Evaluation of Different Artificial Diets for Rearing the Predatory Mite Neoseiulus Californicus (Acari: Phytoseiidae): Diet-Dependent Life Table Studies M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insecticides - Development of Safer and More Effective Technologies
INSECTICIDES - DEVELOPMENT OF SAFER AND MORE EFFECTIVE TECHNOLOGIES Edited by Stanislav Trdan Insecticides - Development of Safer and More Effective Technologies http://dx.doi.org/10.5772/3356 Edited by Stanislav Trdan Contributors Mahdi Banaee, Philip Koehler, Alexa Alexander, Francisco Sánchez-Bayo, Juliana Cristina Dos Santos, Ronald Zanetti Bonetti Filho, Denilson Ferrreira De Oliveira, Giovanna Gajo, Dejane Santos Alves, Stuart Reitz, Yulin Gao, Zhongren Lei, Christopher Fettig, Donald Grosman, A. Steven Munson, Nabil El-Wakeil, Nawal Gaafar, Ahmed Ahmed Sallam, Christa Volkmar, Elias Papadopoulos, Mauro Prato, Giuliana Giribaldi, Manuela Polimeni, Žiga Laznik, Stanislav Trdan, Shehata E. M. Shalaby, Gehan Abdou, Andreia Almeida, Francisco Amaral Villela, João Carlos Nunes, Geri Eduardo Meneghello, Adilson Jauer, Moacir Rossi Forim, Bruno Perlatti, Patrícia Luísa Bergo, Maria Fátima Da Silva, João Fernandes, Christian Nansen, Solange Maria De França, Mariana Breda, César Badji, José Vargas Oliveira, Gleberson Guillen Piccinin, Alan Augusto Donel, Alessandro Braccini, Gabriel Loli Bazo, Keila Regina Hossa Regina Hossa, Fernanda Brunetta Godinho Brunetta Godinho, Lilian Gomes De Moraes Dan, Maria Lourdes Aldana Madrid, Maria Isabel Silveira, Fabiola-Gabriela Zuno-Floriano, Guillermo Rodríguez-Olibarría, Patrick Kareru, Zachaeus Kipkorir Rotich, Esther Wamaitha Maina, Taema Imo Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. -
Impacts of Insecticides on Predatory Mite, Neoseiulus Fallacis (Acari: Phytoseidae) and Mite Flaring of European Red Mites, Panonychus Ulmi (Acari: Tetranychidae)
IMPACTS OF INSECTICIDES ON PREDATORY MITE, NEOSEIULUS FALLACIS (ACARI: PHYTOSEIDAE) AND MITE FLARING OF EUROPEAN RED MITES, PANONYCHUS ULMI (ACARI: TETRANYCHIDAE) By Raja Zalinda Raja Jamil A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Entomology–Doctor of Philosophy 2014 ABSTRACT IMPACTS OF INSECTICIDES ON PREDATORY MITE, NEOSEIULUS FALLACIS (ACARI: PHYTOSEIDAE) AND MITE FLARING OF EUROPEAN RED MITES, PANONYCHUS ULMI (ACARI: TETRANYCHIDAE) By Raja Zalinda Raja Jamil Panonychus ulmi, the European red mite, is a major agricultural pest found in most deciduous fruit growing areas. It is the most important mite species attacking tree fruits in humid regions of North America. Bristle-like mouthparts of this mite species pierce the leaf cell wall and ingestion of their contents including chlorophyll causes bronzing injury to leaves. Heavy mite feeding early in the season (late Jun and July) reduce tree growth and yield as well as the fruit bud formation, thereby reduce yields the following year. Biological control of this pest species by predators has been a cornerstone of IPM. Phytoseiid mite, Neoseiulus fallacis (Garman) is the most effective predator mite in Michigan apple orchards and provides mid- and late-season biological control of European red mites. Achieving full potential of biological control in tree fruit has been challenging due to the periodic sprays of broad-spectrum insecticides. There have been cases of mite flaring reported by farmers in relation to the reduced-risk (RR) insecticides that were registered in commercial apple production in the past ten years. These insecticides are often used in fruit trees to control key direct pests such as the codling moth. -
Neoseiulus Californicus
Prenatal Chemosensory Learning by the Predatory Mite Neoseiulus californicus Paulo C. Peralta Quesada, Peter Schausberger* Group of Arthropod Ecology and Behavior, Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria Abstract Background: Prenatal or embryonic learning, behavioral change following experience made prior to birth, may have significant consequences for postnatal foraging behavior in a wide variety of animals, including mammals, birds, fish, amphibians, and molluscs. However, prenatal learning has not been previously shown in arthropods such as insects, spiders and mites. Methodology/Principal Findings: We examined prenatal chemosensory learning in the plant-inhabiting predatory mite Neoseiulus californicus. We exposed these predators in the embryonic stage to two flavors (vanillin or anisaldehyde) or no flavor (neutral) by feeding their mothers on spider mite prey enriched with these flavors or not enriched with any flavor (neutral). After the predators reached the protonymphal stage, we assessed their prey choice through residence and feeding preferences in experiments, in which they were offered spider mites matching the maternal diet (neutral, vanillin or anisaldehyde spider mites) and non-matching spider mites. Predator protonymphs preferentially resided in the vicinity of spider mites matching the maternal diet irrespective of the type of maternal diet and choice situation. Across treatments, the protonymphs preferentially fed on spider mites matching the maternal diet. Prey and predator sizes did not differ among neutral, vanillin and anisaldehyde treatments, excluding the hypothesis that size-assortative predation influenced the outcome of the experiments. Conclusions/Significance: Our study reports the first example of prenatal learning in arthropods. Citation: Peralta Quesada PC, Schausberger P (2012) Prenatal Chemosensory Learning by the Predatory Mite Neoseiulus californicus. -
Immature Development and Survival of Neoseiulus Cucumeris (Oudemans
Immature development and survival of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) on eggs of Tyrophagus curvipenis (Fain & Fauvel) (Acari: Acaridae) Guang-Yun Li, Nick Pattison, Zhi-Qiang Zhang To cite this version: Guang-Yun Li, Nick Pattison, Zhi-Qiang Zhang. Immature development and survival of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) on eggs of Tyrophagus curvipenis (Fain & Fauvel) (Acari: Acaridae). Acarologia, Acarologia, 2021, 61 (1), pp.84-93. 10.24349/acarologia/20214415. hal- 03118398 HAL Id: hal-03118398 https://hal.archives-ouvertes.fr/hal-03118398 Submitted on 22 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Acarologia A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes -
Niche Modeling May Explain the Historical Population Failure of Phytoseiulus Persimilis in Taiwan: Implications of Biocontrol Strategies
insects Article Niche Modeling May Explain the Historical Population Failure of Phytoseiulus persimilis in Taiwan: Implications of Biocontrol Strategies Jhih-Rong Liao 1 , Chyi-Chen Ho 2, Ming-Chih Chiu 3,* and Chiung-Cheng Ko 1,† 1 Department of Entomology, National Taiwan University, Taipei 106332, Taiwan; [email protected] (J.-R.L.); [email protected] (C.-C.K.) 2 Taiwan Acari Research Laboratory, Taichung 413006, Taiwan; [email protected] 3 Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama 7908577, Japan * Correspondence: [email protected] † Deceased, 29 October 2020. This paper is dedicated to the memory of the late Chiung-Cheng Ko. Simple Summary: Phytoseiulus persimilis Athias-Henriot, a mite species widely used in pest manage- ment for the control of spider mites, has been commercialized and introduced to numerous countries. In the 1990s, P. persimilis was imported to Taiwan, and a million individuals were released into the field. However, none have been observed since then. In this study, we explored the ecological niche of this species to determine reasons underlying its establishment failure. The results indicate that P. persimilis was released in areas poorly suited to their survival. To the best of our knowledge, the present study is the first to predict the potential distribution of phytoseiids as exotic natural enemies. This process should precede the commercialization of exotic natural enemies and their introduction Citation: Liao, J.-R.; Ho, C.-C.; Chiu, into any country. M.-C.; Ko, C.-C. Niche Modeling May Explain the Historical Population Abstract: Biological control commonly involves the commercialization and introduction of natural Failure of Phytoseiulus persimilis in enemies. -
53Rd ANNUAL MEETING
55th ANNUAL MEETING of the SOUTHWESTERN BRANCH of the ENTOMOLOGICAL SOCIETY OF AMERICA http://swbesa.tamu.edu and the ANNUAL MEETING of the SOCIETY OF SOUTHWESTERN ENTOMOLOGISTS 19-22 FEBRUARY 2007 Omni Hotel Marina Tower 707 North Shoreline Blvd. Corpus Christi, TX 78401 (361)-887-1600; www.omnihotels.com 1 TABLE OF CONTENTS PAGE SPONSORS 2 MEETING INFORMATION 3 PROGRAM SUMMARY 5 OFFICERS AND COMMITTEES 8 PROGRAM: 10 MONDAY, 19 FEBRUARY 10 TUESDAY, 20 FEBRUARY 10 WEDNESDAY, 21 FEBRUARY 20 THURSDAY, 22 FEBRUARY 26 SWB-ESA AUTHOR INDEX 28 PRESIDENTS AND CHAIRMEN OF SWB-ESA 30 AUTHORS E-MAIL ADDRESSES 32 SUBMITTED ABSTRACTS 34 MAP OF HOTEL 51 SPONSORS We thank the following people and organizations for their generous donations in support of Insect Expo and other functions of the SWB-ESA meeting: Trece Inc. Bayer Environmental Science Dr. David Pledger DuPont Crop Protection Coastal Bend Pest Control Association 2 MEETING INFORMATION REGISTRATION: All persons attending the meetings or participating in the program must register. On-site registration fees for the SWB-ESA meeting are: Full One day Banquet meeting only only Active SWB or SSWE member $130 $50 $30 Student SWB or SSWE member* 50 25 30 Non-member 150 65 30 Youth member 10 10 10 Spouse/Guest 40 20 30 Honorary/Emeritus Gratis** Gratis Gratis *Student SWB or SSWE members: the fee is $ 5.00 if you are a volunteer helper at the meeting. **Gratis, but please register. ESA CERTIFICATION BOARD INFORMATION: Information regarding the Certification Board of ESA is available at the Registration Desk. SPONSORS: We thank our sponsors for their generous support of activities such as the Insect Expo, student mixer, Linnaean Games, and continental breakfast and breaks. -
54Th ANNUAL MEETING of the SOUTHWESTERN BRANCH of the ENTOMOLOGICAL SOCIETY of AMERICA and the ANNUAL ME
54th ANNUAL MEETING of the SOUTHWESTERN BRANCH of the ENTOMOLOGICAL SOCIETY OF AMERICA http://swbesa.tamu.edu and the ANNUAL MEETING of the SOCIETY OF SOUTHWESTERN ENTOMOLOGISTS 27 FEBRUARY – 2 MARCH 2006 Omni Austin Hotel at Southpark 4140 Governor’s Row Austin, TX 78744 (512)-383-2602; www.omnihotels.com 1 TABLE OF CONTENTS PAGE SPONSORS 2 MEETING INFORMATION 3 PROGRAM SUMMARY 5 OFFICERS AND COMMITTEES 8 PROGRAM: 11 MONDAY, 27 FEBRUARY 11 TUESDAY, 28 FEBRUARY 11 WEDNESDAY, 1 MARCH 20 THURSDAY, 2 MARCH 28 SWB-ESA AUTHOR INDEX 29 PRESIDENTS AND CHAIRMEN OF SWB-ESA 31 ADDENDA AND NOTES 32 MAP OF HOTEL 35 ABSTRACTS 36 SPONSORS We thank the following people and organizations for their generous donations in support of the SWB-ESA meeting: BASF Specialty Products Bayer Crop Science Dow AgroSciences Monsanto Trece, Inc. 2 MEETING INFORMATION REGISTRATION: All persons attending the meetings or participating in the program must register. On-site registration fees for the SWB-ESA meeting are: Full One day Banquet meeting only only Active SWB or SSWE member $130 $50 $25 Student SWB or SSWE member* 45 25 25 Non-member 150 65 25 Youth member 10 10 10 Spouse/Guest 35 20 25 Honorary/Emeritus Gratis** Gratis Gratis *Student SWB or SSWE members: the fee is waived if you are a volunteer helper at the meeting. **Gratis, but please register Natural Science Tour: Brackenridge Field Laboratory Texas Memorial Museum (time permitting) ESA CERTIFICATION BOARD INFORMATION: Information regarding the Certification Board of ESA is available at the Registration Desk. SPONSORS: We thank our sponsors for their generous support of activities such as the student mixer, Linnaean Games, continental breakfast and breaks, spouses, guests, and retirees’ functionsn. -
Slow-Release Sachets of Neoseiulus Cucumeris Predatory Mites Reduce Intraguild Predation by Dalotia Coriaria in Greenhouse Biological Control Systems
Insects 2015, 6, 489-507; doi:10.3390/insects6020489 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Article Slow-Release Sachets of Neoseiulus cucumeris Predatory Mites Reduce Intraguild Predation by Dalotia coriaria in Greenhouse Biological Control Systems Emily Pochubay 1, Joseph Tourtois 2, Jeanne Himmelein 3 and Matthew Grieshop 2,* 1 Michigan State University, 6686 S. Center Hwy, Traverse City, MI 49684, USA; E-Mail: [email protected] 2 Michigan State University, 205 Center for Integrated Plant Systems, East Lansing, MI 48824, USA; E-Mail: [email protected] 3 Michigan State University, 3299 Gull Road Floor 4, Nazareth, MI 49074, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-517-331-3725. Academic Editor: Andrew G. S. Cuthbertson Received: 18 February 2015 / Accepted: 20 May 2015 / Published: 1 June 2015 Abstract: Intraguild predation of Neoseiulus cucumeris Oudemans (Phytoseiidae) by soil-dwelling predators, Dalotia coriaria Kraatz (Staphylinidae) may limit the utility of open rearing systems in greenhouse thrips management programs. We determined the rate of D. coriaria invasion of N. cucumeris breeder material presented in piles or sachets, bran piles (without mites), and sawdust piles. We also observed mite dispersal from breeder piles and sachets when D. coriaria were not present. Dalotia coriaria invaded breeder and bran piles at higher rates than sawdust piles and sachets. Furthermore, proportions of N. cucumeris in sachets were six- to eight-fold higher compared with breeder piles. When D. coriaria were absent, N. cucumeris dispersed from breeder piles and sachets for up to seven weeks. -
Red Palm Mite)
Crop Protection Compendium Datasheet report for Raoiella indica (red palm mite) Top of page Pictures Picture Title Caption Copyright Adult The red palm mite (Raoiella indica), an invasive species in the Caribbean, may threaten USDA- mite several important palms found in the southern USA. (Original magnified approx. 300x.) ARS Photo by Eric Erbe; Digital colourization by Chris Pooley. Colony Colony of red palm mites (Raoiella indica) on coconut leaflet, from India. Bryony of Taylor mites Colony Close-up of a colony of red palm mites (Raoiella indica) on coconut leaflet, from India. Bryony of Taylor mites Top of page Identity Preferred Scientific Name Raoiella indica Hirst (1924) Preferred Common Name red palm mite International Common Names English: coconut red mite; frond crimson mite; leaflet false spider mite; red date palm mite; scarlet mite EPPO code RAOIIN (Raoiella indica) Top of page Taxonomic Tree Domain: Eukaryota Kingdom: Metazoa Phylum: Arthropoda Subphylum: Chelicerata Class: Arachnida Subclass: Acari Superorder: Acariformes Suborder: Prostigmata Family: Tenuipalpidae Genus: Raoiella Species: Raoiella indica / Top of page Notes on Taxonomy and Nomenclature R. indica was first described in the district of Coimbatore (India) by Hirst in 1924 on coconut leaflets [Cocos nucifera]. A comprehensive taxonomic review of the genus and species was carried out by Mesa et al. (2009), which lists all suspected junior synonyms of R. indica, including Raoiella camur (Chaudhri and Akbar), Raoiella empedos (Chaudhri and Akbar), Raoiella obelias (Hasan and Akbar), Raoiella pandanae (Mohanasundaram), Raoiella phoenica (Meyer) and Raoiella rahii (Akbar and Chaudhri). The review also highlighted synonymy with Rarosiella cocosae found on coconut in the Philippines. -
Unexpected Effects of Local Management and Landscape Composition on Predatory Mites and Their Food Resources in Vineyards
insects Article Unexpected Effects of Local Management and Landscape Composition on Predatory Mites and Their Food Resources in Vineyards Stefan Möth 1,* , Andreas Walzer 1, Markus Redl 1, Božana Petrovi´c 1, Christoph Hoffmann 2 and Silvia Winter 1 1 Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor-Mendel-Straße 33, 1180 Vienna, Austria; [email protected] (A.W.); [email protected] (M.R.); [email protected] (B.P.); [email protected] (S.W.) 2 Julius Kühn-Institute (JKI), Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, 76833 Siebeldingen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +43-1-47654-95329 Simple Summary: Sustainable agriculture becomes more important for biodiversity conservation and environmental protection. Viticulture is characterized by relatively high pesticide inputs, which could decrease arthropod populations and biological pest control in vineyards. This problem could be counteracted with management practices such as the implementation of diverse vegetation cover in the vineyard inter-rows, reduced pesticide input in integrated or organic vineyards, and a di- verse landscape with trees and hedges. We examined the influence of these factors on predatory Citation: Möth, S.; Walzer, A.; Redl, mites, which play a crucial role as natural enemies for pest mites on vines, and pollen as impor- M.; Petrovi´c,B.; Hoffmann, C.; Winter, tant alternative food source for predatory mites in 32 organic and integrated Austrian vineyards. S. Unexpected Effects of Local Predatory mites benefited from integrated pesticide management and spontaneous vegetation cover Management and Landscape in vineyard inter-rows. -
Prof. Dr. Ir. Patrick De Clercq Department of Crop Protection, Laboratory of Agrozoology, Faculty of Bioscience Engineering, Ghent University
Promoters: Prof. dr. ir. Patrick De Clercq Department of Crop Protection, Laboratory of Agrozoology, Faculty of Bioscience Engineering, Ghent University Prof. dr. ir. Luc Tirry Department of Crop Protection, Laboratory of Agrozoology, Faculty of Bioscience Engineering, Ghent University Dr. Bruno Gobin, PCS- Ornamental Plant Research Dean: Prof. dr. ir. Marc Van Meirvenne Rector: Prof. dr. Anne De Paepe Effects of temperature regime and food supplementation on the performance of phytoseiid mites as biological control agents by Ir. Dominiek Vangansbeke Thesis submitted in the fulfillment of the requirements for the Degree of Doctor (PhD) in Applied Biological Sciences Dutch translation: Effecten van temperatuurregime en voedingssupplementen op de prestaties van Phytoseiidae roofmijten als biologische bestrijders Please refer to this work as follows: Vangansbeke, D. (2015) Effects of temperature regime and food supplementation on the performance of phytoseiid mites as biological control agents. Ghent University, Ghent, Belgium Front and backcover photographs: Dominiek Vangansbeke ISBN-number: 978-90-5989-847-9 This study was funded by grant number 090931 from the Institute for Promotion of Innovation by Science and Technology in Flanders (IWT). The research was conducted at the Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium and partly at PCS-Ornamental Plant Research, Schaessestraat 18, 9070 Destelbergen, Belgium The author and promoters give permission to use this study for consultation and to copy parts of it for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material should be obtained from the author. Table of content List of abbreviations ..........................................................................................................................i Scope and thesis outline ................................................................................................................. -
Effect of the Biological Control Agent Neoseiulus Californicus (Acari: Phytoseiidae) on Arthropod Community Structure in North Florida Strawberry Fields
436 Florida Entomologist 91(3) September 2008 EFFECT OF THE BIOLOGICAL CONTROL AGENT NEOSEIULUS CALIFORNICUS (ACARI: PHYTOSEIIDAE) ON ARTHROPOD COMMUNITY STRUCTURE IN NORTH FLORIDA STRAWBERRY FIELDS AIMEE B. FRAULO1, ROBERT MCSORLEY2 AND OSCAR E. LIBURD2 1MacArthur Agro-Ecology Research Center, 300 Buck Island Ranch Rd., Lake Placid, FL 33852 2Entomology & Nematology Department, University of Florida, Gainesville, FL 33852 ABSTRACT Field experiments were conducted during the 2006-2007 growing season to determine the ef- fect of the predatory mite, Neoseiulus californicus (McGregor) on arthropod community structure when released as a biological control agent for the twospotted spider mite, Tet- ranychus urticae Koch, in north Florida strawberries (Fragaria × ananassa Duchesne). Re- leases of N. californicus were conducted at approximately 1-month intervals from Dec 2006 to Feb 2007 to compare effects of predator release times on arthropod community structure. Evaluations of community structure were conducted 3 times during the growing season. The Shannon-Weaver index of diversity was used to quantify differences among release and non- release plots. Our results indicate that the release of N. californicus does not affect the ar- thropod diversity in the strawberry system studied. The generalist feeding behavior of N. californicus, coupled with a high level of richness and diversity in the strawberry ecosystem, may diffuse the measurable effect of N. californicus releases on the arthropod community structure. This makes N. californicus