Journal of Marine Science and Engineering Article The Impact of Wave Model Source Terms and Coupling Strategies to Rapidly Developing Waves across the North-West European Shelf during Extreme Events Nieves G. Valiente 1,* , Andrew Saulter 1 , John M. Edwards 1 , Huw W. Lewis 1, Juan M. Castillo Sanchez 1, Diego Bruciaferri 1 , Christopher Bunney 1 and John Siddorn 2 1 Met Office, Fitzroy Road, Exeter EX1 3PB, UK; andrew.saulter@metoffice.gov.uk (A.S.); john.m.edwards@metoffice.gov.uk (J.M.E.); huw.lewis@metoffice.gov.uk (H.W.L.); juan.m.castillo@metoffice.gov.uk (J.M.C.S.); diego.bruciaferri@metoffice.gov.uk (D.B.); christopher.bunney@metoffice.gov.uk (C.B.) 2 National Oceanography Centre, Southampton SO14 3ZH, UK;
[email protected] * Correspondence: nieves.valiente@metoffice.gov.uk Abstract: Prediction of severe natural hazards requires accurate forecasting systems. Recently, there has been a tendency towards more integrated solutions, where different components of the Earth system are coupled to explicitly represent the physical feedbacks between them. This study focuses on rapidly developing waves under extratropical storms to understand the impact of different wave source term parameterisations in the WAVEWATCH III (WWIII) model (ST4 and ST6) and coupling strategies (surface roughness closure versus surface stress closure) on the accuracy of the Met Office Citation: Valiente, N.G.; Saulter, A.; regional atmosphere-ocean-wave coupled research system for the north-west (NW) European shelf Edwards, J.M.; Lewis, H.W.; Castillo (UKC4). Results of a study focused on simulations during winter 2013/14 demonstrate that ST6 Sanchez, J.M.; Bruciaferri, D.; Bunney, allows for a faster wave growth than the ST4 parameterisation but might degrade low to mid energy C.; Siddorn, J.