Effect of the Biological Control Agent Neoseiulus Californicus (Acari: Phytoseiidae) on Arthropod Community Structure in North Florida Strawberry Fields

Total Page:16

File Type:pdf, Size:1020Kb

Effect of the Biological Control Agent Neoseiulus Californicus (Acari: Phytoseiidae) on Arthropod Community Structure in North Florida Strawberry Fields 436 Florida Entomologist 91(3) September 2008 EFFECT OF THE BIOLOGICAL CONTROL AGENT NEOSEIULUS CALIFORNICUS (ACARI: PHYTOSEIIDAE) ON ARTHROPOD COMMUNITY STRUCTURE IN NORTH FLORIDA STRAWBERRY FIELDS AIMEE B. FRAULO1, ROBERT MCSORLEY2 AND OSCAR E. LIBURD2 1MacArthur Agro-Ecology Research Center, 300 Buck Island Ranch Rd., Lake Placid, FL 33852 2Entomology & Nematology Department, University of Florida, Gainesville, FL 33852 ABSTRACT Field experiments were conducted during the 2006-2007 growing season to determine the ef- fect of the predatory mite, Neoseiulus californicus (McGregor) on arthropod community structure when released as a biological control agent for the twospotted spider mite, Tet- ranychus urticae Koch, in north Florida strawberries (Fragaria × ananassa Duchesne). Re- leases of N. californicus were conducted at approximately 1-month intervals from Dec 2006 to Feb 2007 to compare effects of predator release times on arthropod community structure. Evaluations of community structure were conducted 3 times during the growing season. The Shannon-Weaver index of diversity was used to quantify differences among release and non- release plots. Our results indicate that the release of N. californicus does not affect the ar- thropod diversity in the strawberry system studied. The generalist feeding behavior of N. californicus, coupled with a high level of richness and diversity in the strawberry ecosystem, may diffuse the measurable effect of N. californicus releases on the arthropod community structure. This makes N. californicus a desirable biological control agent for management of twospotted spider mite in strawberries while preserving arthropod diversity. Key Words: biological control, arthropod assemblage, strawberry ecosystem, twospotted spi- der mite, pest management RESUMEN Experimentos de campo fueron establecidos para determinar el efecto del acaro predador, Neoseiulus californicus (McGregor), en la estructura de las comunidad de artrópodos cuando es liberado como control biológico de la arañita roja, Tetranychus urticae Koch, en Fresas (Fragaria × ananassa Duchesne) en el norte de la Florida. Liberaciones de N. californicus se realizaron en intervalos de un mes desde Diciembre 2006 hasta Febrero 2007, para compa- rar los efectos del tiempo de liberación de los predadores en la estructura de la comunidad de artrópodos presentes. Evaluaciones de la estructura de las comunidades se realizó tres veces durante la temporada de producción. El índice de Shannon-Weaver fue usado para cuantificar las diferencias entre los lotes donde se hicieron las liberaciones y los lotes de con- trol. Nuestros resultados demuestran que la liberación de N. californicus no afecta significa- tivamente la diversidad de artrópodos en el sistema de fresas estudiado. El comportamiento alimentario generalista de N. californicus y el alto nivel de riqueza y diversidad del sistema de producción de fresas, puede dispersar el efecto cuantificable de N. californicus en la es- tructura de la comunidad. Esta característica hace que N. californicus sea un controlador biológico importante para el manejo de la arañita roja en fresas, al mismo tiempo que se con- serva la diversidad del sistema. Translation provided by the authors. Twospotted spider mite, Tetranychus urticae due to increased use of pesticides in modern cul- Koch (TSSM), is a key pest of strawberries tural practices. As a result, more growers are uti- (Fragaria × ananassa Duchesne) in north Florida. lizing biological control as an alternative to chem- High populations of TSSM can reduce foliar and ical management (Huffaker et al. 1969; Escudero floral development thereby decreasing the quality & Ferragut 2005; Rhodes et al. 2006). However, and quantity of mature fruit (Rhodes et al. 2006). little is known about the non-target effects of bio- Twospotted spider mite populations have become logical control releases on beneficial arthropods in resistant to most acaricides due their short life cy- the strawberry ecosystem. cle and high fecundity (Huffaker et al. 1969; Wil- Phytoseiid mites have been found to be highly liams 2000; Cross et al. 2001; Stumpf & Nauen effective predators in controlling TSSM (Zhi-Qui- 2001; Sato et al. 2004). Outbreaks of TSSM have ang & Sanderson 1995). Two of the most com- become more frequent over the last few decades monly used phytoseiids are Phytoseiulus persimi- Fraulo et al.: N. californicus and Arthropod Community Structure 437 lis Athias-Henriot and Neoseiulus californicus IPM or biological control program in north Flor- (McGregor) (McMurtry & Croft 1997; Cloyd et al. ida strawberry while preserving non-target bene- 2006). Oatman et al. (1972) found that although ficial arthropods. P. persimilis was effective in controlling TSSM, it is a type I specialist predator of Tetranychus spe- MATERIALS AND METHODS cies and tends to decimate TSSM populations, al- tering the arthropod complex (McMurtry & Croft A preliminary study was conducted during 1997). However, Colfer et al. (2004) found that re- 2005-2006 (Jan to Mar) to assess the accuracy of leases of generalist species of phytoseiid mites sample methods and level of diversity in the such as N. californicus do not affect the diversity strawberry system. The main study was con- or abundance of arthropod populations. ducted during the 2006-2007 (Oct to Mar) grow- As a type II generalist, N. californicus has a ing season to evaluate the effect of predatory re- broad diet range that includes not only various ar- leases at 3 phenological periods: foliar, floral, and thropods, but also plant sap, honeydew, and pollen fruit development. (McMurtry & Croft 1997). Neoseiulus californicus can adapt to fluctuations in prey populations, pro- Field Preparation viding stable pest suppression over time (Croft et al. 1998; Castagnoli et al. 1999; Escudero & Fer- The field experiment was located at the Uni- ragut 2005; Greco et al. 2005). Rhodes et al. (2006) versity of Florida Plant Science Research and Ed- observed that N. californicus was able to maintain ucation Unit in Citra, Florida (82.17°W, 29.41°N). more consistent control of TSSM populations com- Sixteen research plots of 53.29 m2 with a bare pared with P. persimilis throughout the season in ground buffer of 11 m between plots were planted north Florida strawberry fields. The ability of N. with strawberries, variety ‘Festival’, during the californicus to survive on a broad array of food first week of Oct 2005 and 2006 in raised beds cov- sources contributes to its stability and may miti- ered with 6-mil black plastic mulch. Strawberry gate its effect on community structure and other plants were fertilized through the drip irrigation beneficial arthropods (Jones 1976; Powers & Mc- system once per week with 18.5 kg of ammonium Sorley 2000; Cross et al. 2001; Rhodes et al. 2006). nitrate (Southern States Cooperative, Inc., Rich- There are many natural enemies capable of mond, VA) and 32.7 kg of muriate of potash suppressing TSSM populations (Oatman et al. (Southern States Cooperative, Inc., Richmond, 1985). However, their use in biological control has VA) per ha. Nitrogen was increased in Feb to 27.1 been limited due to their generalist feeding pref- Kg/ha of ammonium nitrate to accommodate in- erences. Field studies conducted between 1964- creased nutrient demand during fruit develop- 1980 in southern California identified 9 phyto- ment. Fungicides were applied 3 times per week seiid mite species and several species of insects in rotation to all experimental plots throughout within the families Thripidae, Cecidomyiidae, the season to combat Botrytis fruit rot (Botrytis ci- Coccinellidae, Staphylinidae, Anthocoridae, Lyga- nerea) and anthracnose fruit rot (Colletotrichum edae, Chrysopidae, and Hemerobiidae as natural acutatum). The fungicides used were Abound® enemies of TSSM (Oatman et al. 1985). Rondon et (azoxystrobin) (Syngenta Crop Protection, al. (2004) conducted laboratory studies evaluating Greensboro, NC), Topsin® (thiophanate) (Cerexa- the big-eyed bug, Geocoris punctipes Say, minute gri, Inc., King of Prussia, PA), Aliette® (alumi- pirate bug, Orius insidiosus (Say), and the pink num tris) (Bayer Crop Science, Research Triangle spotted lady beetle, Coleomegilla maculata De- Park, NC), and Serenade® (Bacillus subtilis) Geer, as predators for TSSM. They found that (Agraquest, Davis, CA). No insecticides or acari- while they feed on TSSM, they preferred other cides were applied to the research plots. Prepara- phytophagous insects, thereby limiting their util- tion and management procedures are described in ity as successful biological control agents. detail in Fraulo & Liburd (2007). Conserving a robust ecosystem is essential to The experimental design used was a random- sustain the myriad of natural enemies that con- ized complete block with 4 treatments and 4 rep- tribute to a sustainable integrated pest manage- lications. Neoseiulus californicus (Koppert Biolog- ment (IPM) program. In this study, field experi- ical Systems, Romulus, MI) was released in all ments were conducted to determine the effect of treated plots at the recommended rate of 1-2 releasing N. californicus as a biological control predators per square meter. Viability was as- agent for TSSM on the arthropod complex in sessed by observing 20-30 predatory mites in a strawberry fields, and evaluated with the Shan- Petri dish with a dissecting binocular microscope non-Weaver index (H’) (Shannon 1948). Our hy- (10-20×) (Leica MZ12.5, McBain Instruments, pothesis was that inundative releases of N. cali- Chatsworth,
Recommended publications
  • Neoseiulus Californicus
    Prenatal Chemosensory Learning by the Predatory Mite Neoseiulus californicus Paulo C. Peralta Quesada, Peter Schausberger* Group of Arthropod Ecology and Behavior, Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria Abstract Background: Prenatal or embryonic learning, behavioral change following experience made prior to birth, may have significant consequences for postnatal foraging behavior in a wide variety of animals, including mammals, birds, fish, amphibians, and molluscs. However, prenatal learning has not been previously shown in arthropods such as insects, spiders and mites. Methodology/Principal Findings: We examined prenatal chemosensory learning in the plant-inhabiting predatory mite Neoseiulus californicus. We exposed these predators in the embryonic stage to two flavors (vanillin or anisaldehyde) or no flavor (neutral) by feeding their mothers on spider mite prey enriched with these flavors or not enriched with any flavor (neutral). After the predators reached the protonymphal stage, we assessed their prey choice through residence and feeding preferences in experiments, in which they were offered spider mites matching the maternal diet (neutral, vanillin or anisaldehyde spider mites) and non-matching spider mites. Predator protonymphs preferentially resided in the vicinity of spider mites matching the maternal diet irrespective of the type of maternal diet and choice situation. Across treatments, the protonymphs preferentially fed on spider mites matching the maternal diet. Prey and predator sizes did not differ among neutral, vanillin and anisaldehyde treatments, excluding the hypothesis that size-assortative predation influenced the outcome of the experiments. Conclusions/Significance: Our study reports the first example of prenatal learning in arthropods. Citation: Peralta Quesada PC, Schausberger P (2012) Prenatal Chemosensory Learning by the Predatory Mite Neoseiulus californicus.
    [Show full text]
  • Prof. Dr. Ir. Patrick De Clercq Department of Crop Protection, Laboratory of Agrozoology, Faculty of Bioscience Engineering, Ghent University
    Promoters: Prof. dr. ir. Patrick De Clercq Department of Crop Protection, Laboratory of Agrozoology, Faculty of Bioscience Engineering, Ghent University Prof. dr. ir. Luc Tirry Department of Crop Protection, Laboratory of Agrozoology, Faculty of Bioscience Engineering, Ghent University Dr. Bruno Gobin, PCS- Ornamental Plant Research Dean: Prof. dr. ir. Marc Van Meirvenne Rector: Prof. dr. Anne De Paepe Effects of temperature regime and food supplementation on the performance of phytoseiid mites as biological control agents by Ir. Dominiek Vangansbeke Thesis submitted in the fulfillment of the requirements for the Degree of Doctor (PhD) in Applied Biological Sciences Dutch translation: Effecten van temperatuurregime en voedingssupplementen op de prestaties van Phytoseiidae roofmijten als biologische bestrijders Please refer to this work as follows: Vangansbeke, D. (2015) Effects of temperature regime and food supplementation on the performance of phytoseiid mites as biological control agents. Ghent University, Ghent, Belgium Front and backcover photographs: Dominiek Vangansbeke ISBN-number: 978-90-5989-847-9 This study was funded by grant number 090931 from the Institute for Promotion of Innovation by Science and Technology in Flanders (IWT). The research was conducted at the Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium and partly at PCS-Ornamental Plant Research, Schaessestraat 18, 9070 Destelbergen, Belgium The author and promoters give permission to use this study for consultation and to copy parts of it for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material should be obtained from the author. Table of content List of abbreviations ..........................................................................................................................i Scope and thesis outline .................................................................................................................
    [Show full text]
  • Article Life Table Parameters of Neoseiulus Californicus
    Persian Journal of Acarology, Vol. 2, No. 2, pp. 265–276. Article Article Life table parameters of Neoseiulus californicus (Acari: Phytoseiidae), on the European red mite, Panonychus ulmi (Acari: Tetranychidae) in laboratory condition Mostafa Maroufpoor *, Youbert Ghoosta & Ali Asghar Pourmirza Department of Plant Protection, Faculty of Agriculture, University of Urmia, Iran; E- mails: [email protected], [email protected], [email protected] * Corresponding author Abstract The life table parameters of Neoseiulus californicus (Athias-Henriot), a generalist predator of spider mites and small insects were investigated in laboratory condition at two constant temperatures: 20 and 25°C, 60 ± 5% relative humidity and a photoperiod of 16:8 h (L:D). The European red mite, Panonychus ulmi (Koch), an important pest of apple orchards in Iran, was used as prey (all stages). The duration of the immature stages ranged varied from 7.52 to 5.12 days, at 20 and 25°C, respectively. The net reproductive rate (R0) increased with increasing temperature from 20.84 female offspring to 31.46 female offspring at 20–25°C, respectively. The values of the intrinsic rate of increase (rm) and finite rate of increase (λ) were obtained to be highest at 25°C (0. 237 day –1 and 1.26 day–1, respectively), which was greater that those estimated at 20°C (0.161 day–1 and 1.17 day–1, respectively). The mean generation time (T) decreased with increasing temperature from 18.86 days to 14.45 days at 20–25°C, respectively. In conclusion, results showed that N. californicus would be able to develop at temperatures range of 20–25°C feeding on P.
    [Show full text]
  • The Thermal Biology and Thresholds of Phytoseiulus Macropilis Banks (Acari: Phytoseiidae) and Balaustium Hernandezi Von Heyden (Acari: Erythraeidae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Birmingham Research Archive, E-theses Repository The thermal biology and thresholds of Phytoseiulus macropilis Banks (Acari: Phytoseiidae) and Balaustium hernandezi von Heyden (Acari: Erythraeidae) By Megan R. Coombs A thesis submitted to the University of Birmingham For the degree of DOCTOR OF PHILOSOPHY School of Biosciences College of Life and Environmental Sciences University of Birmingham September 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Phytoseiulus macropilis Banks (Acari: Phytoseiidae) and Balaustium hernandezi von Heyden (Acari: Erythraeidae) have been identified as candidate augmentative biological control agents for the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). The two-spotted spider mite is a significant pest of many commercial crops, including those grown in glasshouses. This study investigated the potential of both species to survive a typical northern European winter, and risk of establishment. The thermal thresholds of each species were also assessed to determine the efficacy of the predator in a horticultural system. Through a combination of laboratory and field trials, P.
    [Show full text]
  • Horticultural, Landscape, and Ornamental Crops
    Section F Pests common to Douglas-fir, Horticultural, True Fir, Pine and Spruce Christmas tree (Common pests)—Conifer Landscape, and aphid Cinara occidentalis and Cinara abietis Ornamental Crops Pest description and crop damage C. abietis are large, dark aphids typically feeding on upper stems and tended by ants. May distort stems. C. occidentalis feed at the base of needles on 1 year IMPORTANT NOTICE REGARDING THE USE and older foliage, often in the lower portion of the tree and may be OF CHLORPYRIFOS: quite damaging. The State of Oregon has adopted new restrictive rules on See table: the use of chlorpyrifos-containing products in Oregon. Hosts and Symptoms of Major Aphid and Adelgid Pests of Please refer to Oregon Department of Agriculture Christmas Trees Permanent Chlorpyrifos Rule at https://www.oregon.gov/oda/programs/Pesticides/ Management—cultural control RegulatoryIssues/Documents/Documents/2020/ C. abietis is easily spotted and often controlled by squishing ChlorpyrifosRule.pdf colonies by hand or spot spraying. Minor outbreaks of both species may be kept in check with beneficial insect predators or spot treatments. Management—chemical control ♦ azadirachtin (AzaDirect and others)—Some formulations are OMRI-listed for organic use. ♦ bifenthrin (OnyxPro, Sniper and others)—Restricted use pesticide. (Group 3) Christmas Tree Plantation Pests ♦ chlorpyrifos (Lorsban Advanced, Warhawk and others)— RESTRICTED USE IN OREGON. (Group 1) Chal Landgren and Franki Porter ♦ Chromobacterium subtsugae (Grandevo)—OMRI-listed for Latest revision—March 2021 organic use. ♦ cyantraniliprole (Mainspring GNL)—(Group 28) ♦ cyclaniliprole (Group 28) + flonicamid (Group 29)—Pradia In all cases, follow the instructions on the pesticide label. The PNW ♦ dinotefuran (Safari 20 SG)— (Group 4) Insect Management Handbook has no legal status, whereas the ♦ flupyradifurone (Altus)—(Group 4) pesticide label is a legal document.
    [Show full text]
  • Mites in a Hot and Dry 2018/19
    MITES IN A HOT AND DRY 2018/19 K.L. Pringle and H.E. Campbell, HORTGRO Science The mites There are three tetranychid mite species that infest deciduous fruit in the Western Cape, particularly apples and pears. They are the European red mite (ERM), Panonychus ulmi, bryobia mite, Bryobia rubrioculus, and the two-spotted mite (also known as red spider mite, Tetranychus urticae). Some taxonomists differentiate between Tetranychus urticae (two-spotted mite) and Tetranychus cinnabarinus (red spider mite). However, in South Africa we lump them together as one species, as they are regarded as two colour forms of the same species (the red form and the two-spotted form). In South Africa both forms can be found in the same orchard, with the whole range of intermediate colour forms. In addition, they interbreed and produce viable offspring. Two-spotted mite (TSM) is a problem in both Ceres and EGVV, while, at present, ERM is a problem in EGVV and bryobia is a problem in Ceres. A B C (A) Red spider mite. On the right an adult female and on the left an adult male, which differs from the immature stages by its roughly triangular abdomen – the abdomen of the immature stages is rounded. (B) Bryobia female, there are no males: note the long front legs. (C) European red mite adult female: note the 6 white spots on the back. freshNOTES (157) 22 Feb 2019 www.hortgroscience.co.za The predators Predatory mites Neoseiulus californicus, commonly called californicus. It is a shiny, almost transparent predatory mite and is the most important predator.
    [Show full text]
  • Interactions Mediated by Predators in Arthropod Food Webs
    Março, 2001 Neotropical Entomolgy 30(1) 1 FORUM Interactions Mediated by Predators in Arthropod Food Webs MADELAINE VENZON1, ANGELO PALLINI2 AND ARNE JANSSEN3 1Centro Tecnológico da Zona da Mata, EPAMIG, Caixa postal 216, 36571-000, Viçosa, MG. 2Departamento de Biologia Animal, UFV, 36571-000, Viçosa, MG. 3Section Population Biology, University of Amsterdam, 1098 SM Amsterdam, The Netherlands. Neotropical Entomology 30(1): 1-9 (2001) Interações Mediadas por Predadores em Teias Alimentares de Artrópodes RESUMO - Estudos sobre interações entre plantas, herbívoros e inimigos naturais são importantes para o entendimento da dinâmica populacional das espécies em teias alimentares, bem como para o sucesso do controle de pragas por inimigos naturais. Os programas de controle biológico fundamentam- se na ocorrência de sucessões tróficas, onde a adição de um inimigo natural causa o decréscimo na densidade da presa/hospedeiro e o aumento da biomassa da planta. Entretanto, quando mais de uma espécie de inimigo natural é usada para controlar várias pragas no mesmo sistema, teias alimentares artificiais são criadas e as interações tritróficas simples transformam-se em outras mais complicadas. A ocorrência de interações complexas e de onivoria nestas teias alimentares pode modificar a direção e a intensidade dos efeitos diretos dos inimigos naturais sobre as pragas. Neste artigo, são apresentados e discutidos os resultados experimentais sobre interações mediadas por predadores em uma teia alimentar artificial. Esta teia é formada em plantas de pepino em casa de vegetação onde o controle biológico é aplicado. A teia constitui-se de duas pragas, o ácaro rajado Tetranychus urticae Koch e o tripes Frankliniella occidentalis (Pergande). Para o controle dos ácaros rajados são liberados os ácaros predadores Phytoseiulus persimilis Athias-Henriot e Neoseiulus californicus (McGregor).
    [Show full text]
  • Influence of Prey Egg Age on the Consumption Capacity of Amblyseius Swirskii and Neoseiulus Californicus (Acari: Mesostigmata: Phytoseiidae)A
    Türk Tarım ve Doğa Bilimleri Dergisi 5(4): 628–633, 2018 https://doi.org/10.30910/turkjans.471374 TÜRK TURKISH TARIM ve DOĞA BİLİMLERİ JOURNAL of AGRICULTURAL DERGİSİ and NATURAL SCIENCES www.dergipark.gov.tr/turkjans Research Article Influence of Prey Egg Age on The Consumption Capacity of Amblyseius swirskii and Neoseiulus californicus (Acari: Mesostigmata: Phytoseiidae)a Rana AKYAZI*, Yunus Emre ALTUNÇ, Mete SOYSAL Plant Protection Department, Faculty of Agriculture, Ordu University, Ordu, Turkey *Corresponding author: [email protected] Received: 31.05.2018 Revised in Received: 05.10.2018 Accepted: 05.10.2018 Abstract The influence of egg age of Tetranychus urticae Koch (Prostigmata: Tetranychidae) on consumption capacity of Amblyseius swirskii Athias-Henriot and Neoseiulus californicus (McGregor) (Mesostigmata: Phytoseiidae) were evaluated under controlled conditions. To determine the effect of egg age on the predator's consumption rate, three different groups of T. urticae egg, 0-24, 24-48 and 48-72 hour-old, were offered as prey. All experiments were performed using unstarved and starved (24 hours) mated female adults of N. californicus and A. swirskii (2-3 day old). Each predatory mite was individually placed on each leaf disc containing 30 T. urticae eggs. After 24 hours of exposure, the predatory mites were removed and the number of consumed eggs was recorded for each treatment. All experiments were carried out on bean leaf discs (2 cm in diameter) at 25°C ± 1, 65 ± 5% R.H. and a photoperiod of 16 Light:8 Dark. The result showed that the consumption capacities of N. californicus and A. swirskii were influenced by eggs age of T.
    [Show full text]
  • Predatory Mites Neoseiulus Californicus and Phytoseiulus Persimilis Chose Plants with Domatia
    JournalJournal of Mediterranean of Mediterranean Ecology Ecology vol. 13, vol. 2015: 13, 13-20 2015 © Firma Effe Publisher, Reggio Emilia, Italy Predatory mites Neoseiulus californicus and Phytoseiulus persimilis chose plants with domatia Cécile Bresch, Gauthier Ruiz, Christine Poncet & Pia Parolin* *INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipo- lis, France Corresponding author: Dr. Pia Parolin, [email protected] Keywords: Banker plants, plant morphology, plant functional types, augmentative biological control, Integrated Pest Management, acarodomatia, Neoseiulus californicus, Tetranychus urticae, Phytoseiulus persimilis. Abstract Plants added to an IPM cropping system can potentially enhance establishment of beneficial organisms and thus improve the efficiency of biological pest control in IPM greenhouses. However, despite the clear function of their presence, there is a lack of scientific knowledge about the way the additional plants function precisely. In the present study, we analyse one aspect, the importance of the presence of domatia for the presence of the phytophagous mite Tetranychus urticae and the predatory mites Neoseiulus californicus and Phytoseiulus persimilis. We employed eight potential banker plant species differing in plant architecture, the presence of pubescence, domatia or waxes, leaf texture, etc. The purpose was to identify which plant functional types enhance the reproduction of predatory mites, which banker plant species the predator and pest prefer, the characteristics of these plants and the factors responsible for this choice. We observed the distribution of all pest and predatory mite species on each plant species infested artificially, including roses as ornamental crops, after 12 weeks. The results showed that spider mites (T.
    [Show full text]
  • Amblyseius Swirskii
    1 Living on an unfriendly plant host: impact of tomato on the predatory mite Amblyseius swirskii ANGELIKI PASPATI Supervisors Alberto Urbaneja Joel González-Cabrera November 2019 2 3 Doctoral Programme in Sciences Universitat Jaume I Doctoral School Living on an unfriendly plant host: impact of tomato on the predatory mite Amblyseius swirskii Report submitted by ANGELIKI PASPATI in order to be eligible for a doctoral degree awarded by the Universitat Jaume I Angeliki Paspati Supervisors Alberto Urbaneja Joel González-Cabrera Castelló de la Plana, November 2019 4 Funding This work was funded by the European Union‟s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641456. 5 To the ones that inspire us 6 7 Acknowledgments First of all, I would like to express my gratitude to my supervisors Alberto Urbaneja and Joel González-Cabrera for giving me the opportunity to do this PhD and guiding me and encouraging me during this long journey. Many thanks to Dr. Antonio Granell, Dr. José Luis Rambla and Dr. María Pilar Lopez Gresa from the Institute for Plant Molecular and Cellular Biology “IBMCP” for their support during our collaboration on the identification of acyl sugars. Also, I am very thankful to Jóse, Miquel, Carolina, Maria and Giorgos for their technical support and their valuable help with experiments. Also, I am very grateful that I had the opportunity to be part of the Entomology Group of IVIA, a group of wonderful colleagues to make research with, discuss ideas, receive advice and gain knowledge. Special thanks to Milena Chinchilla, a very good companion and friend the past four years, with whom, I was more than lucky to participate in the same project and share the most exciting experiences of this journey.
    [Show full text]
  • Mites and Ticks (Acari)
    A peer-reviewed open-access journal BioRisk 4(1): 149–192 (2010) Mites and ticks (Acari). Chapter 7.4: 149 doi: 10.3897/biorisk.4.58 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Mites and ticks (Acari) Chapter 7.4 Maria Navajas1, Alain Migeon1, Agustin Estrada-Peña2, Anne-Catherine Mailleux3, Pablo Servigne4, Radmila Petanović5 1 Institut National de la Recherche Agronomique, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, F-34988 Montferrier sur Lez, cedex, France 2 Faculty of Veterinary Medicine, Department of Parasitology, Miguel Servet 177, 50013-Zaragoza, Spain 3 Université catholique de Louvain, Unité d’écologie et de biogéographie, local B165.10, Croix du Sud, 4-5 (Bâtiment Car- noy), B-1348 Louvain-La-Neuve, Belgium 4 Service d’Ecologie Sociale, Université libre de Bruxelles, CP231, Avenue F. D. Roosevelt, 50, B-1050 Brussels, Belgium 5 Department of Entomology and Agricultural Zoology, Faculty of Agriculture University of Belgrade, Nemanjina 6, Belgrade-Zemun,11080 Serbia Corresponding author: Maria Navajas ([email protected]) Academic editor: David Roy | Received 4 February 2010 | Accepted 21 May 2010 | Published 6 July 2010 Citation: Navajas M et al. (2010) Mites and ticks (Acari). Chapter 7.4. In: Roques A et al. (Eds) Arthropod invasions in Europe. BioRisk 4(1): 149–192. doi: 10.3897/biorisk.4.58 Abstract Th e inventory of the alien Acari of Europe includes 96 species alien to Europe and 5 cryptogenic species. Among the alien species, 87 are mites and 9 tick species. Besides ticks which are obligate ectoparasites, 14 mite species belong to the parasitic/predator regime.
    [Show full text]
  • Eotetranychus Lewisi</Em>
    EFSA Journal 2014;12(7):3776 SCIENTIFIC OPINION Scientific Opinion on the pest categorisation of Eotetranychus lewisi1 EFSA Panel on Plant Health (PLH)2,3 European Food Safety Authority (EFSA), Parma, Italy This scientific opinion published on 24 July 2014, replaces the earlier version published on 16 July 2014*.4 ABSTRACT The Panel on Plant Health performed a pest categorisation of the Lewis spider mite, Eotetranychus lewisi, for the European Union (EU). The Lewis spider mite is a well-defined and distinguishable pest species that has been reported from a wide range of hosts, including cultivated species. Its distribution in the EU territory is restricted to (i) Madeira in Portugal; and to (ii) Poland where few occurrences were reported in glasshouses only. The pest is listed in Annex IIAI of Council Directive 2000/29/EC. A potential pathway of introduction and spread is plants traded from outside Europe and between Member States. The Lewis spider mite has the potential to establish in most part of the EU territory based on climate similarities with the distribution area outside the EU and the widespread availability of hosts present both in open fields and in protected cultivations. With regards to the potential consequences, one study is providing quantitative data on impact showing that the pest can reduce yield and affect quality of peaches and poinsettias, and only few studies describe the general impact of the pest on cultivated hosts. Although chemical treatments are reported to be effective in controlling the Lewis spider mite, it is mentioned as a growing concern for peaches, strawberries, raspberries and vines in the Americas.
    [Show full text]