Hypatia Might Havelooked Like

Total Page:16

File Type:pdf, Size:1020Kb

Hypatia Might Havelooked Like 170AD portraitfrom Fayum,an ideaof whatHypatia might havelooked like http://en.wikipedia. org/wikiiHypatia-o{-Alexandria Hypatia By: YelanaZhebrak Hypatia By: YelanaZhebrak As oneof the first womenin mathematicsthat we haveconsiderable knowledge about;Hypatia's story reveals a womanof immensemathematical knowledge and atragic death. Somehave said that her life storywas one of a GreekTragedy. Hypatiawas born around370AD. Thereis little knowledgeabout Hypatia's mother,but it is assumedthat her family situationmust have been a fortunateone for her fatherwas a determinedman, who wasdedicated to perfecthis daughter.This is the only evidenceof her "fortunate"family which couldbe debatable.Hypatia never married nor hadany children. Shewas alsoknown to tum awaymany suitors. Hypatia'sfather, Theon was a distinguishedprofessor of mathematicsat the Universityof Alexandria. He laterbecame the directorof the University,where Hypatia l'oHypatia spenta lot of her time at. wasimmersed in an atmosphereof leaming, questioningand exploration." Hypatiaquickly becamethe numberone student in her father'slife. Shereceived intense formal training in arts,literature, science, and philosophy.2"Theon was his daughter'stutor, teacher, and play mate;his own strong love of beautyand logic of mathematicswas contagious." Not only wasHypatia expectedto keepa healthy brilliant mind, her fatherexpected her to keepup a healthy bodyand Hypatia was well trainedin gentlecalisthenics that shepracticed regularly; she wasalso taught to row, swim, ride horsebackoand climb mountains,and a part of each rOsen,Lynn M. Womenin Mathematics.l974,Page23 2Osen, Lynn M. Womenin Mathematics.l974,Page23 daywas set aside for suchexercise. In time Hypatia'sknowledge would eclipseher 3Her father's. fatherstressed in his trainingthe importanceof becominga sensitive, gifted,and eloquent teacher. Duringthis time period,mathematics was used mainly for calculatingproblems o"the suchas locusof a given soulborn under a certainplanet." It wasthought that there could be a prediction basedon mathematicswhere there could be a determination preciselywhere such a soul would be on futuredates. Astronomy and astrology were consideredto be a bondbetween science and religion. Hypatiabecame a popularteacher ssocrates, with the assistanceof her father'seducation. the historianwrote that her home,as well asher classroom wasvisited by the mostgifted scholarsfrom all around the world. Shewas considered an oracleof her time. Howeverit wasHypatia's work alongwith her father'sassistance that made her 6Hypatia truly an icon in mathematics. wrote on the Conicsof Apollonfur, a book about the work of aprominentAlexandrian who lived five hundredyears before. Hypatiaalso wrotecommentaries on the Almagest,the astronomicalcanon of Ptolemy'sthat contained his numerousobservations of the stars.Hypatia coauthored (with her father)at leastone treatiseion Euclid andmost of theseworks were prepared as textbooks for her students. Hypatia'scommentaries on the work of Diophantusdid not survivethe manyhundreds of yearsbetween the time of its writing andthe present.It is howeveragreed that Hypatia o'the did write suchwork. Diophantushas been called fatherof algebra". He wasan Alexandrianmathematician. Diophantine algebra dealt with first-degreeand quadratic 3Osen, Lynn M. Womenin Mathematics.l974,Page24'25 o Osen,Lynn M. Womenin Mathematics.l974,Page24 5Osen, Lynn M. Womenin Mathematics.l974,Page26 6 Teri Perl,Math Equals.l978,Page27 equations;the commentaryby Hypatiaincluded some altemative solutions and number of THer newproblems that sheoriginated. reputablecontributions also included her inventionof the hydrometerwhich is an instrumentused to measurespecific gravity (or relativedensity) of liquids that is the ratio of the densityof the liquid to the densityof water. Most of the treatiesthat Hypatia wrote were destroyedalong with the Ptolemaic librariesin Alexandria. A portionof her originaltreatise On theAstronomical Canon of Diaphantuswas fotrnd. 8We also see Hypatia's father mentioned in historymore than Hypatiadue to Theon'swork surviving,whereas Hypatia's did not. esomebelieve that Hypatia(a pagan)was caught in the midst of a battlebetween scienceand religion. Somebelieve that it washer way of commandingrespect and in somecircles, provoking controversy that causedher demise.It is believedthat a nrmor was spreadamong the Christians,that the only thing that stoodin the way of a reconciliationof the perfectand archbishop, was "Theon's daughter", which shewas speedilyremoved. Hypatia was on her way to classwhen she was attacked by a troopof savagesand mercilessfanatics. Shewas strippeddown nakedand draggedthrough the streetby carriage.Her fleshwas then scraped offwith oystershells, and then she was set on fire. Her attackerswere never brought to justice,and the only thing that wasleft of Hypatiawas her legacy. All in all, Hypatiawas another brilliant mind,which wasfeared and finally executed.However her legacyand work havebeen proven to be a greatcontribution for mathematics,and an inspirationto women. 7(Encyclopedia Britannica) ht@:// www.britannica.com/eblarticle-9041785 8Maria Dzielska, Hypatia of Alexandria.1995,Page7l 'Maria Dzielska,Hwatia of Alexandria.1995, Page 6l Bibliography -MariaDzielska, Hvpatia of Alexandria.1995 -(EncyclopediaBritannica) http:// www.britannica.com/eb/article-9041785 (March 27,2008) -Osen,Lynn M. Women in Mathematics.lg74 -TeriPerl, Math Equals. 1978 - Kingsley,Charles, Hypatia.,Chicaso: E.A. Weeks & Co. -http:/ -nttp:ltwome nn isto rV. a Note: All information that hasbeen obtained over the interenthas been confirmed accurateinformation tlrat I haveobtained from text books..
Recommended publications
  • The Diophantine Equation X 2 + C = Y N : a Brief Overview
    Revista Colombiana de Matem¶aticas Volumen 40 (2006), p¶aginas31{37 The Diophantine equation x 2 + c = y n : a brief overview Fadwa S. Abu Muriefah Girls College Of Education, Saudi Arabia Yann Bugeaud Universit¶eLouis Pasteur, France Abstract. We give a survey on recent results on the Diophantine equation x2 + c = yn. Key words and phrases. Diophantine equations, Baker's method. 2000 Mathematics Subject Classi¯cation. Primary: 11D61. Resumen. Nosotros hacemos una revisi¶onacerca de resultados recientes sobre la ecuaci¶onDiof¶antica x2 + c = yn. 1. Who was Diophantus? The expression `Diophantine equation' comes from Diophantus of Alexandria (about A.D. 250), one of the greatest mathematicians of the Greek civilization. He was the ¯rst writer who initiated a systematic study of the solutions of equations in integers. He wrote three works, the most important of them being `Arithmetic', which is related to the theory of numbers as distinct from computation, and covers much that is now included in Algebra. Diophantus introduced a better algebraic symbolism than had been known before his time. Also in this book we ¯nd the ¯rst systematic use of mathematical notation, although the signs employed are of the nature of abbreviations for words rather than algebraic symbols in contemporary mathematics. Special symbols are introduced to present frequently occurring concepts such as the unknown up 31 32 F. S. ABU M. & Y. BUGEAUD to its sixth power. He stands out in the history of science as one of the great unexplained geniuses. A Diophantine equation or indeterminate equation is one which is to be solved in integral values of the unknowns.
    [Show full text]
  • Unaccountable Numbers
    Unaccountable Numbers Fabio Acerbi In memoriam Alessandro Lami, a tempi migliori HE AIM of this article is to discuss and amend one of the most intriguing loci corrupti of the Greek mathematical T corpus: the definition of the “unknown” in Diophantus’ Arithmetica. To do so, I first expound in detail the peculiar ter- minology that Diophantus employs in his treatise, as well as the notation associated with it (section 1). Sections 2 and 3 present the textual problem and discuss past attempts to deal with it; special attention will be paid to a paraphrase contained in a let- ter of Michael Psellus. The emendation I propose (section 4) is shown to be supported by a crucial, and hitherto unnoticed, piece of manuscript evidence and by the meaning and usage in non-mathematical writings of an adjective that in Greek math- ematical treatises other than the Arithmetica is a sharply-defined technical term: ἄλογος. Section 5 offers some complements on the Diophantine sign for the “unknown.” 1. Denominations, signs, and abbreviations of mathematical objects in the Arithmetica Diophantus’ Arithmetica is a collection of arithmetical prob- lems:1 to find numbers which satisfy the specific constraints that 1 “Arithmetic” is the ancient denomination of our “number theory.” The discipline explaining how to calculate with particular, possibly non-integer, numbers was called in Late Antiquity “logistic”; the first explicit statement of this separation is found in the sixth-century Neoplatonic philosopher and mathematical commentator Eutocius (In sph. cyl. 2.4, in Archimedis opera III 120.28–30 Heiberg): according to him, dividing the unit does not pertain to arithmetic but to logistic.
    [Show full text]
  • 94 Erkka Maula
    ORGANON 15 PROBLÊMES GENERAUX Erkka Maula (Finland) FROM TIME TO PLACE: THE PARADIGM CASE The world-order in philosophical cosmology can be founded upon time as well as .space. Perhaps the most fundamental question pertaining to any articulated world- view concerns, accordingly, their ontological and epistemological priority. Is the basic layer of notions characterized by temporal or by spatial concepts? Does a world-view in its development show tendencies toward the predominance of one set of concepts rather than the other? At the stage of its relative maturity, when the qualitative and comparative phases have paved the way for the formation of quantitative concepts: Which are considered more fundamental, measurements of time or measurements of space? In the comparative phase: Is the geometry of the world a geometry of motion or a geometry of timeless order? In the history of our own scientific world-view, there seems to be discernible an oscillation between time-oriented and space-oriented concept formation.1 In the dawn, when the first mathematical systems of astronomy and geography appear, shortly before Euclid's synthesis of the axiomatic thought, there were attempts at a geometry of motion. They are due to Archytas of Tarentum and Eudoxus of Cnidus, foreshadowed by Hippias of Elis and the Pythagoreans, who tend to intro- duce temporal concepts into geometry. Their most eloquent adversary is Plato, and after him the two alternative streams are often called the Heraclitean and the Parmenidean world-views. But also such later and far more articulated distinctions as those between the statical and dynamic cosmologies, or between the formalist and intuitionist philosophies of mathematics, can be traced down to the original Greek dichotomy, although additional concepts entangle the picture.
    [Show full text]
  • The Problem: the Theory of Ideas in Ancient Atomism and Gilles Deleuze
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations 2013 The rP oblem: The Theory of Ideas in Ancient Atomism and Gilles Deleuze Ryan J. Johnson Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Johnson, R. (2013). The rP oblem: The Theory of Ideas in Ancient Atomism and Gilles Deleuze (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/706 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. THE PROBLEM: THE THEORY OF IDEAS IN ANCIENT ATOMISM AND GILLES DELEUZE A Dissertation Submitted to the McAnulty College & Graduate School of Liberal Arts Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By Ryan J. Johnson May 2014 Copyright by Ryan J. Johnson 2014 ii THE PROBLEM: THE THEORY OF IDEAS IN ANCIENT ATOMISM AND GILLES DELEUZE By Ryan J. Johnson Approved December 6, 2013 _______________________________ ______________________________ Daniel Selcer, Ph.D Kelly Arenson, Ph.D Associate Professor of Philosophy Assistant Professor of Philosophy (Committee Chair) (Committee Member) ______________________________ John Protevi, Ph.D Professor of Philosophy (Committee Member) ______________________________ ______________________________ James Swindal, Ph.D. Ronald Polansky, Ph.D. Dean, McAnulty College & Graduate Chair, Department of Philosophy School of Liberal Arts Professor of Philosophy Professor of Philosophy iii ABSTRACT THE PROBLEM: THE THEORY OF IDEAS IN ANCIENT ATOMISM AND GILLES DELEUZE By Ryan J. Johnson May 2014 Dissertation supervised by Dr.
    [Show full text]
  • On the Shoulders of Hipparchus a Reappraisal of Ancient Greek Combinatorics
    Arch. Hist. Exact Sci. 57 (2003) 465–502 Digital Object Identifier (DOI) 10.1007/s00407-003-0067-0 On the Shoulders of Hipparchus A Reappraisal of Ancient Greek Combinatorics F. Acerbi Communicated by A. Jones 1. Introduction To write about combinatorics in ancient Greek mathematics is to write about an empty subject. The surviving evidence is so scanty that even the possibility that “the Greeks took [any] interest in these matters” has been denied by some historians of mathe- matics.1 Tranchant judgments of this sort reveal, if not a cursory scrutiny of the extant sources, at least a defective acquaintance with the strong selectivity of the process of textual transmission the ancient mathematical corpus has been exposed to–afactthat should induce, about a sparingly attested field of research, a cautious attitude rather than a priori negative assessments.2 (Should not the onus probandi be required also when the existence in the past of a certain domain of research is being denied?) I suspect that, behind such a strongly negative historiographic position, two different motives could have conspired: the prejudice of “ancient Greek mathematicians” as geometri- cally-minded and the attempt to revalue certain aspects of non-western mathematics by tendentiously maintaining that such aspects could not have been even conceived by “the Greeks”. Combinatorics is the ideal field in this respect, since many interesting instances of combinatorial calculations come from other cultures,3 whereas combina- torial examples in the ancient Greek mathematical corpus have been considered, as we have seen, worse than disappointing, and in any event such as to justify a very negative attitude.
    [Show full text]
  • Alexandrian Greek Mathematics, Ca. 300 BCE to 300 CE After Euclid Had
    Alexandrian Greek Mathematics, ca. 300 BCE to 300 CE After Euclid had codified and extended earlier mathematical knowledge in the Elements, mathe- matics continued to develop – both as a discipline in itself and as a tool for the rational investigation of the physical world. We shall read about the measurements of the size of the Earth by Eratosthenes (and others) by means of Euclidean geometry. Principles of optics and mechanics were established and mechanisms were designed and built using mathematical principles. The concepts of conic sec- tions and tangents to curves were discovered and exploited. Trigonometry began and was used to calculate the distance from the Earth to the Moon and to the Sun, and other facts of astronomy were derived. It was still necessary to make observations and collect them in tables, but the underlying general principles were sought. Some of the important names of the period are Archimedes, Apollonius (conic sections, circles), Aristarchus (astronomy), Diophantus (number theory), Eratosthenes, Heron (areas, approximations), Hipparchus (plane and spherical trigonometry), Menelaus (geometry, spherical trigonometry), Pappus (geometry), and Claudius Ptolemy (trigonometry, astronomy). We shall consider some of their accomplishments. Why is it that unlike the study of the history of law or drama or geography, the study of European mathematics before the Dark Ages focuses exclusively on the Greeks? Eventually, Hellenistic Greece lost its control of the far-flung territories and Rome ascended. During the centuries of the flourishing and fading of the great Roman empire, almost no new math- ematics was created. (Roman numerals did provide a better notation for doing integer arithmetic than did the Greek alphabetic cipher numerals, and they remained in use until late in the Medieval period.) Indeed the Romans took pride in not knowing much mathematics or science or the prin- ciples underlying technology, and they cared not at all for original research.
    [Show full text]
  • Ioannis M. VANDOULAKIS, « the Arbitrariness of the Sign in Greek Mathematics »
    Ioannis M. VANDOULAKIS, « The Arbitrariness of the sign in Greek Mathematics » Communication donnée dans l’atelier de Jean-Yves Beziau, The Arbitrariness of the Sign, au colloque Le Cours de Linguistique Générale, 1916-2016. L’émergence, Genève, 9-13 janvier 2017. CERCLE FERDINAND DE SAUSSURE N° D’ISBN : 978-2-8399-2282-1 Pour consulter le programme complet de l’atelier de Jean-Yves Beziau, The Arbitrariness of the Sign : https://www.clg2016.org/geneve/programme/ateliers-libres/the- arbitrariness-of-the-sign/ 1 Ioannis M. Vandoulakis The Arbitrariness of the Sign in Greek Mathematics Ioannis M. Vandoulakis Abstract. In this paper, we will examine some modes of signification of mathematical entities used in Greek mathematical texts in the light of Saussure’s conceptualization of sign. In particular, we examine certain mathematical texts from Early Greek period, the Euclidean and Neo- Pythagorean traditions, and Diophantus. 0. Introduction Greek mathematicians have used a wide variety of modes of signification to express mathematical entities. By signification here, we understand the relation between the form of the sign (the signifier) and its meaning (the signified), as used in Ferdinand de Saussure’s semiology. According to Saussure, this relation is essentially arbitrary, motivated only by social convention. Moreover, for Saussure, signifier and signified are inseparable. One does not exist without the other, and conversely, one always implicates the other. Each one of them is the other’s condition of possibility. In this paper, we will examine some modes of signification of mathematical entities used in Greek mathematical texts in the light of Saussure’s conceptualization of sign.
    [Show full text]
  • Theoretical Mathematics: Born of Play by the Leisure Class, Flourished As a Social Status Signal by Allen Chai in His Lecture No
    Theoretical Mathematics: Born of Play by the Leisure Class, Flourished as a Social Status Signal By Allen Chai In his lecture notes, Dr. Ji states that the history of Ancient Greece, as a civilization, can be divided into four periods, and he gives specific start and end dates: the Greek Dark Ages (1100- 750 B.C.), the Archaic Period (750-480 B.C.), the Classical Period (500-323 B.C.), and the Hellenistic Period (323-146 B.C.). When his first ten lectures discuss Ancient Greek mathematics, it is primarily to introduce great Greek mathematicians of the Classical Period and their achievements1: Zeno of Elia (490-430 B.C.), Hippocrates of Chios (470-410 B.C.), Hippias of Elis (born about 460 B.C.), Plato (427- 347 B.C.), Eudoxus of Cnidus (390-337 B.C., according to Wikipedia2), and Aristotle (384-322 B.C.). When his next ten lecture notes (11-20) (2016) discuss Ancient Greek mathematics, it is primarily to introduce great Greek mathematicians of the Hellenistic Period; Archimedes of Syracuse (287-212 B.C., lecture 12), Diophantus of Alexandria (about 284-200 B.C., lecture 13), Apollonius of Perga (262-190 B.C., lecture 11); review the broad contributions and limitations of 1. Only Thales of Miletus (624-547 B.C.), Pythagoras of Samos (born between 580-572, died 497 B.C.), and Euclid of Alexandria (lived around 300 B.C.) don’t belong to the Classical Period. Thales and Pythagoras belong to the Archaic Period, but it is reasonable to question their inclusion as great mathematicians, or mathematicians at all.
    [Show full text]
  • An Introduction to Diophantine Equations: a Problem-Based Approach, 3 DOI 10.1007/978-0-8176-4549-6 1, © Springer Science+Business Media, LLC 2010 4 Part I
    Titu Andreescu Dorin Andrica Ion Cucurezeanu AnE Introduction to Diophantine Equations A Problem-Based Approach Titu Andreescu Dorin Andrica School of Natural Sciences Faculty of Mathematics and Mathem atics and Computer Science University of Texas at Dallas Babeş -Bolyai University 800 W. Campbell Road Str. Kogalniceanu 1 Richardson, TX 75080, USA 3400 Cluj-Napoca, Romania [email protected] [email protected] and Ion Cucurezeanu King Saud University Faculty of Mathematics Department of Mathematics and Computer Science College of Science Ovidius University of Constanta Riyadh 11451, Saudi Arabia B-dul Mamaia, 124 [email protected] 900527 Constanta, Romania ISBN 978-0-8176-4548-9 e-ISBN 978-0-8176–4549-6 DOI 10.1007/978-0-8176-4549-6 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010934856 Mathematics Subject Classification (2010): 11D04, 11D09, 11D25, 11D41, 11D45, 11D61, 11D68, 11-06, 97U40 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer, software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
    [Show full text]
  • Research on Ancient Greek Mathematical Sciences, 1998–2012
    Research on Ancient Greek Mathematical Sciences, 1998–2012 Nathan Sidoli Introduction This survey deals with research in ancient Greek mathematics and, to a lesser extent, mathematical sciences in the long first decade of the 21st century. It is modeled on the two foregoing surveys by J.L. Berggren and K. Saito and gives my personal appraisal of the most important work and trends of the last years, with no attempt to be exhaustive. My overview of the work in this period is divided into two main sections: the “Methods,” which researchers have applied, and the “Topics,” which have garnered significant research interest. Many of the methods and topics that have been addressed in this period are not new, but the emphasis has often changed in response to a changing historiography. Of course, many of the individual works I discuss utilize more than one method and address more than one topic. Hence, the placement in my paper of any particular study is necessarily somewhat arbitrary. I should mention some restrictions that must necessarily be made in such a survey. I deal only with mathematics, and some of the exact sciences insofar as they relate to mathematics, mathematical practice and mathematicians. This is a fairly arbitrary division. Ptolemy and Heron regarded themselves as mathematicians; astrologers of the Hellenistic periods were called mathematicians. A similar survey for astronomy, however, would be as long as that for mathematics, and those for mechanics and astrology would be nearly as long again. I only consider work in major European languages. In general, I restrict myself to the first decade of this century, give or take a few years on either side.
    [Show full text]
  • Diophantus of Alexandria, Arithmetica and Diophantine Equations
    Diophantus of Alexandria, Arithmetica and Diophantine Equations Dr. Carmen Bruni University of Waterloo David R. Cheriton School of Computer Science November 8th, 2017 Diophantus of Alexandria This week, we'll be discussing Diophantus of Alexandria. We will be talking about Alexandria, its foundation, the Library of Alexandria and problems in Diophantine Equations. Where Are We This Week? 350BCE 350AD in Macedon ∼ − https://commons.wikimedia.org/wiki/File:Map_Macedonia_336_BC-en.svg History of Alexander the Great • Battle of Chaeronea (won by Philip II of Macedon) in 338 BCE • Marked the end of the golden age of Greek mathematics. • Philip was succeeded by his son Alexander the Great. https://commons.wikimedia.org/wiki/File:Filip_II_Macedonia.jpg Alexander the Great • Lived from 356 until 323 BCE (died at age 33) • Conquered much of the world between 334 BCE to 323 BCE • Spread Greek culture around the world (his armies were usually Greek) • Tutored by Aristotle (343 BCE) https://en.wikipedia.org/wiki/File:Alexander1256.jpg Alexander the Conqueror (334 BCE-323 BCE) Courtesy: http://www.ancient.eu/timeline/Alexander_the_Great/ • 334 BCE - Invaded Persian Empire; liberated Ephesos, Baalbek (renamed Heliopolis) • 333 BCE - Conquered Sidon, Aleppo • 332 BCE - Conquers Tyre (injures shoulder), Syria (turns to Egypt) • 331 BCE - Egypt is conquered by Alexander with little resistance including Susa • 331 BCE - Founds Alexandria at port town of Rhakotis. Map of Conquered Areas Alexandria After Alexander • Once Alexander left Egypt (shortly after creating Alexandria say 331-330 BCE), control passed to his viceroy Cleomenes (died 322 BCE) • Upon Alexander's death in 323 BCE, Cleomenes remained as a satrap (political leader) in Alexandria under viceroy Ptolemy who then ordered him to be killed on the suspicion of the embezzlement of 8000 talents.
    [Show full text]
  • The Symbolic and Mathematical Influence of Diophantus's Arithmetica
    Journal of Humanistic Mathematics Volume 5 | Issue 1 January 2015 The Symbolic and Mathematical Influence of Diophantus's Arithmetica Cyrus Hettle University of Kentucky Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the History of Science, Technology, and Medicine Commons, and the Other Mathematics Commons Recommended Citation Hettle, C. "The Symbolic and Mathematical Influence of Diophantus's Arithmetica," Journal of Humanistic Mathematics, Volume 5 Issue 1 (January 2015), pages 139-166. DOI: 10.5642/jhummath.201501.08 . Available at: https://scholarship.claremont.edu/jhm/vol5/iss1/8 ©2015 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. The Symbolic and Mathematical Influence of Diophantus's Arithmetica Cover Page Footnote The author thanks Benjamin Braun, for whose History of Mathematics course this paper was originally written, and an anonymous referee for their guidance and suggestions. This work is available in Journal of Humanistic Mathematics: https://scholarship.claremont.edu/jhm/vol5/iss1/8 The Symbolic and Mathematical Influence of Diophantus's Arithmetica Cyrus Hettle Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA [email protected] Synopsis Though it was written in Greek in a center of ancient Greek learning, Diophan- tus's Arithmetica is a curious synthesis of Greek, Egyptian, and Mesopotamian mathematics.
    [Show full text]