfaces and so unlocks all grep, most languages and even shell scripts.
    [Show full text]
  • Linux Fast-STREAMS Installation and Reference Manual Version 0.9.2 Edition 4 Updated 2008-10-31 Package Streams-0.9.2.4
    Linux Fast-STREAMS Installation and Reference Manual Version 0.9.2 Edition 4 Updated 2008-10-31 Package streams-0.9.2.4 Brian Bidulock <[email protected]> for The OpenSS7 Project <http://www.openss7.org/> Copyright c 2001-2008 OpenSS7 Corporation <http://www.openss7.com/> Copyright c 1997-2000 Brian F. G. Bidulock <[email protected]> All Rights Reserved. Published by OpenSS7 Corporation 1469 Jefferys Crescent Edmonton, Alberta T6L 6T1 Canada This is texinfo edition 4 of the Linux Fast-STREAMS manual, and is consistent with streams 0.9.2. This manual was developed under the OpenSS7 Project and was funded in part by OpenSS7 Corporation. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the con- ditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another lan- guage, under the same conditions as for modified versions. i Short Contents Preface ::::::::::::::::::::::::::::::::::::::::::::::::: 1 Quick Start Guide :::::::::::::::::::::::::::::::::::::::: 9 1 Introduction :::::::::::::::::::::::::::::::::::::::: 15 2 Objective ::::::::::::::::::::::::::::::::::::::::::: 17 3 Reference ::::::::::::::::::::::::::::::::::::::::::: 21 4 Development ::::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Introduction to the Linux for HPC
    Introduction to the Linux for HPC Basic Linux for Beginner HPC Users Purpose of This Lecture • Fundamentals of using Linux and Linux-like systems on HPC systems • History of Linux • Shell and basic commands • File, data and process management and utilities History of Linux Linux in the Real World 95% Top500 are Linux-like Operating System # of Systems Percentage Linux 456 91.20% Unix 22 4.40% Windows 6 1.20% BSD Based 1 0.20% Mixed 15 3.00% Unix A Little History • Q: How old is Unix (5, 10, 20 years, or greater)? A: > 40 Years • Unix dates back to 1969 with a group at Bell Laboratories • The original Unix operating system was written in assembler • First 1972 Unix installations had 3 users and a 500KB disk DEC PDP-11, 1972 Linux Bringing Unix to the Desktop • Unix was very expensive • MINIX, tried but was not a full port • An open source solution was needed! 1990’s Movers and Shakers Richard Stallman, father of the GNU Project Linus Torvalds What is Linux? • Linux is a clone of the Unix operating system written from scratch by Linus Torvalds with assistance from developers around the globe (technically speaking, Linux is not Unix) • Torvalds uploaded the first version - 0.01 in September 1991 • Only about 2% of the current Linux kernel is written by Torvalds himself but he remains the ultimate authority on what new code is incorporated into the Linux kernel. • Developed under the GNU General Public License , the source code for Linux is freely available • A large number of Linux-based distributions exist (for free or purchase) Why use LINUX? • Performance: as we’ve seen, supercomputers generally run Linux; rich-multi user environment • Functionality: a number of community driven scientific applications and libraries are developed under Linux (molecular dynamics, linear algebra, fast-fourier transforms, etc).
    [Show full text]
  • UNIX History Page 1 Tuesday, December 10, 2002 7:02 PM
    UNIX History Page 1 Tuesday, December 10, 2002 7:02 PM CHAPTER 1 UNIX Evolution and Standardization This chapter introduces UNIX from a historical perspective, showing how the various UNIX versions have evolved over the years since the very first implementation in 1969 to the present day. The chapter also traces the history of the different attempts at standardization that have produced widely adopted standards such as POSIX and the Single UNIX Specification. The material presented here is not intended to document all of the UNIX variants, but rather describes the early UNIX implementations along with those companies and bodies that have had a major impact on the direction and evolution of UNIX. A Brief Walk through Time There are numerous events in the computer industry that have occurred since UNIX started life as a small project in Bell Labs in 1969. UNIX history has been largely influenced by Bell Labs’ Research Editions of UNIX, AT&T’s System V UNIX, Berkeley’s Software Distribution (BSD), and Sun Microsystems’ SunOS and Solaris operating systems. The following list shows the major events that have happened throughout the history of UNIX. Later sections describe some of these events in more detail. 1 UNIX History Page 2 Tuesday, December 10, 2002 7:02 PM 2 UNIX Filesystems—Evolution, Design, and Implementation 1969. Development on UNIX starts in AT&T’s Bell Labs. 1971. 1st Edition UNIX is released. 1973. 4th Edition UNIX is released. This is the first version of UNIX that had the kernel written in C. 1974. Ken Thompson and Dennis Ritchie publish their classic paper, “The UNIX Timesharing System” [RITC74].
    [Show full text]
  • Fstream: Managing Flash Streams in the File System
    FStream: Managing Flash Streams in the File System Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Jagadeesh Shetty, Joo-Young Hwang, Sangyeun Cho, Daniel DG Lee, and Jaeheon Jeong, Samsung Electronics. Co., Ltd. https://www.usenix.org/conference/fast18/presentation/rho This paper is included in the Proceedings of the 16th USENIX Conference on File and Storage Technologies. February 12–15, 2018 • Oakland, CA, USA ISBN 978-1-931971-42-3 Open access to the Proceedings of the 16th USENIX Conference on File and Storage Technologies is sponsored by USENIX. FStream: Managing Flash Streams in the File System Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Jagadeesh Shetty Joo-Young Hwang, Sangyeun Cho, Daniel DG Lee, Jaeheon Jeong Samsung Electronics Co., Ltd. Abstract out issue [3,7]. To the same end, we focus on how to take The performance and lifespan of a solid-state drive advantage of the multi-streamed SSD mechanism [8]. (SSD) depend not only on the current input workload This mechanism opens up a way to dictate data place- but also on its internal media fragmentation formed over ment on an SSD’s underlying physical media, abstracted time, as stale data are spread over a wide range of phys- by streams. In principle, if the host system perfectly ical space in an SSD. The recently proposed streams maps data having the same lifetime to the same streams, gives a means for the host system to control how data are an SSD’s write amplification becomes one, completely placed on the physical media (abstracted by a stream) eliminating the media fragmentation problem.
    [Show full text]
  • Veritas Backup Exec from Arcserve Netware.Pdf
    for NetWare Using v8.5 of VERITAS Backup Exec™ for NetWare’s Enhanced ARCserveIT Tape Read Feature With this release, Backup Exec for NetWare extends its ability to read ARCserveIT tapes, allowing you to more easily migrate from ARCserveIT to Backup Exec and to restore data from ARCserveIT tapes. Backup Exec will read: • ARCserveIT for NetWare versions 4.x, 5.x, and 6.x • ARCserveIT for Windows NT version 6.x • ARCserveIT’s native tape format • ARCserveIT’s embedded SMS tape format How the Enhanced ARCserveIT Tape Read Works When backing up a NetWare server, ARCserveIT 6.x by default includes Novell’s SMS data streams within the ARCserveIT format, allowing ARCserveIT to get its data stream from a Novell TSA. ARCserveIT then packages this data stream within the ARCserveIT format and places this data on tape. To read the data, Backup Exec unpackages the original TSA data and sends it back to the Novell TSA for interpretation. The NetWare server files and directories backed up by ARCserveIT can thus be fully restored by Backup Exec. Special Limitations If the default for ARCserveIT is changed so that ARCserveIT does not use SMS for backing up NetWare servers, the backup sets on the tape will be in ARCserveIT’s native format. Backup Exec will restore file and directory data, but will not always restore the long name for files. Other limitations are that Backup Exec cannot read the following: • ARCserveIT backup sets that are software compressed, software encrypted, or interleaved • ARCserveIT backups of NDS data sets • ARCserveIT backups of the NT registry • ARCserveIT backups of Microsoft Exchange or Microsoft SQL data Note NDS backups rapidly become out of date; therefore, you probably would not be restoring ARCserveIT backups of NDS data using Backup Exec.
    [Show full text]
  • COS 318: Operating Systems I/O Device Interactions and Drivers
    Topics COS 318: Operating Systems u So far: l Management of CPU and concurrency l Management of main memory and virtual memory I/O Device Interactions and u Next: Management of the I/O system Drivers l Interacting with I/O devices l Device drivers Jaswinder Pal Singh l Storage Devices Computer Science Department Princeton University u Then, File Systems l File System Structure (http://www.cs.princeton.edu/courses/cos318/) l Naming and Directories l Efficiency/Performance l Reliability and Protection 2 Input and Output Revisit Hardware u A computer u Compute hardware CPU l CPU cores and caches CPU l Computation (CPU, memory hierarchy) CPUCPU CPU l Memory $ l Move data into and out of a system (locketween I/O devices Chip l I/O and memory hierarchy) l Controllers and logic Memory I/O bridge u Challenges with I/O devices I/O bus l Different categories with different characteristics: storage, u I/O Hardware networking, displays, keyboard, mouse ... l I/O bus or interconnect l Large number of device drivers to support l I/O device l I/O controller or adapter l Device drivers run in kernel mode and can crash systems • Often on parent board Network u Goals of the OS • Cable connects it to device • Often using standard interfaces: IDE, l Provide a generic, consistent, convenient and reliable way to SATA, SCSI, USB, FireWire… access I/O devices • Has registers for control, data signals • Processor gives commands and/or l Achieve potential I/O performance in a system data to controller to do I/O • Special I/O instructions (w.
    [Show full text]
  • Appletalk Protocol Architecture Physical and Data Link Protocols
    PATHWORKS for Macintosh Introduction to the AppleTalk Network System Order Number AA-PBFEB-TE January 1991 Revision/Update Information: This is a revised manual. Software Version: PATHWORKS for Macintosh, Version 1.0 VMS Version 5.3 or greater digital equipment corporation maynard, massachusetts First Published, September 1990 Revised, January 1991 The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document. Any software described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license. No responsibility is assumed for the use or reliability of software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies. Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. © Digital Equipment Corporation 1990, 1991. All rights reserved. Printed in U.S.A. The postpaid Reader's Comments forms at the end of this document request your critical evaluation to assist in preparing future documentation. The following are trademarks of Digital Equipment Corporation: DEC, DECnet, DECnet-DOS, DECnet-VAX, DECstation, DECterm, DECwindows, LAT, LN03, LN03 Plus, LN03 ScriptPrinter, PATHWORKS, PCSA, PrintServer, RMS, RSTS, RSX-ll, RT, RX33, ThinWire, ULTRIX, VAX, VAXcluster, VAXserver, VAXshare, VMS, and the DIGITAL Logo. The following are trademarks of Apple Computer Inc.: Apple, the Apple logo, AppleShare, AppleTalk, Apple IIGS, EtherTalk, ImageWriter, LaserWriter, LocalTalk, Macintosh, MacTerminal, MultiFinder, ProDOS, and TokenTalk are registered trademarks of Apple Computer, Inc.
    [Show full text]
  • Novell Groupwise Idataagent
    Features - Novell GroupWise iDataAgent Features - Novell GroupWise iDataAgent TABLE OF CONTENTS OVERVIEW SYSTEM REQUIREMENTS - NOVELL GROUPWISE IDATAAGENT INSTALLATION z Install the NetWare Server iDataAgents z Install the NetWare Server iDataAgents - Clustered Environment -Virtual Server z Install the Novell GroupWise iDataAgent - OES Linux BACKUP - NETWARE SERVER RESTORE DATA - NETWARE SERVER CONFIGURATION z Backup Sets - File System, NetWare Server, Active Directory, and Microsoft Data Protection Manager iDataAgents z Subclients - NetWare/NDS/GroupWise MANAGEMENT z Backup Job History z Restore Job History Page 1 of 74 Features - Novell GroupWise iDataAgent Overview - Novell GroupWise iDataAgent Choose from the following topics: z Introduction z Supported Data Types z Tree Levels in the NetWare iDataAgents z License Requirement z Using the Appropriate NetWare Server iDataAgent z Disaster Recovery Considerations INTRODUCTION There are three iDataAgents available for backing up and restoring NetWare Servers: z NetWare File System iDataAgent (See Overview - NetWare iDataAgents for comprehensive information) z Novell Directory Services (NDS) iDataAgent (See Overview - NetWare iDataAgents for comprehensive information) z Novell GroupWise iDataAgent The GroupWise iDataAgent allows you to back up and restore the GroupWise databases residing on a NetWare server. The following example shows the iDataAgents needed to fully secure a hypothetical heterogeneous computing environment: SUPPORTED DATA TYPES To secure a GroupWise database, you may use the Novell GroupWise iDataAgent, NetWare File System iDataAgent, or the OES File System iDataAgent, depending on your environment. Any other agent (e.g., Windows File System iDataAgent) cannot be used to secure a GroupWise database. Note that to secure a GroupWise database using the NetWare File System iDataAgent or OES File System iDataAgent, Novell's TSAFS.NLM must be loaded with the EnableGW switch.
    [Show full text]
  • STREAMS Vs. Sockets Performance Comparison for UDP
    STREAMS vs. Sockets Performance Comparison for UDP Experimental Test Results for Linux Brian F. G. Bidulock∗ OpenSS7 Corporation June 16, 2007 Abstract cations facilities of the kernel: With the objective of contrasting performance between Transport Layer Interface (TLI). TLI is an acronym for the STREAMS and legacy approaches to system facilities, a com- Transport Layer Interface [TLI92]. The TLI was the non- parison is made between the tested performance of the Linux Na- standard interface provided by SVR4, later standardized by tive Sockets UDP implementation and STREAMS TPI UDP and X/Open as the XTI described below. This interface is now XTIoS UDP implementations using the Linux Fast-STREAMS deprecated. package [LfS]. X/Open Transport Interface (XTI). XTI is an acronym for the X/Open Transport Interface [XTI99]. The X/Open Trans- 1 Background port Interface is a standardization of the UNIX System V UNIX networking has a rich history. The TCP/IP protocol suite Release 4, Transport Layer Interface. The interface con- was first implemented by BBN using Sockets under a DARPA re- sists of an Application Programming Interface implemented search project on 4.1aBSD and then incorporated by the CSRG as a shared object library. The shared object library com- into 4.2BSD [MBKQ97]. Lachmann and Associates (Legent) sub- municates with a transport provider Stream using a service sequently implemented one of the first TCP/IP protocol suite primitive interface called the Transport Provider Interface. based on the Transport Provider Interface (TPI) [TLI92] and While XTI was implemented directly over STREAMS de- STREAMS [GC94]. Two other predominant TCP/IP implemen- vices supporting the Transport Provider Interface (TPI) tations on STREAMS surfaced at about the same time: Wollon- [TPI99] under SVR4, several non-traditional approaches ex- gong and Mentat.
    [Show full text]
  • Streams Version 3.03
    Streams Version 3.03 Installation, Execution, and Registration Installation and Registration © Dr Roger Nokes February 2021 Department of Civil and Natural Resources Engineering University of Canterbury Christchurch, NZ [email protected] Design and layout: Melody Callahan Streams v3.03 2 Installation and Registration 1 Installation and Execution The Streams 3.03 application is deployed as a ZIP file downloadable from the following website. https://www.canterbury.ac.nz/engineering/schools/cnre/software/stre ams/ Different ZIP files are provided for Macintosh, Windows and Linux systems. The only system requirement for running Streams on either a Macintosh, Linux, or Windows computers is the Java Development Kit (JDK) version 1.8.0, or later, installed. This can be downloaded from the Oracle website below: http://www.oracle.com/technetwork/java/javase/downloads/jdk8- downloads-2133151.html 1.1 Installation on Windows The ZIP file required for installation on a Windows computer is named Streams303_Win.zip To begin, create the following directory C:\StreamsLibrary\Streams3.03 The contents of the zip file should be extracted into this directory. The zip file contains the following: § Streams3.03.exe– the executable launch file § Streams3.03.jar – the java archive file containing the Streams program. § a directory containing the four software manuals in PDF format. The file Streams3.03.exe and the directory of manuals can be moved to any desired location in the file system. 3 Streams v3.03 Installation and Registration 1.2 Installation on Mac OS The ZIP file required for installation on a Macintosh computer running Mac OS is named Streams303_Mac.zip The contents of the zip file should be extracted into the Applications.
    [Show full text]