1976 Nobel Prize for Physics

Total Page:16

File Type:pdf, Size:1020Kb

1976 Nobel Prize for Physics 1976 Nobel Prize for Physics Burt Richter (left) with his wife Laurose A smiling Sam Ting at his experiment at the enjoy a joke with Stan Flatte during the party CERN Intersecting Storage Rings where he at SLAC to celebrate the Nobel prize award. continues the search for leptons which has (Photo Stanford News Service) dominated his research life. ... to be shared equally between Professor Burton Richter, Stanford Linear Accelerator Center USA, and Professor Samuel C.C. Ting, Massa­ chusetts Institute of Technology Cam­ bridge USA, for their pioneering work in the discovery of a heavy elementary particle of a new kind.' With this citation the physics Nobel Prize went to Burt Richter and Sam Ting who led the teams which found the J/psi particle just two years ago. It is rare that discoveries are so rapidly recognized by the highest award in science. This reflects the dramatic effect of J/psi on the world of high energy physics — so dramatic that since the events of 1974, we talk of 'the new physics'. Sam Ting was born in the USA in 1936 of Chinese parents. His early years were spent in China in a Uni­ versity environment but without regular schooling until he was 12 years old. At the age of 20 he returned to the USA and took a physics degree at the University of Michigan. His first schooling in experimental techniques was at Berkeley with W. Jones and Martin Perl and then at CERN with Giuseppe Cocconi. He worked at CERN with Marcel Vivargent Klaus Winter and Gustaf Weber. In 1965 he joined Columbia University, which was then blessed with Leon Lederman, Jack Steinberger, Mel Schwartz, T.D. Lee and I.I. Rabi, and a year later launched on a long, painstaking pro­ gramme of research looking at lepton pairs emerging from particle inter­ actions. The programme started at the DESY electron synchrotron at Hamburg, then moved to the Brookhaven proton synchrotron and now continues at the CERN Intersecting Storage Rings. During this time, Sam Ting has refined to a remarkable extent the experimental techniques which are necessary to sift out leptons from whatever other particle debris is flying around. He has CERN 213.10.76 383 The double arm spectrometer of the MIT/ Brookhaven beam which detected electron- positron pairs coming from the decay of the JI psi particle. The measurement of the decay in the midst of a very high background from other interactions was a triumph of experimental technique. (Photo BNL) ring. Also, during a sabbatical year at CERN in 1975-76, in addition to participating in an ISR experiment, he outlined the physics interest and the design of an electron-positron storage ring with an energy of about 100 GeV per ring. The discovery of J/psi Returning to 1974, the story of the discovery which led to the Nobel Prize awards bears retelling: Sam Ting led a MIT/Brookhaven team looking at collisions between two protons which yielded (amongst many other things) an electron and a positron. The aim was to study some of the electromagnetic features of particles where energy is manifest in the form of a photon which material­ ized in an electron-positron pair. The experiments are not easy to do because the probability that the collisions will been driven by a strong intuition, now Stanford Linear Accelerator Center. yield such a pair is very low. The so abundantly confirmed, that good The construction of SPEAR, under detection system has to be capable of physics is hiding in the study of Burt Richter and John Rees, began in picking out an event from a million particles which materialize into lepton 1970 and was completed, with great or more other types of event. pairs. rapidity and at modest cost, in 1972. It was with long experience of such Burt Richter was born in New York At the same time he led, with Martin problems behind them that the MIT/ in 1931. In 1956 he took his Ph.D. at Perl, Willy Chinowsky, Gerson Gold- Brookhaven team led by Ting, Jean Massachusetts Institute of Technology haber and George Trilling, a Berkeley/ Aubert, Ulrich Becker and Peter Biggs (where he was particularly influenced Stanford team which built a multi­ brought into action a detection system by Francis Friedman) and moved to purpose detection system surrounding with a double arm spectrometer in a Stanford to devote his research life to one of the SPEAR interaction regions. slow ejected proton beam at the electrons since the study of quantum This dual role of storage ring Brookhaven 33 GeV synchrotron in electrodynamics at short distances had builder and experimenter gives him a the Spring of 1974. They used beams caught his imagination. A key point in rare understanding of the physics of 28.5 GeV bombarding a beryllium determining his future career was possibilities with colliding beams. target. involvement with Gerry O'Neil and Like Sam Ting he has been driven by From about August, the realization others from Stanford and Princeton in a strong conviction that the electron- that they were on to something the building of the 300 MeV electron positron system, which does not have important began to grow. The spectro­ storage rings which first collided the complications of colliding hadron meter was totting up an unusually beams in 1965. During the building of systems, is a clean way to extract large number of events where the this machine he sketched, together physics. combined energies of the electron and with Dave Ritson, an outline of a Burt Richter continues to pursue positron were equal to 3.1 GeV. This 3 GeV electron-positron colliding the same path. He is prominent in the is the classic way of spotting a reso­ beam facility which evolved to become experimental programme being pre­ nance. An unstable particle, which the famous SPEAR storage ring at the pared for the Stanford PEP storage breaks up too quickly to be seen itself, 384 The famous magnetic detector of the Berkeley I Stanford team which surrounds one of the intersection regions at the SLAC SPEAR electron-positron storage ring. This detector found the J/psi and several other members of the 'charmonium' family of particles and, this year, has added the discovery of charmed mesons. (Photo SLAC) is identified by adding up the energies of more stable particles which emerge from its decay. The particle decaying into the elec­ tron and positron they were measuring was a difficult one to swallow. The energy region has been scoured before, though not so thoroughly, without anything being seen. Also the resonance was looking 'narrow' — the energy sums were coming out at 3.1 GeV with great precision rather than, for example, spanning from 2.9 to 3.3 GeV. The width is a measure of the stability of the particle and a narrow width means that the particle lives a long time. No other particle of such a heavy mass (over three times the mass of the proton) has anything like that stability. By the end of October, the team had about 500 events from the 3.1 GeV particle and were getting ready to publish their result They baptised it J which is a letter close to the Chinese symbol for 'ting'. The apparition of the same particle apparatus? While meditating in the over the resonance again. The beams at the Stanford Linear Accelerator following months during the transfor­ were nudged from 1.55 to 1.57 and Center was nothing short of shatter­ mation of the storage ring, from everything went crazy. The inter­ ing. Burt Richter described it as 'the SPEAR I to SPEAR II, the gremlin action probability soared higher; from most exciting and frantic week-end in was looked for but not found. It was around 20 nanobarns the cross sec­ particle physics I have ever been then that the suspicion grew that tion jumped to 2000 nanobarns and through'. between 3.1 and 3.2 GeV collision the detector was flooded with events The Berkeley/Stanford team went energies could lie a resonance. producing hadrons. Pief Panofsky, the into action during the week-end During the night of 9-10 Novem­ Director of SLAC, paced around the 9-10 November to check back on ber the hunt began, changing the control room invoking the Deity in some 'funny' readings they had seen beam energies in 0.5 MeV steps. By utter amazement at what was being in June, when cross sections (the 11.00 a.m. Sunday morning the new seen. This heavy particle, displaying probability of an interaction between particle had been unequivocally found. such extraordinary stability, they called an electron and positron occurring) A set of cross section measurements psi and they announced it in a paper were measured with electrons and around 3.1 GeV showed that the beginning with the words 'We have positrons at 1.5, 1.55 and 1.6 and probability of interaction jumped by observed a very sharp peak 1.65 GeV energy in each beam. The a factor of ten from 20 to 200 nano- Within hours of the SPEAR meas­ measurement at 1.6 GeV was a little barns. In a state of euphoria, the urements, the telephone wires across high but 1.55 GeV was even more champagne was cracked open and the Atlantic were humming as informa­ peculiar. In eight runs, six measure­ the team began celebrating an im­ tion, enquiries and rumours were ments agreed with the 1.5 GeV data portant: discovery. exchanged. On the Monday morning while two were higher (one of them While Gerson Goldhaber retired to following the week-end of the disco­ five times higher).
Recommended publications
  • J. Stroth Asked the Question: "Which Are the Experimental Evidences for a Long Mean Free Path of Phi Mesons in Medium?"
    J. Stroth asked the question: "Which are the experimental evidences for a long mean free path of phi mesons in medium?" Answer by H. Stroebele ~~~~~~~~~~~~~~~~~~~ (based on the study of several publications on phi production and information provided by the theory friends of H. Stöcker ) Before trying to find an answer to this question, we need to specify what is meant with "long". The in medium cross section is equivalent to the mean free path. Thus we need to find out whether the (in medium) cross section is large (with respect to what?). The reference would be the cross sections of other mesons like pions or more specifically the omega meson. There is a further reference, namely the suppression of phi production and decay described in the OZI rule. A “blind” application of the OZI rule would give a cross section of the phi three orders of magnitude lower than that of the omega meson and correspondingly a "long" free mean path. In the following we shall look at the phi production cross sections in photon+p, pion+p, and p+p interactions. The total photoproduction cross sections of phi and omega mesons were measured in a bubble chamber experiment (J. Ballam et al., Phys. Rev. D 7, 3150, 1973), in which a cross section ratio of R(omega/phi) = 10 was found in the few GeV beam energy region. There are results on omega and phi production in p+p interactions available from SPESIII (Near- Threshold Production of omega mesons in the Reaction p p → p p omega", Phys.Rev.Lett.
    [Show full text]
  • Understanding the J/Psi Production Mechanism at PHENIX Todd Kempel Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Understanding the J/psi Production Mechanism at PHENIX Todd Kempel Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Physics Commons Recommended Citation Kempel, Todd, "Understanding the J/psi Production Mechanism at PHENIX" (2010). Graduate Theses and Dissertations. 11649. https://lib.dr.iastate.edu/etd/11649 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Understanding the J= Production Mechanism at PHENIX by Todd Kempel A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Nuclear Physics Program of Study Committee: John G. Lajoie, Major Professor Kevin L De Laplante S¨orenA. Prell J¨orgSchmalian Kirill Tuchin Iowa State University Ames, Iowa 2010 Copyright c Todd Kempel, 2010. All rights reserved. ii TABLE OF CONTENTS LIST OF TABLES . v LIST OF FIGURES . vii CHAPTER 1. Overview . 1 CHAPTER 2. Quantum Chromodynamics . 3 2.1 The Standard Model . 3 2.2 Quarks and Gluons . 5 2.3 Asymptotic Freedom and Confinement . 6 CHAPTER 3. The Proton . 8 3.1 Cross-Sections and Luminosities . 8 3.2 Deep-Inelastic Scattering . 10 3.3 Structure Functions and Bjorken Scaling . 12 3.4 Altarelli-Parisi Evolution .
    [Show full text]
  • On the Scent of Glue
    On the scent of glue by Frank Close Although this work was not new Soon after the quark model was in­ has been intensifying over the last for the specialists, the underlying vented twenty years ago, people re­ several years. Where have all the message was clear. 'Because of its alized that it was in trouble. The Pauli flowers gone? inherent singularities, classical gen­ exclusion principle ruled out many eral relativity predicts its own down­ well known states, in particular the How colour forces work fall,' stated Hawking, 'just as the configuration of three identical classical picture of the atom was also strange quarks that formed the ome­ Electrical charges are the sources doomed'. ga-minus. The very hadron whose of electromagnetic forces. As every The meeting merited two closing discovery had confirmed the Eight­ schoolchild knows, opposite char­ lectures. For the cosmologists, Mar­ fold Way seemingly killed its off­ ges attract while like charges repel. tin Rees of Cambridge confessed to spring, the quark model. Quarks possess electric charge and finding the symposium an 'unusual In those days, many people were so feel electromagnetic forces. That experience'. For the particle physi­ reluctant to accept the idea of frac­ is why even electrically uncharged cists, John Ellis described particle tionally charged quarks which had particles like neutrons have electro­ physics and cosmology as having 'a never been seen. The Pauli paradox magnetic interactions; they contain brilliant past in front of them' — refer­ suggested that quarks were at best electrically charged constituents. ring to the new common interest in no more than a bookkeeping device, Quarks also have colour and it ap­ the primaeval Big Bang and its imme­ not physical particles.
    [Show full text]
  • PARTICLE DECAYS the First Kaons from the New DAFNE Phi-Meson
    PARTICLE DECAYS K for KLi The first kaons from the new DAFNE phi-meson factory at Frascati underline a fascinating chapter in the evolution of particle physics. As reported in the June issue (p7), in mid-April the new DAFNE phi-meson factory at Frascati began operation, with the KLOE detector looking at the physics. The DAFNE electron-positron collider operates at a total collision energy of 1020 MeV, the mass of the phi- meson, which prefers to decay into pairs of kaons.These decays provide a new stage to investigate CP violation, the subtle asymmetry that distinguishes between mat­ ter and antimatter. More knowledge of CP violation is the key to an increased understanding of both elemen­ tary particles and Big Bang cosmology. Since the discovery of CP violation in 1964, neutral kaons have been the classic scenario for CP violation, produced as secondary beams from accelerators. This is now changing as new CP violation scenarios open up with B particles, containing the fifth quark - "beauty", "bottom" or simply "b" (June p22). Although still on the neutral kaon beat, DAFNE offers attractive new experimental possibilities. Kaons pro­ duced via electron-positron annihilation are pure and uncontaminated by background, and having two kaons produced coherently opens up a new sector of preci­ sion kaon interferometry.The data are eagerly awaited. Strange decay At first sight the fact that the phi prefers to decay into pairs of kaons seems strange. The phi (1020 MeV) is only slightly heavier than a pair of neutral kaons (498 MeV each), and kinematically this decay is very constrained.
    [Show full text]
  • Energy and System Size Dependence of Phi Meson Production in Cu+Cu and Au+Au Collisions
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Energy and system size dependence of phi meson production in Cu+Cu and Au+Au collisions Permalink https://escholarship.org/uc/item/95k857j6 Authors Wissink, S.W. STAR Collaboration Publication Date 2009-08-26 eScholarship.org Powered by the California Digital Library University of California Energy and system size dependence of φ meson production in Cu+Cu and Au+Au collisions B. I. Abelev,1 M. M. Aggarwal,2 Z. Ahammed,3 B. D. Anderson,4 D. Arkhipkin,5 G. S. Averichev,6 Y. Bai,7 J. Balewski,8 O. Barannikova,1 L. S. Barnby,9 J. Baudot,10 S. Baumgart,11 D. R. Beavis,12 R. Bellwied,13 F. Benedosso,7 R. R. Betts,1 S. Bhardwaj,14 A. Bhasin,15 A. K. Bhati,2 H. Bichsel,16 J. Bielcik,17 J. Bielcikova,17 B. Biritz,18 L. C. Bland,12 M. Bombara,9 B. E. Bonner,19 M. Botje,7 J. Bouchet,4 E. Braidot,7 A. V. Brandin,20 S. Bueltmann,12 T. P. Burton,9 M. Bystersky,17 X. Z. Cai,21 H. Caines,11 M. Calder´on de la Barca S´anchez,22 J. Callner,1 O. Catu,11 D. Cebra,22 R. Cendejas,18 M. C. Cervantes,23 Z. Chajecki,24 P. Chaloupka,17 S. Chattopadhyay,3 H. F. Chen,25 J. H. Chen,21 J. Y. Chen,26 J. Cheng,27 M. Cherney,28 A. Chikanian,11 K. E. Choi,29 W. Christie,12 S. U. Chung,12 R. F. Clarke,23 M. J.
    [Show full text]
  • Phi Meson in Dense Matter
    PHYSICAL REVIEW C VOLUME 45, NUMBER 3 MARCH 1992 Phi meson in dense matter * C. M. Ko, P. Levai, and X. J. Qiu Cyclotron Institute and Physics Department, Texas A &M University, College Station, Texas 77843 C. T. Li Physics Department, National Taiwan University, Taipei, Taiwan 10764, China {Received 3 September 1991) The effect of the kaon loop correction to the property of a phi meson in dense matter is studied in the vector dominance model. Using the density-dependent kaon effective mass determined from the linear chiral perturbation theory, we find that with increasing baryon density the phi meson mass is reduced slightly while its width is broadened drastically. PACS number(s): 21.30.+y, 21.90.+f In relativistic heavy-ion collisions, the nuclear matter density-dependent kaon effective mass as given by the can be compressed to densities which are many times that linear chiral perturbation theory [5,6]. in normal nuclei. This has recently generated great in- According to Refs. [5,6], the kaon effective mass in the terests in theoretical studies of hadron properties under medium can be expressed as extreme conditions [1]. In studies with both ' 1/2 Nambu —Jona-Lasinio model and sum rules pa [2] QCD m& =m& 1— [1,3], it has been found that hadron masses in general de- Pc crease with increasing density as a result of the partial restoration of chiral symmetry. The masses of pseudo- with scalar Goldstone bosons such as pion and kaon, however, 2 2 p m )yKN (2) do not depend much on the density [2,4].
    [Show full text]
  • Proposal to Jefferson Lab PAC39 Exclusive Phi Meson
    Proposal to Jefferson Lab PAC39 Exclusive Phi Meson Electroproduction with CLAS12 H. Avakian,1 J. Ball,2 A. Biselli,3 V. Burkert,1 R. Dupr,2 L. Elouadrhiri,1 1 1, 4 5, 6 5, R. Ent, F.{X. Girod, ∗ S. Goloskokov, B. Guegan, M. Guidal, ∗ 5 7 8 5 2 6, H.{S. Jo, K. Joo, P. Kroll, A Marti, H. Moutarde, A. Kubarovsky, ∗ 1, 5 5 1 5 V. Kubarovsky, ∗ C. Munoz Camacho, S. Niccolai, K. Park, R. Paremuzyan, 2 2 6, 5 5 1 6, S. Procureur, F. Sabati´e, N. Saylor, D. Sokhan, S. Stepanyan, P. Stoler, y 7 9 1, 1 M. Ungaro, E. Voutier, C. Weiss, y D. Weygand, and the CLAS Collaboration 1Jefferson Lab, Newport News, VA 23606, USA 2IRFU/SPhN, Saclay, France 3Fairfield University 4Joint Institute for Nuclear Research, Dubna, Russia 5Institut de Physique Nucleaire Orsay, France 6Rensselaer Polytechnic Institute 7Department of Physics, University of Connecticut, Storrs, CT 06269, USA 8Wuppertal University, Wuppertal, Germany 9LPSC Grenoble, France ∗Spokespersons ySpokespersons,Contact persons 2 Summary We propose a measurement of exclusive φ meson electroproduction on the proton, ep ! e0 + φ + p, at 11 GeV beam energy with the CLAS12 detector. The kinematic range extends 2 2 2 in W from 2{5 GeV, Q from 1{12 GeV , and jt − tminj from near zero to ∼ 4 GeV , the precise limits depending on the specific values of the other variables. The φ will be detected + through the K K− and (for the first time) the KSKL mode, which allows for an independent test of the cross section extraction.
    [Show full text]
  • Measurements of Phi Meson Production in Relativistic Heavy- Ion Collisions at the BNL Relativistic Heavy Ion Collider (RHIC)
    Measurements of phi meson production in relativistic heavy- ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation STAR Collaboration et al. “Measurements of phi meson production in relativistic heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC).” Physical Review C 79.6 (2009): 064903. © 2009 The American Physical Society As Published http://dx.doi.org/10.1103/PhysRevC.79.064903 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/51838 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW C 79, 064903 (2009) Measurements of φ meson production in relativistic heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) B. I. Abelev,9 M. M. Aggarwal,30 Z. Ahammed,46 B. D. Anderson,19 D. Arkhipkin,13 G. S. Averichev,12 Y. Bai, 28 J. Balewski,23 O. Barannikova,9 L. S. Barnby,2 J. Baudot,17 S. Baumgart,51 D. R. Beavis,3 R. Bellwied,49 F. Benedosso,28 R. R. Betts,9 S. Bhardwaj,35 A. Bhasin,18 A. K. Bhati,30 H. Bichsel,48 J. Bielcik,11 J. Bielcikova,11 B. Biritz,6 L. C. Bland,3 S.-L. Blyth,22 M. Bombara,2 B. E. Bonner,36 M. Botje,28 J. Bouchet,19 E. Braidot,28 A. V.
    [Show full text]
  • Phi Meson Production in Heavy-Ion Collisions at SIS Energiesprovided by CERN Document Server
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Phi Meson Production in Heavy-Ion Collisions at SIS Energiesprovided by CERN Document Server W. S. Chung1,G.Q.Li1,2, and C. M. Ko1 1Department of Physics and Cyclotron Institute, Texas A&M University, College Station, Texas 77843, U.S.A. 2Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794, U.S.A. Abstract Phi meson production in heavy-ion collisions at SIS/GSI energies (∼ 2 GeV/nucleon) is studied in the relativistic transport model. We include contributions from baryon-baryon, pion-baryon, and kaon-antikaon collisions. The cross sections for the first two processes are obtained in an one-boson- exchange model, while that for the last process is taken to be of Breit-Wigner form through the phi meson resonance. The dominant contribution to phi meson production in heavy ion collisions at these energies is found to come from secondary pion-nucleon collisions. Effects due to medium modifications of kaon masses are also studied and are found to reduce the phi meson yield by about a factor of two, mainly because of increased phi decay width as a result of dropping kaon-antikaon masses. In this case, the φ/K− ratio is about 4%, which is a factor of 2-3 below preliminary experimental data from the FOPI collaboration at GSI. Including also the reduction of phi meson mass in medium increases this ratio to about 8%, which is then in reasonable agreement with the data.
    [Show full text]
  • Coherent Ρ Meson Electroproduction Off Deuteron
    FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida COHERENT RHO MESON ELECTROPRODUCTION OFF DEUTERON A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PHYSICS by Atilla Gönenç 2009 1 To: Dean Kenneth Furton College of Arts and Sciences This dissertation, written by Atilla Gönenç, and entitled Coherent Rho Meson Electroproduction off Deuteron, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Werner U. Boeglin _______________________________________ Cem Karayalcin _______________________________________ Laird Kramer _______________________________________ Misak Sargsian _______________________________________ Brian A. Raue, Major Professor Date of Defense: June 24, 2008 The dissertation of Atilla Gönenç is approved. _______________________________________ Dean Kenneth Furton College of Arts and Sciences _______________________________________ Dean George Walker University Graduate School Florida International University, 2009 ii © Copyright 2009 by Atilla Gönenç All rights reserved. iii DEDICATION This dissertation is dedicated to my wonderful parents, Tulin and Hasim, for their love and endless support… iv ACKNOWLEDGMENTS Though only my name appears on the cover of this dissertation, a great many people have contributed to its creation. The writing of this dissertation has been truly a challenge and I owe my thanks to all those who gave me the possibility to complete it. My deepest gratitude is to my advisor, Dr. Brian Raue. His guidance, patience and support helped me overcome many crisis situations and finish this dissertation. Most importantly, none of this would have been possible without the love and patients of my family. My immediate family, to whom this dissertation is dedicated to, has been source of love, support and strength all these years.
    [Show full text]
  • Hyperon Puzzle and RMF Models with Scaled Hadron Masses and Coupling Constants
    Hyperon puzzle and RMF models with scaled hadron masses and coupling constants Evgeni E. Kolomeitsev (University of Matej Bel, Slovakia) K.A. Maslov and D.N. Voskresensky (MEPhI, Moscow) “Hyperon puzzle” and constraints on the nuclear EoS maximum mass of a neutron star constraint on pressure from HIC constraint from direct Urca (DU) processes “hyperon puzzle” Cut mechanism for hardening the nucleon EoS. Non-linear Walecka model: Play with a scalar-field potential Scaling of meson masses and coupling constants Solution of the hyperons puzzle in neutron stars D baryons Neutron star mass charts 1993 [Thorsett et al, ApJ 405] 2012 2000 http://www.stellarcollapse.org/ Constraint on the stiffness of nuclear EoS [Danielewicz, Lacey, Lynch, Science 298, 1592 (2002)] directed and elliptic flow of particles in heavy-ion collisions range for the pressure of isospin symmetrical matter at T=0 maximum NS mass >1.98 Msol requires stiff EoS restrict the pressure from above! Neutron star cooling and direct Urca reactions DU: MU: DU process schould be „exotics“ (if DU starts it is dificult to stop it) weak constraint strong constraint [Blaschke, Grigorian, Voskresensky A&A 424 (2004) 979] constraint on the symmetry energy [EEK, Voskresensky NPA759 (2005) 373] “Hyperon puzzle” If we allow for a population of new Fermi seas (hyperon, D baryons, …) EoS will be softer and the NS will be smaller [Rijken, Schulze, EPJA52 (2016) 21] [Dapo, Schaefer, Wambach PRC 81 (2010) 035803] Simple solutions: -- make nuclear EoS as stiff as possible [flow constraint] -- suppress hyperon population (increase repulsion/reduce attraction) against phenomenology of YN,NN,YY interaction in vacuum +hypernuclear physics various RMF models nucleonic stars hyperonic stars [Weissenborn et al., NPA 881 (2012) 62] “Cut” mechanism for hardening the nuclear EoS.
    [Show full text]
  • Phi Meson Production in Relativistic Heavy Ion Collisions
    Phi Meson Production in Relativistic Heavy Ion Collisions S. Pal, C. M. Ko, and Z. W. Lin One possible signal for the quark-gluon plasma formed in relativistic heavy ion collisions is the enhanced production of strange particles such as the phi meson [1]. Since phi meson is not a stable particle, it can only be detected via its decay product of KK+− or µµ+−. The rescattering of K + and K − in the hadronic matter, however, prevents the reconstruction of all phi mesons produced in heavy ion collisions. This makes the µµ+−, which does not suffer final-state interactions, a more reliable way to extract the phi meson yield. Recent experiments at the CERN/SPS have, indeed, shown that the number of phi meson reconstructed from the µµ+− channel [2] Figure 1: Rapidity distribution of phi meson reconstructed exceeds by a factor between two and four from from K+K- (solid curves) and Φ+Φ- channel (dashed curves) +− for Pb+Pb collisions at 158A GeV at an impact parameter that reconstructed from the KK channel [3]. of b#3.5 fm in the AMPT model. The results are for To understand these experimental results, we without (thin curves) and with (thick curves) in-medium mass modifications. The dotted line corresponds to phi have extended a multiphase transport (AMPT) mesons from the dimuon channel with in-medium masses model [4], that takes into account both initial and with the phi meson number from initial string partonic and final hadronic interactions, to fragmentation increased by a factor of two. The solid circles are the NA49 experimental data [3] from the K+ K- include phi meson production, scattering, and channel.
    [Show full text]