Amphibia: Anura: Microhylidae) Fauna of Myanmar with Description of Two New Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cfreptiles & Amphibians
WWW.IRCF.ORG TABLE OF CONTENTS IRCF REPTILES &IRCF AMPHIBIANS REPTILES • VOL &15, AMPHIBIANS NO 4 • DEC 2008 • 189 27(2):288–292 • AUG 2020 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FEATURE ARTICLES . Chasing BullsnakesAmphibians (Pituophis catenifer sayi) in Wisconsin: of the Melghat, On the Road to Understanding the Ecology and Conservation of the Midwest’s Giant Serpent ...................... Joshua M. Kapfer 190 . The Shared History of TreeboasMaharashtra, (Corallus grenadensis) and Humans on Grenada: India A Hypothetical Excursion ............................................................................................................................Robert W. Henderson 198 RESEARCH ARTICLES Hayat A. Qureshi and Gajanan A. Wagh . Biodiversity Research Laboratory,The Texas Horned Department Lizard in of Central Zoology, and ShriWestern Shivaji Texas Science ....................... College, Emily Amravati, Henry, Jason Maharashtra–444603, Brewer, Krista Mougey, India and Gad (gaj [email protected]) 204 . The Knight Anole (Anolis equestris) in Florida .............................................Brian J. Camposano,Photographs Kenneth L. Krysko, by the Kevin authors. M. Enge, Ellen M. Donlan, and Michael Granatosky 212 CONSERVATION ALERT . World’s Mammals in Crisis ............................................................................................................................................................. 220 . More Than Mammals ..................................................................................................................................................................... -
A New Species of the Genus Microhyla Tschudi, 1838 (Amphibia: Anura: Microhylidae) from Eastern India with Notes on Indian Species
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.07.455509; this version posted August 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A new species of the genus Microhyla Tschudi, 1838 (Amphibia: Anura: Microhylidae) from eastern India with notes on Indian species Somnath Bhakat1 and Soumendranath Bhakat2 1Dept. of Zoology, Rampurhat College, Rampurhat- 731224, Dist. Birbhum, W. b. [email protected] ORCID: 0000-0002-4926-2496 2 Vivekanandapally, P. O. Suri- 731101, Dist. Birbhum, W. B. India, Formerly (Biophysical Chemistry Lab., Lund University, Sweden. E-mail: [email protected] ORCID: 0000-0002-1184-9259 Abstract A new species of the genus Microhyla, Microhyla bengalensis sp. nov., described from West Bengal state, India. The new species is distinguished from its congeners by a combination of the following morphological characters: 1) Small in size (SVL= 16.2 mm. in male); 2) truncated snout in dorsal view; 3) head wider than long (HW: HL= 1.36); 4) canthus rostralis and tympanum are indistinct; 5) nostril placed on the dorsal side of the snout; 6) tibiotarsal articulation not reaching the eye; 7) fingers and toes without disc; 8) toe webbing basal; 9) thigh and foot length are equal and smaller than shank; 10) skin tuberculated on dorsum; 11) ‘teddy bear’ dark brown mark on dorsum; 12) an inverted ‘V’-shaped dark brown mark above the vent. -
ONEP V09.Pdf
Compiled by Jarujin Nabhitabhata Tanya Chan-ard Yodchaiy Chuaynkern OEPP BIODIVERSITY SERIES volume nine OFFICE OF ENVIRONMENTAL POLICY AND PLANNING MINISTRY OF SCIENCE TECHNOLOGY AND ENVIRONMENT 60/1 SOI PIBULWATTANA VII, RAMA VI RD., BANGKOK 10400 THAILAND TEL. (662) 2797180, 2714232, 2797186-9 FAX. (662) 2713226 Office of Environmental Policy and Planning 2000 NOT FOR SALE NOT FOR SALE NOT FOR SALE Compiled by Jarujin Nabhitabhata Tanya Chan-ard Yodchaiy Chuaynkern Office of Environmental Policy and Planning 2000 First published : September 2000 by Office of Environmental Policy and Planning (OEPP), Thailand. ISBN : 974–87704–3–5 This publication is financially supported by OEPP and may be reproduced in whole or in part and in any form for educational or non–profit purposes without special permission from OEPP, providing that acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purposes. Citation : Nabhitabhata J., Chan ard T., Chuaynkern Y. 2000. Checklist of Amphibians and Reptiles in Thailand. Office of Environmental Policy and Planning, Bangkok, Thailand. Authors : Jarujin Nabhitabhata Tanya Chan–ard Yodchaiy Chuaynkern National Science Museum Available from : Biological Resources Section Natural Resources and Environmental Management Division Office of Environmental Policy and Planning Ministry of Science Technology and Environment 60/1 Rama VI Rd. Bangkok 10400 THAILAND Tel. (662) 271–3251, 279–7180, 271–4232–8 279–7186–9 ext 226, 227 Facsimile (662) 279–8088, 271–3251 Designed & Printed :Integrated Promotion Technology Co., Ltd. Tel. (662) 585–2076, 586–0837, 913–7761–2 Facsimile (662) 913–7763 2 1. -
Two New Cryptic Species Of
ZooKeys 1036: 47–74 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1036.56919 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Two new cryptic species of Microhyla Tschudi, 1838 (Amphibia, Anura, Microhylidae) related to the M. heymonsi group from central Vietnam Chung Van Hoang1,2,9, Tao Thien Nguyen3, Hoa Thi Ninh3, Anh Mai Luong4, Cuong The Pham4,5, Truong Quang Nguyen4,5, Nikolai L. Orlov6, Youhua Chen1, Bin Wang1, Thomas Ziegler7,8, Jianping Jiang1,2 1 CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restora- tion and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 810000, China 3 Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam 4 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam 5 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam 6 Zoo- logical Institute, Russian Academy of Sciences, Universitetskaya nab 1, St. Petersburg 199034, Russia 7 AG Zoologischer Garten Köln, Riehler Strasse 173, D-50735 Cologne, Germany 8 Institute of Zoology, University of Cologne, Zülpicher Strasse 47b, D-50674 Cologne, Germany 9 Forest Resources and Environment Center, 300 Ngoc Hoi Road, Thanh Tri, Hanoi, Vietnam Corresponding authors: Jianping Jiang ([email protected]); Tao Thien Nguyen ([email protected]) Academic editor: J. -
The Impact of Anchored Phylogenomics and Taxon Sampling on Phylogenetic Inference in Narrow-Mouthed Frogs (Anura, Microhylidae)
Cladistics Cladistics (2015) 1–28 10.1111/cla.12118 The impact of anchored phylogenomics and taxon sampling on phylogenetic inference in narrow-mouthed frogs (Anura, Microhylidae) Pedro L.V. Pelosoa,b,*, Darrel R. Frosta, Stephen J. Richardsc, Miguel T. Rodriguesd, Stephen Donnellane, Masafumi Matsuif, Cristopher J. Raxworthya, S.D. Bijug, Emily Moriarty Lemmonh, Alan R. Lemmoni and Ward C. Wheelerj aDivision of Vertebrate Zoology (Herpetology), American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA; bRichard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA; cHerpetology Department, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia; dDepartamento de Zoologia, Instituto de Biociencias,^ Universidade de Sao~ Paulo, Rua do Matao,~ Trav. 14, n 321, Cidade Universitaria, Caixa Postal 11461, CEP 05422-970, Sao~ Paulo, Sao~ Paulo, Brazil; eCentre for Evolutionary Biology and Biodiversity, The University of Adelaide, Adelaide, SA 5005, Australia; fGraduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; gSystematics Lab, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; hDepartment of Biological Science, Florida State University, Tallahassee, FL 32306, USA; iDepartment of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL 32306-4120, USA; jDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA Accepted 4 February 2015 Abstract Despite considerable progress in unravelling the phylogenetic relationships of microhylid frogs, relationships among subfami- lies remain largely unstable and many genera are not demonstrably monophyletic. -
Ecological Assessments in the B+WISER Sites
Ecological Assessments in the B+WISER Sites (Northern Sierra Madre Natural Park, Upper Marikina-Kaliwa Forest Reserve, Bago River Watershed and Forest Reserve, Naujan Lake National Park and Subwatersheds, Mt. Kitanglad Range Natural Park and Mt. Apo Natural Park) Philippines Biodiversity & Watersheds Improved for Stronger Economy & Ecosystem Resilience (B+WISER) 23 March 2015 This publication was produced for review by the United States Agency for International Development. It was prepared by Chemonics International Inc. The Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience Program is funded by the USAID, Contract No. AID-492-C-13-00002 and implemented by Chemonics International in association with: Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. Ecological Assessments in the B+WISER Sites Philippines Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience (B+WISER) Program Implemented with: Department of Environment and Natural Resources Other National Government Agencies Local Government Units and Agencies Supported by: United States Agency for International Development Contract No.: AID-492-C-13-00002 Managed by: Chemonics International Inc. in partnership with Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) 23 March -
Cambodian Journal of Natural History
Cambodian Journal of Natural History Artisanal Fisheries Tiger Beetles & Herpetofauna Coral Reefs & Seagrass Meadows June 2019 Vol. 2019 No. 1 Cambodian Journal of Natural History Editors Email: [email protected], [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Alison Behie, Australia National University, • Dr Keo Omaliss, Forestry Administration, Cambodia. Australia. • Ms Meas Seanghun, Royal University of Phnom Penh, • Dr Stephen J. Browne, Fauna & Flora International, Cambodia. UK. • Dr Ou Chouly, Virginia Polytechnic Institute and State • Dr Chet Chealy, Royal University of Phnom Penh, University, USA. Cambodia. • Dr Nophea Sasaki, Asian Institute of Technology, • Mr Chhin Sophea, Ministry of Environment, Cambodia. Thailand. • Dr Martin Fisher, Editor of Oryx – The International • Dr Sok Serey, Royal University of Phnom Penh, Journal of Conservation, UK. Cambodia. • Dr Thomas N.E. Gray, Wildlife Alliance, Cambodia. • Dr Bryan L. Stuart, North Carolina Museum of Natural Sciences, USA. • Mr Khou Eang Hourt, National Authority for Preah Vihear, Cambodia. • Dr Sor Ratha, Ghent University, Belgium. Cover image: Chinese water dragon Physignathus cocincinus (© Jeremy Holden). The occurrence of this species and other herpetofauna in Phnom Kulen National Park is described in this issue by Geissler et al. (pages 40–63). News 1 News Save Cambodia’s Wildlife launches new project to New Master of Science in protect forest and biodiversity Sustainable Agriculture in Cambodia Agriculture forms the backbone of the Cambodian Between January 2019 and December 2022, Save Cambo- economy and is a priority sector in government policy. -
Chamber Music: an Unusual Helmholtz Resonator for Song Amplification in a Neotropical Bush-Cricket (Orthoptera, Tettigoniidae) Thorin Jonsson1,*, Benedict D
© 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 2900-2907 doi:10.1242/jeb.160234 RESEARCH ARTICLE Chamber music: an unusual Helmholtz resonator for song amplification in a Neotropical bush-cricket (Orthoptera, Tettigoniidae) Thorin Jonsson1,*, Benedict D. Chivers1, Kate Robson Brown2, Fabio A. Sarria-S1, Matthew Walker1 and Fernando Montealegre-Z1,* ABSTRACT often a morphological challenge owing to the power and size of their Animals use sound for communication, with high-amplitude signals sound production mechanisms (Bennet-Clark, 1998; Prestwich, being selected for attracting mates or deterring rivals. High 1994). Many animals therefore produce sounds by coupling the amplitudes are attained by employing primary resonators in sound- initial sound-producing structures to mechanical resonators that producing structures to amplify the signal (e.g. avian syrinx). Some increase the amplitude of the generated sound at and around their species actively exploit acoustic properties of natural structures to resonant frequencies (Fletcher, 2007). This also serves to increase enhance signal transmission by using these as secondary resonators the sound radiating area, which increases impedance matching (e.g. tree-hole frogs). Male bush-crickets produce sound by tegminal between the structure and the surrounding medium (Bennet-Clark, stridulation and often use specialised wing areas as primary 2001). Common examples of these kinds of primary resonators are resonators. Interestingly, Acanthacara acuta, a Neotropical bush- the avian syrinx (Fletcher and Tarnopolsky, 1999) or the cicada cricket, exhibits an unusual pronotal inflation, forming a chamber tymbal (Bennet-Clark, 1999). In addition to primary resonators, covering the wings. It has been suggested that such pronotal some animals have developed morphological or behavioural chambers enhance amplitude and tuning of the signal by adaptations that act as secondary resonators, further amplifying constituting a (secondary) Helmholtz resonator. -
The Internet-Based Southeast Asia Amphibian Pet Trade
Rebecca E. Choquette et al. THE INTERNET-BASED SOUTHEAST ASIA AMPHIBIAN PET TRADE by Rebecca E. Choquette Ariadne Angulo Phillip J. Bishop Chi T. B. Phan Jodi J. L. Rowley © BROOBAS/CC BY-SA 4.0 © BROOBAS/CC BY-SA Polypedates otilophus Amphibians, as a class, are the most threatened vertebrates on the planet, with 41% of species threatened with extinction. Southeast Asian amphibian species in particular have been impacted by a high rate of habitat loss, and overharvesting for consumption, traditional medicine, and the pet trade has placed further pressure on populations. Collection for the pet trade is a online availability and demand for the pet trade of Southeast Asian amphibian species. We found postings for 59 Southeast Asian posts associated with the United Kingdom, the Czech Republic, the United States, Russia, and Germany. We highlight several species 68 TRAFFIC Bulletin Rebecca E. Choquette et al. The internet-based Southeast Asian amphibian pet trade Aet METHODS alet al et alet al et al study. et al et al et al researchers. Amphibian Species of the World et alet al et al et al et al et alet alet al. et al Yuan et al et al et alet al TRAFFIC Bulletin -
The Breeding Behavior of Glyphoglossus Molossus and the Tadpoles of Glyphoglossus Molossus and Calluella Guttulata (Microhylidae)
Zootaxa 3811 (3): 381–386 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3811.3.9 http://zoobank.org/urn:lsid:zoobank.org:pub:A449DA92-EA8B-4D8B-A538-C2845B33033F The breeding behavior of Glyphoglossus molossus and the tadpoles of Glyphoglossus molossus and Calluella guttulata (Microhylidae) RONALD ALTIG1, 3 & JODI J. L. ROWLEY2 1Department of Biological Sciences. Mississippi State University, Mississippi State, MS 39762, USA 2Australian Museum Research Institute, Australian Museum, 6 College Street, Sydney, NSW, 2010, Australia 3Corresponding author. E-mail: [email protected] Abstract The breeding behavior of Glyphoglossus molossus is described from still and video images taken in Cambodia. These large, burrowing frogs follow the general theme of microhylids that deposit aquatic eggs: explosive breeding in ephemeral water and performing multiple amplectic dips to oviposit surface films of pigmented eggs. A portion of a clutch is released with each dip, a dip lasts for about 6 s, 200-300 eggs are released per dip, and about 5 s pass between dips. The ova have a dark black animal pole and yellow vegetal pole. Expanded datasets on the morphology of the tadpoles of Glyphoglossus from Vietnam and Calluella from Myanmar are presented. Key words: Microhylidae, breeding, oviposition, tadpole Introduction There are rotund, short-legged frogs in several families (Nomura et al. 2009) that spend the majority of their time underground but emerge with seasonal rains to breed. Microhylid frogs that lay aquatic eggs commonly behave in this way, and the tadpoles are suspension feeders with depressed bodies, a reduced oral apparatus without keratinized mouthparts, lateral eyes, and a midventral spiracle. -
Download Download
BIODIVERSITAS ISSN: 1412-033X Volume 20, Number 9, September 2019 E-ISSN: 2085-4722 Pages: 2718-2732 DOI: 10.13057/biodiv/d200937 Species diversity and prey items of amphibians in Yoddom Wildlife Sanctuary, northeastern Thailand PRAPAIPORN THONGPROH1,♥, PRATEEP DUENGKAE2,♥♥, PRAMOTE RATREE3,♥♥♥, EKACHAI PHETCHARAT4,♥♥♥♥, WASSANA KINGWONGSA5,♥♥♥♥♥, WEEYAWAT JAITRONG6,♥♥♥♥♥♥, YODCHAIY CHUAYNKERN1,♥♥♥♥♥♥♥, CHANTIP CHUAYNKERN1,♥♥♥♥♥♥♥♥ 1Department of Biology, Faculty of Science, Khon Kaen University, Mueang Khon Kaen, Khon Kaen, 40002, Thailand. Tel.: +6643-202531, email: [email protected]; email: [email protected]; email: [email protected] 2Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand. email: [email protected] 3Protected Areas Regional Office 9 Ubon Ratchathani, Mueang Ubon Ratchathani, Ubon Ratchathani, 34000, Thailand. email: [email protected] 4Royal Initiative Project for Developing Security in the Area of Dong Na Tam Forest, Sri Mueang Mai, Ubon Ratchathani, 34250, Thailand. email: [email protected] 5Center of Study Natural and Wildlife, Nam Yuen, Ubon Ratchathani, 34260, Thailand. email: [email protected] 6Thailand Natural History Museum, National Science Museum, Technopolis, Khlong 5, Khlong Luang, Pathum Thani, 12120, Thailand, email: [email protected] Manuscript received: 25 July 2019. Revision accepted: 28 August 2019. Abstract. Thongproh P, Duengkae P, Ratree P, Phetcharat E, Kingwongsa W, Jaitrong W, Chuaynkern Y, Chuaynkern C. 2019. Species diversity and prey items of amphibians in Yoddom Wildlife Sanctuary, northeastern Thailand. Biodiversitas 20: 2718-2732. Amphibian occurrence within Yoddom Wildlife Sanctuary, which is located along the border region among Thailand, Cambodia, and Laos, is poorly understood. To determine amphibian diversity within the sanctuary, we conducted daytime and nocturnal surveys from 2014 to 2017 within six management units. -
BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls