Information Sheet on Ramsar Wetlands (RIS) – 2006-2008 Version
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lexikální (Mikro)Dialektologie Užské Romštiny*
| Michael Beníšek1 Lexikální (mikro)dialektologie užské romštiny* Lexical (micro-)dialectology of Uzh Romani Abstract This article is a dialectological study of the vocabulary of local Romani varieties that are spoken in the territory of the former Uzh County in the present-day Slovak– Ukrainian borderland. Uzh Romani is presented as a heterogeneous dialect area consisting of two regions: the Western Uzh region in Slovakia and the Eastern Uzh region in Ukraine. The study shows that the whole area is lexically part of a dialect continuum of North Central Romani and specifically of its eastern macro-area, while it is also characterised by dialect-specific features. The main focus of the article is a description of the lexical variability within the Uzh area. The study argues that the major differences between the Western Uzh and Eastern Uzh regions are due to the influence of different contact languages on both sides of the border. Moreover, we can observe that the Eastern Uzh region is lexically more conservative than the Western Uzh region, although there are some lexically conservative varieties even in the Western Uzh region. Furthermore, the article discusses the lexical variation within both regions and mentions examples of isoglosses that cross the national border. By considering lexical archaisms, the study also addresses the dynamics of the vocabulary and gives examples of inherited words that have become either locally or generally obsolete or even extinct. Key words dialectology, language contact, lexicology, North Central Romani, Romani, Slovak-Ukrainian borderland, Uzh dialect area Jak citovat Beníšek, M. 2020. Lexikální (mikro)dialektologie užské romštiny. Romano džaniben 27 (1): 45–89. -
RIS) Categories Approved by Recommendation 4.7 of the Conference of the Contracting Parties
Information Sheet on Ramsar Wetlands (RIS) Categories approved by Recommendation 4.7 of the Conference of the Contracting Parties Note: It is important that you read the accompanying Explanatory Note and Guidelines document before completing this form. 1. Date this sheet was completed/updated: 28th March 2002 2. Country: Slovakia 3. Name of wetland: Latorica 4. Geographical coordinates: 48º 28' N, 022º 00' E 5. Elevation: (average and/or maximum and minimum) 100 m (99 – 103 m) 6. Area: (in hectares) 4 404,7 ha (refined estimation) 7. Overview: (general summary, in two or three sentences, of the wetland's principal characteristics) The site includes a part of the floodplain area of the Latorica River defined by levees, from the Ukrainian borders to the confluence with the Laborec River in the Latorica Protected Landscape Area, in S part of the East Slovakian Lowland. It is characterized by a well-developed system of branches, seasonally inundated habitats with adjacent floodplain forests and grasslands. Threatened and rare aquatic and swamp biocoenoses of lowland, flooded habitats are represented. Several nature reserves are included in the site. 8. Wetland Type: (please circle the applicable codes for wetland types as listed in Annex I of the Explanatory Note and Guidelines document) marine-coastal: AB CDE FGH I J KZk(a) inland: L MNO PQRSpSs Tp Ts UVaVtW Xf Xp Y Zg Zk(b) human-made: 1 2 3 45 678 9 Zk(c) Please now rank these wetland types by listing them from the most to the least dominant: P, Tp, M, Xf, O, 4, Ts, W, 9, 7 9. -
TABLE of CONTENTS Estimation of the Long-Term Cyclical Fluctuations Of
TABLE OF CONTENTS Estimation of the long-term cyclical fluctuations of snow-rain floods in the Danube basin within Ukraine Tetiana ZABOLOTNIA, Liudmyla GORBACHOVA, Borys KHRYSTIUK 3 Multi-annual variability of global solar radiation in the agricultural area of Lower Silesia (SW Poland) and its relationship with the North Atlantic Oscillation Krystyna BRYŚ, Tadeusz BRYŚ 13 Sensitivities of the Tiedtke and Kain-Fritsch Convection Schemes for RegCM4.5 over West Africa Mojisola Oluwayemisi ADENIYI 27 Water vapor induced airborne rotational features Roman MARKS 39 Learning to cope with water variability through participatory monitoring: the case study of the mountainous region, Nepal Santosh REGMI, Jagat K. BHUSAL, Praju GURUNG, Zed ZULKAFLI, Timothy KARPOUZOGLOU, Boris Ochoa TOCACHI, Wouter BUYTAERT, Feng MAO 49 Long-term seasonal characterization and evolution of extreme drought and flooding variability in northwest Algeria Kouidri SOFIANE, Megnounif ABDESSELAM, Ghenim Abderrahmane NEKKACHE 63 Homogeneous regionalization via L-moments for Mumbai City, India Amit Sharad PARCHURE, Shirish Kumar GEDAM 73 After COP24 Conference in Katowice – the role of the Institute of Meteorology and Water Management – National Research Institute in connection of hydrological and meteorological measurements and observations with climate change adaptation actions Marta BARSZCZEWSKA, Ksawery SKĄPSKI 85 Vol. 7 Issue 2 June 2019 Estimation of the long-term cyclical fluctuations of snow-rain floods in the Danube basin within Ukraine Tetiana Zabolotnia, Liudmyla Gorbachova, Borys Khrystiuk Ukrainian Hydrometeorological Institute, Prospekt Nauki 37, 03028 Kyiv, Ukraine, e-mail: [email protected], [email protected], [email protected] Abstract. Floods are a periodic natural phenomenon, often accompanied by negative consequences for the local population and the economy as a whole. -
EU Strategy for the Danube Region
EU Strategy for the Danube Region Consolidated Input Document of the Danube Countries for the Revision of the EUSDR Action Plan FINAL VERSION 5th July 2019, handed over to the European Commission / DG Regio on 5th July 2019 1/103 Table of Contents PRELUDE ........................................................................................................................................... 3 PART A: ............................................................................................................................................. 4 1. Scope of the Revision Process of the EUSDR Action Plan ...................................................... 4 1.1. EUSDR History ................................................................................................................... 4 1.2. The Reasons for revising the Action Plan ........................................................................ 5 1.3. The scope of the revision ................................................................................................. 8 2. Description of the Revision Process of the EUSDR Action Plan ............................................. 8 3. Results and recommendations from the evaluation ........................................................... 10 4. Proposals for drafting a Narrative for the Danube Region .................................................. 14 5. Strategic Objectives for increasing the Quality of Living in the Danube Region ................ 15 5.1. Spatial Trends in the Danube Region ........................................................................... -
Human Potential of the Western Ukrainian Borderland
Journal of Geography, Politics and Society 2017, 7(2), 17–23 DOI 10.4467/24512249JG.17.011.6627 HUMAN POTENTIAL OF THE WESTERN UKRAINIAN BORDERLAND Iryna Hudzelyak (1), Iryna Vanda (2) (1) Chair of Economic and Social Geography, Faculty of Geography, Ivan Franko National University of Lviv, Doroshenka 41, 79000 Lviv, Ukraine, e-mail: [email protected] (corresponding author) (2) Chair of Economic and Social Geography, Faculty of Geography, Ivan Franko National University of Lviv, Doroshenka 41, 79000 Lviv, Ukraine, e-mail: [email protected] Citation Hudzelyak I., Vanda I., 2017, Human potential of the Western Ukrainian borderland, Journal of Geography, Politics and Society, 7(2), 17–23. Abstract This article contains the analysis made with the help of generalized quantative parameters, which shows the tendencies of hu- man potential formation of the Western Ukrainian borderland during 2001–2016. The changes of number of urban and rural population in eighteen borderland rayons in Volyn, Lviv and Zakarpattia oblasts are evaluated. The tendencies of urbanization processes and resettlement of rural population are described. Spatial differences of age structure of urban and rural population are characterized. Key words Western Ukrainian borderland, human potential, population, depopulation, aging of population. 1. Introduction during the period of closed border had more so- cial influence from the West, which formed specific Ukraine has been going through the process of model of demographic behavior and reflected in dif- depopulation for some time; it was caused with ferent features of the human potential. significant reduction in fertility and essential mi- The category of human potential was developed gration losses of reproductive cohorts that lasted in economic science and conceptually was related almost a century. -
Environment of the Slovak Republic in 1993-2003
Slovak environmental agency Centre for Environmental Policy and Informatics Banska Bystrica BASIC DATA ON THE SLOVAK REPUBLIC Basic geographical and demographical data on the Slovak Republic Size and borders of the Slovak Republic Population by basic age categories (as of December 31, 2002) - in thousands of people Indicator Size as of 31. 12.2001 (km2) 49035 Length of borders (km, %) total, 1 672 (100.0%) including with: • Czech Republic 251.8(15.1%) • Hungary 668.6 (40.0%) • Poland 547.1 (32.7%) • Austria 106.0 (6.3%) • Ukraine 98.5 (5.9%) Lowest point: outflow of the Bodrog river from SI 94 (above the sea level) Highest point: Gerlachovsky stit (above the sea 2 655 v tis. os6b level.) □ Men | Women Source: SU SR Source: SU SR Density of population in Slovak districts in 2002 Source: SU SR Size of land per capita by regions (ha) - as Size and population count by regions - as of of December 31, 2002 December 31, 2002 count population Source: SU SR Source: SU SR AIR EMISSIONS Emissions of nitrogen oxides Emissions of nitrogen oxides (NOx) have shown insignificant reduction since 1990. Slight increase in emissions (releases from pollution sources into the immediate environment) in 1995 was related to increased consumption of natural gas. Decrease in 1996 was caused by a change to the emission factor that took into consideration the current level of equipment and technology of incineration processes. Reduction in solid fuel consumption since 1997 has led to a further decrease in NOx emissions. NOx emissions in 2001 dropped approximately by 50.8% when compared to 1990. -
Danube Facts and Figures the Slovak Republic
Danube Facts and Figures: Slovakia Danube Facts and Figures The Slovak Republic (March 2007) General Overview The Slovak Republic is located in Central Europe and shares borders with Austria, the Czech Republic, Hungary, Poland and Ukraine. The country covers 49,034km 2 and nearly all of this area – 47,084km2 or 96% of the country – lies in the Danube River Basin. Slovakia has been a signatory state to the Danube River Protection Convention since 1994, and has been a Party to the Convention on the Protection and Use of Transboundary Watercourses and International Lakes since 1999. The Slovak Republic joined the European Union in 2004. Topography A major part of the Slovak territory is located in the Carpathian Mountains, but almost one quarter of the country is formed by lowlands. The Vienna Basin extends into Slovakia from the west, the Pannonian Plain from the southwest and the Great Danubian Basin from the southeast. These lowlands form part of the ecological region known as the Hungarian Lowlands. Precipitation, climate and water flow The climate of Slovakia is influenced by its location in a temperate zone. There are several types of climate regions within the country – from cold mountain (along the upper Váh River) to warm dry regions with moderate winters and more sunlight in the south. The long-term average temperature varies from 0-10 degrees, according to the region. The long-term average annual precipitation ranges from 2,000mm.y-1 along the upper Váh River to 500 mm.y-1 in the south along the Bodrog and Danube Rivers. -
East Slovakian Lowland and Its Economical Utilization
Eastern Slovakian lowland and its economical utilization Matias Luostarinen, Teppo Tossavainen, Peter Popovic, Zuzana Baronova, Adria Vila Cufi, Miquel Romero Carrera Contents Introduction ....................................................................................................................................................... 3 Landscapes of the region ................................................................................................................................... 4 Regions identity and regional identity in the landscape ................................................................................... 5 Sources and methods of analysis ...................................................................................................................... 6 Physical geographical characteristics of the territory ....................................................................................... 7 The human geography of the Eastern Slovak Lowland ................................................................................... 13 Tokaj region in Slovakia ................................................................................................................................... 14 Conflict for brand Tokaji .................................................................................................................................. 19 Differences between the Tokaj region of Hungary and Slovakia .................................................................... 20 References ...................................................................................................................................................... -
Water Quality in the Danube River Basin
Water Quality in the Danube River Basin - 2016 TNMN – Yearbook 2016 ICPDR / International Commission for the Protection of the Danube River / www.icpdr.org Imprint Published by: ICPDR – International Commission for the Protection of the Danube River Overall coordination and preparation of the TNMN Yearbook and database in 2017 & 2018: Lea Mrafkova, Slovak Hydrometeorological Institute, Bratislava in cooperation with the Monitoring and Assessment Expert Group of the ICPDR. Editor: Igor Liska, ICPDR Secretariat © ICPDR 2018 Contact ICPDR Secretariat Vienna International Centre / D0412 P.O. Box 500 / 1400 Vienna / Austria T: +43 (1) 26060-5738 / F: +43 (1) 26060-5895 [email protected] / www.icpdr.org ICPDR / International Commission for the Protection of the Danube River / www.icpdr.org Table of content 1. Introduction 4 1.1 History of the TNMN 4 1.2 Revision of the TNMN to meet the objectives of EU WFD 4 2. Description of the TNMN Surveillance Monitoring II: Monitoring of specific pressures 5 2.1 Objectives 5 2.2 Selection of monitoring sites 5 2.3 Quality elements 10 2.3.1 Priority pollutants and parameters indicative of general physico-chemical quality elements 10 2.4 Analytical Quality Control (AQC) 11 2.5 TNMN Data Management 12 3. Results of basic statistical processing 13 4. Profiles and trend assessment of selected determinands 16 4.1 Mercury in fish 33 4.2 Macrozoobenthos saprobic index 36 4.3 Sava and Tisza Rivers 37 5. Load Assssment 40 5.1 Introduction 40 5.2 Description of load assessment procedure 40 5.3 Monitoring Data in 2016 40 5.4 Calculation Procedure 42 5.5 Results 44 6. -
Recent Distribution and Phytosociological Affiliation of Ludwigia Palustris in Slovakia
Acta Societatis Botanicorum Poloniae DOI: 10.5586/asbp.3544 ORIGINAL RESEARCH PAPER Publication history Received: 2016-02-28 Accepted: 2017-03-08 Recent distribution and phytosociological Published: 2017-03-31 affiliation of Ludwigia palustris in Slovakia Handling editor Joanna Zalewska-Gałosz, Faculty of Biology and Earth Sciences of the Jagiellonian University, Daniel Dítě1, Pavol Eliáš Jr.2*, Zuzana Dítě1, Andrea Šimková3 Poland 1 Plant Science and Biodiversity Center, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia Authors’ contributions 2 Slovak University of Agriculture, A. Hlinku 2, 949 76 Nitra, Slovakia DD: idea of the study; DD, ZD: 3 Administration of Latorica Protected Landscape Area, Záborského 1760/1, 075 01 Trebišov, writing the first draft of the Slovakia manuscript; PE: revision of the manuscript, map and table * Corresponding author. Email: [email protected] creating; AŠ: comments to the manuscript; all the authors: field study, relevés sampling Abstract Funding Ludwigia palustris has always been a very rare species in Central Europe. In Slo- The research was partially vakia, its occurrence remained unconfirmed for over 60 years and it was therefore funded by the projects VEGA 1/0083/16 and VEGA 2/0040/17. considered extinct. The paper reports its rediscovery on two sites in SE Slovakia. Both localities were found in the Latorica River catchment area in 2015 when per- Competing interests sistent summer droughts enabled the development of natural mudflat vegetation No competing interests have in the dried oxbows. Confirmation of this historic site indicates the long-term been declared. survival ability of the species. -
Flood Risk Assessment and Management in Slovakia
River Basin Management VI 61 Flood risk assessment and management in Slovakia M. Zeleňáková Institute of Building and Environmental Engineering, Technical University of Košice, Slovakia Abstract In recent years, the growth of population and the diffusion of settlements over flood vulnerable areas have increased the impact of floods worldwide. Natural disasters such as floods have constituted a major problem in many countries worldwide. Floods have caused immense economic and social losses, mainly as a result of unplanned urbanization, uncontrolled population density and not strictly inspected construction by authorities. Flood damages that have arisen on watercourses and hydraulic structures on the territory of the Slovak Republic have been huge. The most affected area is the eastern part of Slovakia, where the most complex situation is in the Laborec, Topľa, Ondava, Torysa, Latorica and Hornád river basins in the recent years, mainly in 2010. This contribution presents flood risk assessment and management in these territories. Keywords: flood risk assessment, flood risk management, directive 2007/60/EC. 1 Introduction A new comprehensive approach on flood risk assessment and management on a European level has been triggered, especially after the large-scale flooding of 2002 in central Europe, with an estimated damage of 16.5 billion US$ (2002: 1 US$ = 1€). The European Commission issued a Communication about flood risk management [1] in 2004. This initiative was followed by the adoption by the European parliament and the council of Directive -
Chapter 5 Drainage Basin of the Black Sea
165 CHAPTER 5 DRAINAGE BASIN OF THE BLACK SEA This chapter deals with the assessment of transboundary rivers, lakes and groundwa- ters, as well as selected Ramsar Sites and other wetlands of transboundary importance, which are located in the basin of the Black Sea. Assessed transboundary waters in the drainage basin of the Black Sea Transboundary groundwaters Ramsar Sites/wetlands of Basin/sub-basin(s) Recipient Riparian countries Lakes in the basin within the basin transboundary importance Rezovska/Multudere Black Sea BG, TR Danube Black Sea AT, BA, BG, Reservoirs Silurian-Cretaceous (MD, RO, Lower Danube Green Corridor and HR, CZ, DE, Iron Gate I and UA), Q,N1-2,Pg2-3,Cr2 (RO, UA), Delta Wetlands (BG, MD, RO, UA) HU, MD, ME, Iron Gate II, Dobrudja/Dobrogea Neogene- RO, RS, SI, Lake Neusiedl Sarmatian (BG-RO), Dobrudja/ CH, UA Dobrogea Upper Jurassic-Lower Cretaceous (BG-RO), South Western Backa/Dunav aquifer (RS, HR), Northeast Backa/ Danube -Tisza Interfluve or Backa/Danube-Tisza Interfluve aquifer (RS, HU), Podunajska Basin, Zitny Ostrov/Szigetköz, Hanság-Rábca (HU), Komarnanska Vysoka Kryha/Dunántúli – középhegység északi rész (HU) - Lech Danube AT, DE - Inn Danube AT, DE, IT, CH - Morava Danube AT, CZ, SK Floodplains of the Morava- Dyje-Danube Confluence --Dyje Morava AT, CZ - Raab/Rába Danube AT, HU Rába shallow aquifer, Rába porous cold and thermal aquifer, Rába Kőszeg mountain fractured aquifer, Günser Gebirge Umland, Günstal, Hügelland Raab Ost, Hügelland Raab West, Hügelland Rabnitz, Lafnitztal, Pinkatal 1, Pinkatal 2, Raabtal,