Service Assessment October 2016 Hurricane Matthew

Total Page:16

File Type:pdf, Size:1020Kb

Service Assessment October 2016 Hurricane Matthew Service Assessment October 2016 Hurricane Matthew U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service Silver Spring, Maryland Cover Photograph: Moderate-resolution imaging spectroradiometer (MODIS) satellite view from the NASA Terra Satellite of Hurricane Matthew taken at 12 pm EDT, October 7, 2016. ii Service Assessment October 2016 Hurricane Matthew August 2017 National Weather Service John D. Murphy Chief Operating Officer iii Preface Hurricane Matthew left a trail of destruction from the Caribbean to Virginia from September 29 – October 9, 2016. High winds, pounding surf, storm surge, and historic flooding led to widespread, devastating impacts along the southeast U.S. coastline. Hurricane Matthew traveled northward nearly parallel to the coast before making landfall in South Carolina. The storm produced winds in excess of 100 mph, storm surge in excess of 7 feet, and up to 20 inches of rainfall. Weather-related fatalities occurred up and down the southeast U.S. coast. The majority of fatalities were the result of flooding, making inland flooding a primary focus for this assessment. Because of the significant impacts of the event, the National Weather Service (NWS) formed a service assessment team to evaluate its performance before and during Hurricane Matthew’s impacts. The NWS Mission Delivery Council will review and consider the findings and recommendations from this assessment. As appropriate, the recommendations will then be integrated into the Annual Operating Plan to improve the quality of operational products and services and enhance the NWS’s public education and awareness materials related to flooding and other tropical cyclone hazards. The ultimate goal of this report is to help the NWS meet its mission to protect life and property and enhance the national economy. August 2017 iv Table of Contents Page 1. Introduction ......................................................................................................................... 1 1.1. NWS Mission .......................................................................................................... 1 1.2. Purpose of Assessment Report ................................................................................ 1 1.3. Methodology ........................................................................................................... 2 2. Event Summary ................................................................................................................... 3 2.1. Wind Impacts .......................................................................................................... 4 2.2. Heavy Rain & Flooding Impacts ............................................................................ 5 2.2.1. Storm Surge Impacts ................................................................................ 8 3. Findings, Recommendations, and Best Practices ............................................................. 14 3.1. NWS Forecasts, Products, Warnings—Inland Flooding ...................................... 14 3.2. NWS Forecasts, Products and Warnings—National Hurricane Center Products and Forecasts ......................................................................................................... 17 3.3. NWS Forecasts, Products and Warnings—Policy and WFOs and RFCs ............. 20 3.4. IDSS and External Communications Services ...................................................... 22 3.5. IDSS and External Communications—Communication Process ......................... 26 3.6. Facts, Findings, Recommendations, and Best Practices – Staffing ...................... 29 3.7. Facts, Findings, Recommendations, and Best Practices—Technology ................ 31 3.7.1. System Upgrades .................................................................................... 31 3.7.2. Phone and Internet Connection Challenges ............................................ 32 3.7.3. Website Issues ........................................................................................ 33 3.8. Internal Communication, Collaboration & Coordination ..................................... 33 3.9. Pre-Season Training and Education ...................................................................... 36 Appendices Appendix A: Acronyms ...................................................................................................... A-1 Appendix B: Findings, Recommendations and Best Practices ......................................... B-1 Appendix C: Hurricane Matthew Fatalities by State .......................................................... C-1 v List of Figures Page Figure 1: Matthew post-storm analysis of track & intensity (best track). Source: NOAA3 Figure 2: MODIS satellite image from the NASA Terra Satellite showing Hurricane Matthew at 12 pm EDT, October 7, 2016. At the time, Hurricane Matthew was a Category 3 storm with 120 mph winds. Source: NASA .............................. 4 Figure 3: Peak wind gusts during Hurricane Matthew. Source: The Weather Channel ...... 5 Figure 4: Precipitation totals for Matthew with black line indicating track of storm center. Source: NOAA ........................................................................................... 6 Figure 5: Annual Exceedance Probabilities for the worst case 24-Hour rainfall for Matthew. Source: NOAA ...................................................................................... 6 Figure 6: Washed out road near Fayetteville, NC. Source: Reuters .................................... 7 Figure 7: USGS graph of gage height or stage at stream gage 02089500 on the Neuse River at Kinston, NC, September 20 to October 20, 2016. Source: USGS .......... 8 Figure 8: Estimated maximum storm surge inundation levels (ft. above ground level) on Atlantic coast due to Hurricane Matthew based on USGS and NWS high water mark observations, NOS tide station observations and USGS storm tide pressure sensors: Source: NHC ............................................................................. 9 Figure 9: NHC Potential Storm Surge Flooding map issued October 6, 2016. Source: NOAA .................................................................................................................... 10 Figure 10: NHC Prototype Storm Surge Watch/Warning Product issued on October 6, 2016....................................................................................................................... 11 Figure 11: Low-altitude oblique photos taken before Hurricane Matthew (September 6, 2014) and after (October 13, 2016) showing where the storm cut a new inlet between the Atlantic Ocean and the Matanzas River, stripping away 12-foot dune and carrying sand into the estuary. Source: USGS ..................................... 12 Figure 12: Beach erosion and road damage on Highway A1A left by Hurricane Matthew in Flagler Beach, FL. Source: NBC News ........................................................... 13 Figure 13: Advanced Hydrologic Prediction Service River Forecast, WFO Raleigh, NC, Friday, October 7, 2016 about 24 hours before heavy rainfall arrived. Source: NOAA ...................................................................................................... 15 Figure 14: Meteorological Model Ensemble River Forecast (MMEFS) from SERFC for WFO Raleigh, NC, Thursday, October 6, 2016. Source: NOAA ........................ 16 Figure 15: NHC official forecast graphic, with track included, from 5 am on Wednesday, October 5, 2016. Source: NOAA .................................................... 18 Figure 16: HTI information from WFO Miami, FL, issued via social media on October 5, 2016. Source: NOAA ...................................................................................... 21 Figure 17: SC Emergency Operations Center during Hurricane Matthew. Source: WFO Columbia, SC ........................................................................................................ 22 Figure 18: WFO Columbia WCM John Quagliariello speaking in a South Carolina Governor’s press conference on Hurricane Matthew’s expected impacts. Source: South Carolina Emergency Management Division ................................ 24 Figure 19: Example of News Headlines section of NWS web pages. Source: NOAA NWS....................................................................................................................... 27 vi Service Assessment Team The following people participated as members of the Service Assessment Team: Jamie Bielinski Meteorologist in Charge, WFO Charleston, WV Tyra Brown Social Scientist, NWS Miami, FL Mike Cantin Meteorologist in Charge, WFO Boise, ID Arianne Deruise Emergency Management Specialist, FEMA Region 6 Jeff Garmon Meteorologist in Charge, WFO Cheyenne, WY Jeanne Robbins Assistant Director for Data, USGS Raleigh, NC Dennis Staley Chief Operating Officer, NCEP, College Park, MD Gregory Waller Service Coordination Hydrologist, West Gulf RFC, Fort Worth, TX Valerie Were Social Scientist, Office of the Chief Economist, CFO, Silver Spring, MD Other valuable contributors: Cindy P. Woods Chief, Operations Division, Silver Spring, MD Douglas C. Young Chief, Performance and Evaluation Branch, Silver Spring, MD Salvatore Romano Evaluation Meteorologist, Performance and Evaluation Branch, Silver Spring, MD Melody Magnus Technical Editor, Analyze, Forecast and Support Office/INNOVIM LLC, Silver Spring, MD vii Executive Summary Hurricane Matthew laid a path of destruction from the Caribbean to the Mid-Atlantic coast of the
Recommended publications
  • Hurricane Matthew Disaster Recovery and Resilience Initiative ______
    HURRICANE MATTHEW DISASTER RECOVERY AND RESILIENCE INITIATIVE ______________ A project of the North Carolina Policy Collaboratory Gavin Smith, PhD, AICP Project Director _________________ September 11, 2017 Progress Report Hurricane Matthew Disaster Recovery and Resilience Initiative Table of Contents Introduction .................................................................................................................................................. 2 A. Background ......................................................................................................................................... 2 B. Objectives ........................................................................................................................................... 2 C. Activities ............................................................................................................................................. 2 D. Organizational Structure .................................................................................................................... 4 Leveraging State and Federal Resources ..................................................................................................... 7 Executive Summaries of Project Reports .................................................................................................... 8 A. Home Place ......................................................................................................................................... 8 B. Affordable Housing ..........................................................................................................................
    [Show full text]
  • 2014 New York Hazard Mitigation Plan Hurricane Section 3.12: HURRICANE (Tropical/ Coastal Storms/ Nor’Easter)
    2014 New York Hazard Mitigation Plan Hurricane Section 3.12: HURRICANE (Tropical/ Coastal Storms/ Nor’easter) 2014 SHMP Update Reformatted 2011 Mitigation Plan into 2014 Update outline Added Tropical Storms, Coastal Storms, & Nor’easter hazards to Hurricane Profile Added new key terms to 2011 Mitigation Plan’s list of terms Updated past hurricane occurrences section Inserted Events and Losses table Inserted new Hurricane Events and Property Losses maps Added information on New York Bight Added active State development projects 3.12.1 Hurricane (Tropical/ Coastal Storms/ Nor’easters) Profile Coastal storms, including Nor’easters, tropical storms, and hurricanes can, either directly or indirectly, impact all of New York State. More densely populated and developed coastal areas, such as New York City, are the most vulnerable to hurricane-related damages. Before a storm is classified a hurricane, it must pass through four distinct stages: tropical disturbance, tropical depression, tropical storm and lastly a hurricane. Figure 3.12a: Four Stages of a Hurricane Tropical Disturbance (Stage 1) Tropical Hurricane Depression (Stage 4) (Stage 2) Tropical Storm (Stage 3) 3.12-1 Final Release Date January 4, 2014 2014 New York Hazard Mitigation Plan Hurricane Characteristics Below are some key terms to review relating to hurricanes, tropical storms, coastal storms and nor’easters: Hazard Key Terms and Definition Nor’easter- An intense storm that can cause heavy rain and snow, strong winds, and coastal flooding. Nor’easters have cold, low barometric
    [Show full text]
  • Felix Hits Nicaragua and Honduras, Then Diminishes to Tropical Storm
    - Advertisement - Felix hits Nicaragua and Honduras, then diminishes to tropical storm September 5, 2007 Hurricane Felix, which reached Category 5 status and slammed into the Nicaragua-Honduras border Sept. 4, was reduced to a fast-moving tropical storm over eastern Guatemala. The storm broke up and lost strength as it hit the Honduran mountains, according to Martin Maldonado of Miami-based Team Produce International Inc. Ed Loyd, manager of investor relations and corporate communications for Chiquita Brands International in Cincinnati, said Sept. 5, "It's a little early for us to know what potential impact Hurricane Felix will have. We do have a number of farms in northern Honduras and Guatemala, and we also source from independent growers in southern Guatemala." These banana production areas "may be impacted by winds and rains. It is hard to predict." The speed of the storm is a key factor in the amount of damage, Mr. Loyd said. In 1998, Hurricane Mitch lingered for a week over Central America. That flooding dropped as much as four feet of rain on some parts of Honduras. Thus, news reports Sept. 5 that the storm was moving quickly were likely good news for produce grower-exporters in northern Central America. Mr. Loyd said that Chiquita would release more complete information about the status of its Central American banana crop around Sept. 10. Speaking from his Houston sales office, Guatemalan grower-exporter Antonio Maldonado said late in the afternoon of Sept. 5 that he was very thankful that Felix's ferocity had diminished to a tropical storm. Many Guatemalans spent the two days before the storm stocking up on supplies in preparation for the hurricane, "but now they're very tranquil," he said.
    [Show full text]
  • Downloaded 10/01/21 04:51 PM UTC JULY 2003 ANNUAL SUMMARY 1455
    1454 MONTHLY WEATHER REVIEW VOLUME 131 ANNUAL SUMMARY Atlantic Hurricane Season of 2001 JOHN L. BEVEN II, STACY R. STEWART,MILES B. LAWRENCE,LIXION A. AVILA,JAMES L. FRANKLIN, AND RICHARD J. PASCH NOAA/NWS/Tropical Prediction Center/National Hurricane Center, Miami, Florida (Manuscript received 19 July 2002, in ®nal form 9 December 2002) ABSTRACT Activity during the 2001 hurricane season was similar to that of the 2000 season. Fifteen tropical storms developed, with nine becoming hurricanes and four major hurricanes. Two tropical depressions failed to become tropical storms. Similarities to the 2000 season include overall activity much above climatological levels and most of the cyclones occurring over the open Atlantic north of 258N. The overall ``lateness'' of the season was notable, with 11 named storms, including all the hurricanes, forming after 1 September. There were no hurricane landfalls in the United States for the second year in a row. However, the season's tropical cyclones were responsible for 93 deaths, including 41 from Tropical Storm Allison in the United States, and 48 from Hurricanes Iris and Michelle in the Caribbean. 1. Overview of the 2001 season cycleÐsimultaneously exhibiting characteristics of both tropical and extratropical cyclones (Hebert 1973). The National Hurricane Center (NHC) tracked 15 No hurricanes struck the United States during 2001. tropical cyclones (TCs) that achieved tropical storm or The season thus joins the 2000, 1990, and 1951 seasons hurricane strength in the Atlantic basin during 2001 as years in which eight or more hurricanes occurred (Table 1). Nine of these became hurricanes and four without a U.S.
    [Show full text]
  • Guidelines for Converting Between Various Wind Averaging Periods in Tropical Cyclone Conditions
    GUIDELINES FOR CONVERTING BETWEEN VARIOUS WIND AVERAGING PERIODS IN TROPICAL CYCLONE CONDITIONS For more information, please contact: World Meteorological Organization Communications and Public Affairs Office Tel.: +41 (0) 22 730 83 14 – Fax: +41 (0) 22 730 80 27 E-mail: [email protected] Tropical Cyclone Programme Weather and Disaster Risk Reduction Services Department Tel.: +41 (0) 22 730 84 53 – Fax: +41 (0) 22 730 81 28 E-mail: [email protected] 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int D-WDS_101692 WMO/TD-No. 1555 GUIDELINES FOR CONVERTING BETWEEN VARIOUS WIND AVERAGING PERIODS IN TROPICAL CYCLONE CONDITIONS by B. A. Harper1, J. D. Kepert2 and J. D. Ginger3 August 2010 1BE (Hons), PhD (James Cook), Systems Engineering Australia Pty Ltd, Brisbane, Australia. 2BSc (Hons) (Western Australia), MSc, PhD (Monash), Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne, Australia. 3BSc Eng (Peradeniya-Sri Lanka), MEngSc (Monash), PhD (Queensland), Cyclone Testing Station, James Cook University, Townsville, Australia. © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Historic Rainfall and Record-Breaking Flooding from Hurricane Florence in the Pee Dee Watershed
    Journal of South Carolina Water Resources, Volume 6, Issue 1, Pages 28–35, 2019 Historic Rainfall and Record-Breaking Flooding from Hurricane Florence in the Pee Dee Watershed MELISSA GRIFFIN1, MARK MALSICK1, HOPE MIZZELL1, AND LEAH MOORE1 AUTHORS: 1SC State Climatology Office, SC Department of Natural Resources, 1000 Assembly Street Columbia, SC 29201 . KEYWORDS: Florence, flooding, average return intervals, rainfall, ARI . With the advancements of software packages and data visualization, much of the analysis and information on the impact and historical perspective of the rainfall from Tropical Storm Florence included in our online ERSI Story Map is not viable to translate into the print format standards required by many publications. However, with the newly enacted Journal of South Carolina Resources policy, our article creates a precedent in how the Journal will address submittals that include subject matter available on the internet, by permanently archiving the information, and applying a structured peer-review process to the content. Abstract. For the third time in four years, record-breaking flooding occurred in South Carolina. Hurricane Florence, which made landfall near Wrightsville Beach, North Carolina, on September 14, 2018, moved slowly across South Carolina from September 14–17, 2018. Over those four days, heavy rain fell over portions of the Pee Dee Watershed and eastern North Carolina, with over 30 inches of rain measured by an observer in Swansboro, North Carolina. Most of the excessive rainfall was confined to the Pee Dee region, with reported totals of over 24 inches in Horry County, while closer to the Savannah River Valley observers measured less than an inch of rain.
    [Show full text]
  • 62Nd Book Cover.Cdr:Coreldraw
    62nd Interdepartmental Hurricane Conference Theme: Tropical Cyclone Operations and Research: Priorities for the Future AGENDA Monday, March 3, 2008 9:00 AM Early Registration (9:00 AM-12:30 PM) Opening Session 12:30 PM Conference Opening Mr. Samuel P. Williamson Federal Coordinator for Meteorology 12:35 PM Introduction of Mayor Mr. Howard Chapman Executive Director, Charleston Area Regional Transportation Authority 12:40 PM Welcome/Opening Remarks The Honorable Joseph P. Riley, Jr. Mayor, Charleston, South Carolina 12:55 PM Introductory Comments Mr. Samuel P. Williamson Federal Coordinator for Meteorology 1:15 PM Keynote Address Ms. Mary M. Glackin Deputy Under Secretary for Oceans and Atmosphere (NOAA) 1:30 PM Panel Introduction Mr. Samuel P. Williamson Federal Coordinator for Meteorology 1:35 PM Panel: Priorities for Tropical Cyclone Research: A Senior Leader Perspective Moderator: Dr. Elbert W. (Joe) Friday, Professor Emeritus, University of Oklahoma Panelists: Dr. Alexander “Sandy” MacDonald, Deputy Assistant Administrator for NOAA Research Laboratories and Cooperative Institutes Mr. Robert Winokur, Technical Director, Office of the Oceanographer and Navigator of the Navy Dr. Jack Kaye, Associate Director for Research, Earth Science Division, NASA Dr. Fred Lewis, Air Force Director of Weather RDML (sel) David Titley, Commander, Naval Meteorology and Oceanography Command Dr. John “Jack” Hayes, Assistant Administrator for Weather Services, NOAA 3:00 PM Introduction of Federal Agency Lead Mr. Samuel P. Williamson Representatives Federal Coordinator for Meteorology 3:15 PM Afternoon Coffee/Soda Break (3:15-3:45 PM) 1 Session 1 Coordinator: Mr. Mark Welshinger (OFCM) Session 1: The 2007 Tropical Cyclone Season in Review Session Leaders Dr.
    [Show full text]
  • Assessing Natural and Mechanical Dune Performance in a Post-Hurricane Environment
    Journal of Marine Science and Engineering Article Assessing Natural and Mechanical Dune Performance in a Post-Hurricane Environment Jean T. Ellis * and Mayra A. Román-Rivera Department of Geography, University of South Carolina, Columbia, SC 29208, USA; [email protected] * Correspondence: [email protected] Received: 1 April 2019; Accepted: 29 April 2019; Published: 2 May 2019 Abstract: The purpose of this study is to document the geomorphic evolution of a mechanical dune over approximately one year following its installation and compare it to the recovery of a natural dune following the impact of Hurricane Matthew (2016). During the study period, the dunes’ integrity was tested by wave and wind events, including king tides, and a second hurricane (Irma, 2017), at the end of the study period. Prior to the impact of the second hurricane, the volumetric increase of the mechanical and natural dune was 32% and 75%, respectively, suggesting that scraping alone is not the optimal protection method. If scraping is employed, we advocate that the dune should be augmented by planting. Ideally, the storm-impacted dune should naturally recover. Post-storm vegetation regrowth was lower around the mechanical dune, which encouraged aeolian transport and dune deflation. Hurricane Irma, an extreme forcing event, substantially impacted the dunes. The natural dune was scarped and the mechanical dune was overtopped; the system was essentially left homogeneous following the hurricane. The results from this study question the current practice of sand scraping along the South Carolina coast, which occurs post-storm, emplacement along the former primary dune line, and does not include the planting of vegetation.
    [Show full text]
  • HURRICANE IRMA (AL112017) 30 August–12 September 2017
    NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE IRMA (AL112017) 30 August–12 September 2017 John P. Cangialosi, Andrew S. Latto, and Robbie Berg National Hurricane Center 1 24 September 2021 VIIRS SATELLITE IMAGE OF HURRICANE IRMA WHEN IT WAS AT ITS PEAK INTENSITY AND MADE LANDFALL ON BARBUDA AT 0535 UTC 6 SEPTEMBER. Irma was a long-lived Cape Verde hurricane that reached category 5 intensity on the Saffir-Simpson Hurricane Wind Scale. The catastrophic hurricane made seven landfalls, four of which occurred as a category 5 hurricane across the northern Caribbean Islands. Irma made landfall as a category 4 hurricane in the Florida Keys and struck southwestern Florida at category 3 intensity. Irma caused widespread devastation across the affected areas and was one of the strongest and costliest hurricanes on record in the Atlantic basin. 1 Original report date 9 March 2018. Second version on 30 May 2018 updated casualty statistics for Florida, meteorological statistics for the Florida Keys, and corrected a typo. Third version on 30 June 2018 corrected the year of the last category 5 hurricane landfall in Cuba and corrected a typo in the Casualty and Damage Statistics section. This version corrects the maximum wind gust reported at St. Croix Airport (TISX). Hurricane Irma 2 Hurricane Irma 30 AUGUST–12 SEPTEMBER 2017 SYNOPTIC HISTORY Irma originated from a tropical wave that departed the west coast of Africa on 27 August. The wave was then producing a widespread area of deep convection, which became more concentrated near the northern portion of the wave axis on 28 and 29 August.
    [Show full text]
  • Natural Disasters in Latin America and the Caribbean
    NATURAL DISASTERS IN LATIN AMERICA AND THE CARIBBEAN 2000 - 2019 1 Latin America and the Caribbean (LAC) is the second most disaster-prone region in the world 152 million affected by 1,205 disasters (2000-2019)* Floods are the most common disaster in the region. Brazil ranks among the 15 548 On 12 occasions since 2000, floods in the region have caused more than FLOODS S1 in total damages. An average of 17 23 C 5 (2000-2019). The 2017 hurricane season is the thir ecord in terms of number of disasters and countries affected as well as the magnitude of damage. 330 In 2019, Hurricane Dorian became the str A on STORMS record to directly impact a landmass. 25 per cent of earthquakes magnitude 8.0 or higher hav S America Since 2000, there have been 20 -70 thquakes 75 in the region The 2010 Haiti earthquake ranks among the top 10 EARTHQUAKES earthquak ory. Drought is the disaster which affects the highest number of people in the region. Crop yield reductions of 50-75 per cent in central and eastern Guatemala, southern Honduras, eastern El Salvador and parts of Nicaragua. 74 In these countries (known as the Dry Corridor), 8 10 in the DROUGHTS communities most affected by drought resort to crisis coping mechanisms. 66 50 38 24 EXTREME VOLCANIC LANDSLIDES TEMPERATURE EVENTS WILDFIRES * All data on number of occurrences of natural disasters, people affected, injuries and total damages are from CRED ME-DAT, unless otherwise specified. 2 Cyclical Nature of Disasters Although many hazards are cyclical in nature, the hazards most likely to trigger a major humanitarian response in the region are sudden onset hazards such as earthquakes, hurricanes and flash floods.
    [Show full text]
  • Aircurrents Novel Tools for Modeling Tropical Cyclone Risk in the Caribbean and Central America
    AIRCURRENTS NOVEL TOOLS FOR MODELING TROPICAL CYCLONE RISK IN THE CARIBBEAN AND CENTRAL AMERICA By Tim Doggett, Ph.D., and Mr. Scott Stransky 08.2011 Edited by Meagan Phelan INTRODUCTION This article provides an overview of tropical cyclone risk in If a tropical cyclone has only weak winds and does not come the Caribbean and Central America, with a focus on tropical ashore, can it still cause notable insured losses to exposure cyclone-induced flooding, which can be a significant driver nearby? In the Caribbean and Central America, the answer of loss. is yes—primarily as a result of the precipitation hazard associated with tropical cyclones, even those with relatively TROPICAL CYCLONE CLIMATOLOGY IN THE CARIBBEAN AND CENTRAL AMERICA weak winds. Within the North Atlantic basin, roughly eleven tropical cyclones are spawned each year on average, six of which Indeed, the often-held view that flood-dominated tropical become hurricanes. Of all the landmasses in the basin, cyclones always result in lower insured losses than their the Caribbean islands experience the greatest number of windier counterparts requires a hard look; “wet” storms can storms—and often the most intense. That said, some island significantly impact a company’s portfolio. 1979’s Hurricane countries and territories within the Caribbean are more at David in the Caribbean, from which more than 50% of risk than others; in general, risk increases south to north, losses were flood-related—and which AIR estimates would such that the Bahamas is perhaps the most at-risk country in cause USD 6.0 billion in insured losses if it were to recur the Caribbean today.
    [Show full text]
  • Loss Avoidance Report Hurricane Matthew
    Appendix R: LAR Hurricane Matthew 2018 State Hazard Mitigation Plan _______________________________________________________________________________________ APPENDIX R: Loss Avoidance Report Hurricane Matthew _______________________________________________________________________________________ Florida Division of Emergency Management Loss Avoidance Assessment Hurricane Matthew (DR-4283) April 2017 Florida Division of Emergency Management 2555 Shumard Oak Boulevard Tallahassee, FL 32399-2100 http://www.floridadisaster.org Rick Scott, Governor Bryan Koon, Director Florida DivisionMiles of Anderson, Emergency ManaStategement Hazard – Bureau Mitigation of Mitigation Officer {This page left intentionally blank.} Florida State Emergency Response Team Matthew Loss Avoidance Assessment Draft 04242017 Page i | Loss Avoidance Assessment: Hurricane Matthew (DR-4283) CONTENTS EXECUTIVE SUMMARY ................................................................................................. 0 INTRODUCTION TO HAZARD MITIGATION & LOSS AVOIDANCE ASSESSMENTS .. 1 An Introduction to Hazard Mitigation ...........................................................................1 The Hazard Mitigation Process ................................................................................... 3 Loss Avoidance Process Overview ............................................................................4 Previous Loss Avoidance Assessments ..................................................................... 7 EVENT DETAILS .............................................................................................................8
    [Show full text]