Engraulis Encrasicolus ) Increase in the North Sea

Total Page:16

File Type:pdf, Size:1020Kb

Engraulis Encrasicolus ) Increase in the North Sea The European anchovy (Engraulis encrasicolus ) increase in the North Sea Kristina Raab Thesis committee Promotor Prof. Dr Adriaan D. Rijnsdorp, Professor of Sustainable Fisheries Management Wageningen University Co-promotors Dr Mark Dickey-Collas Professional Officer, International Council for the Exploration of the Sea (ICES) Copenhagen, Denmark Dr Leo A.J. Nagelkerke Assistant professor, Aquaculture and Fisheries Group Wageningen University Other members Prof. Dr Brian MacKenzie, Technical University of Denmark, Institute for Aquatic Resources (DTU AQUA), Charlottenlund, Denmark Prof. Dr Jaap van der Meer, Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands Prof. Dr Wolf M. Mooij, Wageningen University and Netherlands Institute for Ecology (NIOO), Wageningen Dr W. Fred de Boer, Wageningen University This research was conducted under the auspices of the Graduate School of Animal Sciences. The European anchovy (Engraulis encrasicolus ) increase in the North Sea Kristina Raab Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof.dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Thursday 10 October 2013 at 11 a.m. in the Aula. Kristina Raab The European anchovy ( Engraulis encrasicolus) increase in the North Sea, 208 pages. PhD thesis, Wageningen University, Wageningen, NL (2013) With references, with summaries in Dutch and English ISBN 978 94 6173 6826 “In liebevoller Verehrung”… To my teachers, past and present. Contents Chapter 1 - General introduction.......................................................... 9 Chapter 2 - Anchovy Engraulis encrasicolus diet in the North and Baltic Seas (Raab et al 2011).................................................................. 37 Chapter 3 - Dietary overlap between the potential competitors herring, sprat and anchovy in the North Sea (Raab et al 2012)………….. 67 Chapter 4 - Anchovy population expansion in the North Sea (Petitgas et al 2012)………………………………………………………………………………………... 91 Chapter 5 - Impact of temperature and food availability on juvenile European anchovy ( Engraulis encrasicolus ) at its northern boundary (Raab et al 2013)…………………………………………………………………………….... 115 Chapter 6 - Depensation in small pelagic fish illustrated with the North Sea anchovy example (manuscript) ……………………………..………... 141 Chapter 7 - Synthesis and general discussion…………………………….…….. 169 English Summary ……………………………………………………………………………… 193 Dutch Summary (Samenvatting) …………………………………………………...... 196 Acknowledgements …………………………………………………………………………. 199 About the author …………………………………………………………………………….. 205 List of publications …………………………………………………........................... 207 CHAPTER 1 Introduction: A background review for the anchovy increase in the North Sea 9 Small pelagic fish populations, i.e. planktivorous schooling fish, mainly of the order Clupeiformes, are of global importance both socio-economically and ecologically (Pikitch et al. 2012a, Pikitch et al. 2012b). In the North Sea, herring and sprat are important species in terms of number and fishery (Dickey-Collas et al. in press). European anchovy ( Engraulis encrasicolus ) is usually found further South in Europe: in the Bay of Biscay, Mediterranean and Black Seas (Barange et al. 2009) but also in small numbers on the southern coast of the North Sea (Boddeke & Vingerhoed 1996). In the mid-1990s, anchovy in the North Sea showed an increase in abundance and distribution as far North as Scotland (Beare et al. 2004). The reasons for this increase were unknown, but changes in this population may reflect or indicate changes in other components of the North Sea ecosystem. Indeed, many concurrent changes were happening in the North Sea. Among these, changes in the plankton and general warming due to climate change appeared likely to influence this planktivorous fish previously found further South in Europe. This thesis therefore addresses the ecology of anchovy in the North Sea, including possible causes and mechanisms for the anchovy increase. First by establishing basic trophic and life cycle characteristics of anchovy, then by focusing on the impact of environmental variables like food availability and temperature on young anchovy and lastly by generalising to possible spatial range expansion processes. This introductory chapter gives an overview of the main background to the thesis and outlines the questions, hypotheses and approaches we use. The importance of small pelagic fish in global ecosystems is presented, as well as further details on the North Sea anchovy and its population increase. I then give an overview of important processes regulating population dynamics, relating these to changes observed in the North Sea. The importance of space and scale in ecology is noted and we briefly explain the implications for the concept of regime shifts in the oceans. Small pelagic fish in a global perspective The economic importance of small pelagic fish results from the magnitude of the catches of these fish across several major oceans, rather than from a high value of the fish per se . Indeed, the catches make up over 50% of the world’s wild- caught catches despite coming from only 3.7% of all recorded fish species (Cury et al. 2000). Ecologically, small pelagic fish play a crucial role because they can constitute such a large biomass in pelagic systems that they have the capacity to exert strong bottom up or top down control. Bottom up control is the type of ecological control where resource availability controls consumer/predator 10 INTRODUCTION ǀ CHAPTER 1 populations – e.g. the small pelagics supporting large populations of carnivorous fish, seabirds and marine mammals. However, these small pelagics may also exert top-down control, where resource populations are controlled by a predator, e.g. they might be limiting the populations of the plankton species they feed on (e.g. mesocosm experiments by Mowitt et al. 2006 and suggested in e.g. the Baltic by Casini et al. 2006). The extent to which bottom up and top down control plays a role in ecological systems and in marine systems specifically has been heavily debated. Generally systems were thought of as being controlled either in a bottom up/resource-limited or a top down/predation-controlled way, but then the example of small pelagics opened a way to a more diversified way of considering the ecological control mechanisms. Small pelagics were singled out as so-called “wasp-waist” control species (Rice 1995, Cury et al. 2000, Bakun 2006), controlling the higher trophic levels by bottom up control and the lower trophic levels by top down control. This makes them a pivotal component of the system, possibly in the North Sea as well (Fauchald et al. 2011), although recent analyses suggest the wasp-waist idea in general may be an oversimplification (Fréon et al. 2009, Madigan et al. 2012). An interesting feature of small pelagic fish populations is that they naturally undergo large-scale abundance fluctuations associated with range changes on a regular basis (Lluch-Belda et al. 1989, Schwartzlose et al. 1999, Lehodey P. et al. 2006). Sometimes, species pairs in a same system alternate in their dominance by biomass, e.g. anchovy and sardine in the Benguela, Humboldt, California and Japan systems (reviewed by Schwartzlose et al. 1999 or sardine and herring in the English Channel Alheit & Hagen 1997). Nowadays and historically however, fluctuations in species abundance do not always correspond to species alternations (Soutar & Isaacs 1974). Climate was long considered to be the main driver behind these abundance fluctuations, although the possible impact of other factors such as fishing has not been excluded (fishing has been invoked as possible cause for large-scale declines of fish populations e.g. Hutchings & Myers 1994, Jackson et al 2001, Roberts 2007). Support for the climate theory comes from the close correspondence between population abundance and climate conditions e.g. in the North Pacific for instance, sardine dominates under warm conditions, while in cold phases, anchovy prevails (Lluch-Belda et al. 1989). Moreover, there is a correspondence of phase timings across different ocean basins, with pelagic stocks fluctuating in phase with each other (e.g. Northwest and Southeast Pacific sardine) which resulted in the suggestion that long distance climatic linkages may be involved. There are however some exceptions such as e.g. the Californian sardine stock which is out of phase with the others (Schwartzlose et al. 1999). Yet since climate cannot be controlled for in large-scale marine systems, progress is largely made by the comparative rather than experimental method, which makes advances slow as there 11 are many case studies to bring under one consistent framework. It should be noted that even if the climate hypothesis is correct and climate were the ultimate cause of fluctuations, the proximate mechanisms remain unknown. Mechanisms proposed include that the species alternations are trophodynamically mediated (van der Lingen et al. 2006) with one species benefitting from slight changes in plankton availability, or related to the species having different optimal temperatures for growth (Takasuka et al. 2007) or differential abilities to evade biological controls (loophole concept, Bakun & Broad 2003) but consensus has not yet emerged. A recent synthesis (MacCall 2009) tries to bridge between climate behaviour and other factors
Recommended publications
  • European Anchovy Engraulis Encrasicolus (Linnaeus, 1758) From
    European anchovy Engraulis encrasicolus (Linnaeus, 1758) from the Gulf of Annaba, east Algeria: age, growth, spawning period, condition factor and mortality Nadira Benchikh, Assia Diaf, Souad Ladaimia, Fatma Z. Bouhali, Amina Dahel, Abdallah B. Djebar Laboratory of Ecobiology of Marine and Littoral Environments, Department of Marine Science, Faculty of Science, University of Badji Mokhtar, Annaba, Algeria. Corresponding author: N. Benchikh, [email protected] Abstract. Age, growth, spawning period, condition factor and mortality were determined in the European anchovy Engraulis encrasicolus populated the Gulf of Annaba, east Algeria. The age structure of the total population is composed of 59.1% females, 33.5% males and 7.4% undetermined. The size frequency distribution method shows the existence of 4 cohorts with lengths ranging from 8.87 to 16.56 cm with a predominance of age group 3 which represents 69.73% followed by groups 4, 2 and 1 with respectively 19.73, 9.66 and 0.88%. The VONBIT software package allowed us to estimate the growth parameters: asymptotic length L∞ = 17.89 cm, growth rate K = 0.6 year-1 and t0 = -0.008. The theoretical maximum age or tmax is 4.92 years. The height-weight relationship shows that growth for the total population is a major allometry. Spawning takes place in May, with a gonado-somatic index (GSI) of 4.28% and an annual mean condition factor (K) of 0.72. The total mortality (Z), natural mortality (M) and fishing mortality (F) are 2.31, 0.56 and 1.75 year-1 respectively, with exploitation rate E = F/Z is 0.76 is higher than the optimal exploitation level of 0.5.
    [Show full text]
  • Buradan Da Dünya Karar Verme Yöntemi Yardımı Ile Konteyner Denizlerine Ulaşma Imkânı Sağlamaktadır Terminallerinin Performans Analizlerine (Esmer Ve Oral, 2012)
    Volume : 4 I ssue: ORDU 2 ORDU UNIVERSITY DEC UNIVERSITY EMBER Volume: 4 Issue: 2 DECEMBER 2018 201 8 TURKISH JOURNAL TURKISH OF JOURNAL OF MARITIME MARITIME AND MARINE AND S C I E N C E S MARINE SCIENCES www.jmms.odu.edu.tr e-ISSN: 2564-7016 TURKISH JOURNAL OF MARITIME AND MARINE SCIENCES The Turkish Journal of Maritime and Marine Sciences is published by Ordu University On Behalf of Fatsa Faculty of Marine Sciences Correspondence Address: Ordu University, Fatsa Faculty of Marine Sciences 52400 Fatsa/Ordu, TURKEY Web site: http://edergi.odu.edu.tr/ojs/index.php/JMMS/index http://dergipark.gov.tr/trjmms Tel: +90 (452) 423 50 53 Fax: +90 (452) 423 99 53 E-mail: [email protected] Sort of Publication: Periodically Publication Date and Place: 01 / 12 / 2018, ORDU, TURKEY Publishing Kind: Online OWNER Ordu University On Behalf of Fatsa Faculty of Marine Sciences Prof. Dr. Bahar TOKUR (Dean) EDITORS IN CHIEF Dr. Hasan TÜRE Assoc. Prof. Dr. Naciye ERDOĞAN SAĞLAM COVER DESIGN Dr. Adem YÜCEL FOREIGN LANGUAGE EDITORS Dr. Cem Tolga GÜRKANLI Teaching Asst. Şeyma VAROL ŞANLI LAYOUT EDITOR Research Asst. Enes Fatih PEHLİVAN SECTION EDITORS Fisheries and Aquaculture Prof. Dr. Bahar TOKUR Ordu University Prof. Dr. İsmet BALIK Ordu University Assoc. Prof. Dr. Mehmet AYDIN Ordu University Assoc. Prof. Dr. Yılmaz ÇİFTÇİ Ordu University Assoc. Prof. Dr. Evren TUNCA Ordu University Dr. Ali MİROĞLU Ordu University Maritime and Marine Technology Dr. Ercan YÜKSEKYILDIZ Ordu University Dr. Aziz MUSLU Ordu University Dr. Adil SÖZER Ordu University EDITORIAL BOARD (FISHERIES AND AQUACULTURE) Prof.
    [Show full text]
  • Acartia Tonsa) Was Found, Although This May Not Be Solely Due to the Presence of ML (See Below)
    Caspian Environment Programme Transboundary Diagnostic Analysis Revisit 10 December, 2007 EXECUTIVE SUMMARY The CEP TDA Revisit was completed in December 2007 following an intensive desk study of materials collected from the second phase of the Caspian Environment Programme. The intention of the CEP TDA Revisit is to provide a follow on review of the priority transboundary issues, to assess the efforts conducted during the CEP Phase II implementation, and to extrapolate where additional efforts are warranted. The SAP and NAPs are reviewed followed by an analysis of the priority areas of concern as identified in the SAP. The issues addressed in the TDA are: decline in biodiversity; decline in environmental quality (pollution); decline in bioresources (fisheries); decline in coastal infrastructure and habitat; and impacts of the oil industry in the region. This is supplemented by an analysis of governance mechanisms, socio- economic conditions in the region, and stakeholder analysis and public involvement strategy. The methodology employed by the CEP TDA Revisit team involved an intensive desk study of all reports produced for the CEP PCU from 2003 – 2007. Regional and international specialists were called upon to review the materials and assess the status of the major transboundary issues through the scope of the CEP work and related efforts in the region. The revisit directly, through its researchers, brought additional information to the fore in order to expand the understanding of the transboundary issues and new parallel studies were commissioned on climate change impacts and land-based sources and where manged by the Programme Coordination Unit. SAP and NAP review assessed the implementation of the SAP and the NCAPs in the Caspian littoral countries.
    [Show full text]
  • Anchovy Early Life History and Its Relation to Its Surrounding Environment in the Western Mediterranean Basin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC SCI. MAR., 60 (Supl. 2): 155-166 SCIENTIA MARINA 1996 THE EUROPEAN ANCHOVY AND ITS ENVIRONMENT, I. PALOMERA and P. RUBIÉS (eds.) Anchovy early life history and its relation to its surrounding environment in the Western Mediterranean basin ALBERTO GARCÍA1 and ISABEL PALOMERA2 1Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Aptdo. 285. Fuengirola, 29640 Málaga, Spain. 2Institut de Ciències del Mar. CSIC, Passeig Joan de Borbó, s/n, 08039 Barcelona, Spain. SUMMARY: This paper is a review on the anchovy early life history in the western Mediterranean. There is evidence of latitudinal differences in the duration of the spawning period associated with regional temperature variations. The main spawning areas of the anchovy are located in the Gulf of Lyons and at the shelf surrounding the Ebro river delta. The exten- sions of spawning grounds seem to be linked to the size of the shelf and to the degree of hydrographic enriching-process- es. Punctual studies on egg and larval ecology have been made mainly in the areas of the main spawning grounds, report- ing preliminary results on growth, feeding, condition and mortality estimates. Biomass estimation by the Daily Egg Pro- duction Method (DEPM) has also been applied at the northern region. Key words: Anchovy, Engraulis encrasicolus, eggs and larvae, reproduction, Western Mediterranean. RESUMEN: PRIMEROS ESTADIOS DE DESARROLLO DE LA ANCHOA Y SU RELACIÓN CON EL AMBIENTE EN EL MEDITERRÁNEO OCCI- DENTAL. – Este trabajo es una revisión de los estudios realizados sobre las primeras fases de desarrollo de la anchoa del Mediterráneo occidental.
    [Show full text]
  • Abundance and Distribution of Eggs and Larvae of Anchovy
    Turkish Journal of Zoology Turk J Zool (2013) 37: 773-781 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1212-31 Abundance and distribution of eggs and larvae of anchovy (Engraulis encrasicolus, Linnaeus, 1758) and horse mackerel (Trachurus mediterraneus, Steindachner, 1868) on the coasts of the eastern Black Sea 1, 2 Cemalettin ŞAHİN *, Necati HACIMURTAZAOĞLU 1 Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey 2 Republic of Turkey Ministry of Food, Agriculture, and Livestock, Trabzon, Turkey Received: 27.12.2012 Accepted: 08.07.2013 Published Online: 04.10.2013 Printed: 04.11.2013 Abstract: Sampling for this survey was performed in 5 stations located in the bays of Sürmene and Rize in the eastern Black Sea between April and October 2006. During the sampling, the quantities and distributions of eggs and larvae of anchovies (Engraulis encrasicolus) and horse mackerel (Trachurus mediterraneus) were determined. For horizontal towing carried out from the surface (0–5 m), a plankton net of 50 cm in diameter and 500 µm mesh. The eggs of anchovy and horse mackerel sampled in plankton tows were found to be 438.33 ind./100 m3 and 5.71 ind./100 m3 for horizontal tows. During horizontal tows, the larvae of anchovy and horse mackerel were found to be 8.00 ind./100 m3 and 0.68 ind./100 m3, respectively. During the surveys, a total of 14,535 anchovy eggs, 147 horse mackerel eggs, 256 anchovy larvae, and 7 horse mackerel larvae were sampled. Mortality rates were calculated as 81.18% for anchovy and 37.41% for horse mackerel.
    [Show full text]
  • © Iccat, 2007
    A5 By-catch Species APPENDIX 5: BY-CATCH SPECIES A.5 By-catch species By-catch is the unintentional/incidental capture of non-target species during fishing operations. Different types of fisheries have different types and levels of by-catch, depending on the gear used, the time, area and depth fished, etc. Article IV of the Convention states: "the Commission shall be responsible for the study of the population of tuna and tuna-like fishes (the Scombriformes with the exception of Trichiuridae and Gempylidae and the genus Scomber) and such other species of fishes exploited in tuna fishing in the Convention area as are not under investigation by another international fishery organization". The following is a list of by-catch species recorded as being ever caught by any major tuna fishery in the Atlantic/Mediterranean. Note that the lists are qualitative and are not indicative of quantity or mortality. Thus, the presence of a species in the lists does not imply that it is caught in significant quantities, or that individuals that are caught necessarily die. Skates and rays Scientific names Common name Code LL GILL PS BB HARP TRAP OTHER Dasyatis centroura Roughtail stingray RDC X Dasyatis violacea Pelagic stingray PLS X X X X Manta birostris Manta ray RMB X X X Mobula hypostoma RMH X Mobula lucasana X Mobula mobular Devil ray RMM X X X X X Myliobatis aquila Common eagle ray MYL X X Pteuromylaeus bovinus Bull ray MPO X X Raja fullonica Shagreen ray RJF X Raja straeleni Spotted skate RFL X Rhinoptera spp Cownose ray X Torpedo nobiliana Torpedo
    [Show full text]
  • Bist 2012/2013
    Überwachung von „at risk“-Gewässern im Saarland in einem online-Monitoring Programm Bist Oktober 2012 bis April 2013 Dipl. Geogr. Angelika Meyer, Dipl. Ing. (FH) Susanne Neurohr, Dipl. Ing. (FH) Elisabeth Fünfrocken, Prof. Dr. Horst P. Beck, Prof. Dr. Kaspar Hegetschweiler Universität des Saarlandes Institut für Anorganische und Analytische Chemie 66041 Saarbrücken Tel.: 0681-302-4230 www.gewässer-monitoring.de Überwachung von „at risk“-Gewässern im Saarland mittels Online-Messtechnik - Bist, Winterhalbjahr 2012/2013 INHALT 1. EINLEITUNG .......................................... FEHLER! TEXTMARKE NICHT DEFINIERT. 2. GRUNDLAGEN ................................................................................................................... 2 2.1 Technische Grundlagen ................................................................................................. 0 2.2 Untersuchungsraum Bist ............................................................................................... 1 3. ERGEBNISSE ...................................................................................................................... 4 4. LITERATUR ...................................................................................................................... 25 5. ANHANG ............................................................................................................................ 26 Abbildungen auf dem Titelblatt: Oben: Messstation an der Ill in Eppelborn Unten: Bist in Ham-sous-Varsberg (Frankreich) und am Pegel in Bisten Überwachung
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • A Systematic Review of Organochlorinated Pesticide Residues in Caspian Sea Fishes
    Health Scope. 2017 February; 6(1):e36279. doi: 10.17795/jhealthscope-36279. Published online 2016 August 28. Review Article A Systematic Review of Organochlorinated Pesticide Residues in Caspian Sea Fishes Mohammad Ali Zazouli,1 and Marjan Safarpour1,* 1Department of Environmental Health, Faculty of Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, IR Iran *Corresponding author: Marjan Safarpour, Department of Environmental Health, Faculty of Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, IR Iran. Tel: +98-2314481905, E-mail: [email protected] Received 2016 April 26; Revised 2016 July 05; Accepted 2016 August 14. Abstract Context: The worldwide production and application of pesticides, especially organochlorine in agriculture can have adverse envi- ronmental pollution and human health risks. Thus, this review evaluated and summarized the toxicological data on the existence and concentrations of organochlorine compounds in Caspian sea fish tissues. Evidence Acquisition: The data were collected from published articles in PubMed, ISI, SID, Google Scholar and so on. Results: The review showed that nine studies were recorded in databases about pesticide residues in Caspian sea fish tissues. These studies reported that there is limited evidence of organochlorinated compounds in Caspian sea fishes. All researchers detected organochlorine contaminants in examined fishes in the studied area, however DDTs was the predominant pesticides. Heptachlor, Polychlorinated Biphenyls (PCBs) and Linden were ranked next, respectively. Conclusions: In conclusion, toxicological studies showed that, although contamination level in Caspian sea fishes was relatively low, the present status might pose a risk about food chain contamination. Keywords: Pesticide Residues, Fish, Environmental Toxicology, Systematic Review, DDTs 1.
    [Show full text]
  • Geographic Pattern of Sushi Product Misdescription in Italy—A Crosstalk Between Citizen Science and DNA Barcoding
    foods Article Geographic Pattern of Sushi Product Misdescription in Italy—A Crosstalk between Citizen Science and DNA Barcoding Anna Maria Pappalardo *, Alessandra Raffa, Giada Santa Calogero and Venera Ferrito Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; [email protected] (A.R.); [email protected] (G.S.C.); [email protected] (V.F.) * Correspondence: [email protected]; Tel.: + 39-095-730-6051 Abstract: The food safety of sushi and the health of consumers are currently of high concern for food safety agencies across the world due to the globally widespread consumption of these products. The microbiological and toxicological risks derived from the consumption of raw fish and seafood have been highlighted worldwide, while the practice of species substitution in sushi products has attracted the interest of researchers more than food safety agencies. In this study, samples of sushi were processed for species authentication using the Cytochrome Oxidase I (COI) gene as a DNA barcode. The approach of Citizen Science was used to obtain the sushi samples by involving people from eighteen different Italian cities (Northern, Central and Southern Italy). The results indicate that a considerable rate of species substitution exists with a percentage of misdescription ranging from 31.8% in Northern Italy to 40% in Central Italy. The species most affected by replacement was Thunnus thynnus followed by the flying fish roe substituted by eggs of Mallotus villosus. These results Citation: Pappalardo, A.M.; indicate that a standardization of fish market names should be realized at the international level Raffa, A.; Calogero, G.S.; Ferrito, V.
    [Show full text]
  • Morphometric Variation Among Anchovy (Engraulis Encrasicholus, L.) Populations from the Bay of Biscay and Iberian Waters
    ICES CM 2004/EE:24 Morphometric variation among anchovy (Engraulis encrasicholus, L.) populations from the Bay of Biscay and Iberian waters Bruno Caneco, Alexandra Silva, Alexandre Morais Abstract For management purposes, the European Atlantic anchovy is separated in two distinct stocks, one distributed in the Bay of Biscay (ICES Sub-Area VIII) and the other occupying mainly the southern part of ICES Division IXa (Bay of Cadiz). However, spatio-temporal irregularities in the dynamics of the Sub-Area VIII stock as well as scant knowledge on the IXa anchovy biology lead ICES to recommend more studies on population dynamics and possible relationships between areas. The present work describes morphometric differences between the two stocks based on the analysis of 10 samples collected within the area from Bay of Biscay to the Bay of Cadiz during two consecutive years (2000 and 2001). Distances on a “Truss Network” were computed from 2D landmark coordinates obtained from digitized images of each individual and corrected from the effect of fish size. Principal Component Analysis was applied to the shape data, as well as a Multidimensional Scaling to the squared Mahalonobis distances (D2) between every pair of sample centroids to visualise clustering. The significance of the computed D2 distances was also statistically tested. Finally, Artificial Neural Networks were applied to assess the robustness of sample groups highlighted in the previous analyses. Results indicate a separation between samples from the Bay of Biscay and those from Division IXa, which is stable over time, as well as a north-south cline along the Portuguese and Bay of Cadiz area.
    [Show full text]
  • The History and Future of the Biological Resources of the Caspian and the Aral Seas*
    Journal of Oceanology and Limnology Vol. 36 No. 6, P. 2061-2084, 2018 https://doi.org/10.1007/s00343-018-8189-z The history and future of the biological resources of the Caspian and the Aral Seas* N. V. ALADIN 1, ** , T. CHIDA 2 , Yu. S. CHUIKOV 3 , Z. K. ERMAKHANOV 4 , Y. KAWABATA 5 , J. KUBOTA 6 , P. MICKLIN 7 , I. S. PLOTNIKOV 1 , A. O. SMUROV 1 , V. F. ZAITZEV 8 1 Zoological Institute RAS, St.-Petersburg 199034, Russia 2 Nagoya University of Foreign Studies, Nisshin 470-0197, Japan 3 Astrakhan State University, Astrakhan 414056, Russia 4 Aral Branch of Kazakh Research Institute of Fishery, Aralsk 120100, Kazakhstan 5 Tokyo University of Agriculture and Technology, Fuchu Tokyo 183-8509, Japan 6 National Institutes for the Humanities, Tokyo 105-0001, Japan 7 Western Michigan University, Kalamazoo 49008, USA 8 Astrakhan State Technical University, Astrakhan 414056, Russia Received Jul. 11, 2018; accepted in principle Aug. 16, 2018; accepted for publication Sep. 10, 2018 © Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The term ‘biological resources’ here means a set of organisms that can be used by man directly or indirectly for consumption. They are involved in economic activities and represent an important part of a country’s raw material potential. Many other organisms are also subject to rational use and protection. They can be associated with true resource species through interspecifi c relationships. The Caspian and Aral Seas are continental water bodies, giant saline lakes. Both categories of species are represented in the benthic and pelagic communities of the Caspian and Aral Seas and are involved in human economic activities.
    [Show full text]