Amphibians and Reptiles of the State of Hidalgo, Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Amphibians and Reptiles of the State of Hidalgo, Mexico Denison University Denison Digital Commons Denison Faculty Publications 2015 Amphibians and reptiles of the state of Hidalgo, Mexico J. A. Lemos-Espinal Geoffrey R. Smith Follow this and additional works at: https://digitalcommons.denison.edu/facultypubs Part of the Biology Commons Recommended Citation Lemos-Espinal, J., & Smith, G. (2015). Amphibians and reptiles of the state of Hidalgo, Mexico. Check List. doi:10.15560/11.3.1642 This Article is brought to you for free and open access by Denison Digital Commons. It has been accepted for inclusion in Denison Faculty Publications by an authorized administrator of Denison Digital Commons. 11 3 1642 the journal of biodiversity data April 2015 Check List LISTS OF SPECIES Check List 11(3): 1642, April 2015 doi: http://dx.doi.org/10.15560/11.3.1642 ISSN 1809-127X © 2015 Check List and Authors Amphibians and reptiles of the state of Hidalgo, Mexico Julio A. Lemos-Espinal1* and Geoffrey R. Smith2 1 Laboratorio de Ecología-UBIPRO, FES Iztacala UNAM. Avenida los Barrios 1, Los Reyes Iztacala, Tlalnepantla, edo. de México, Mexico - 54090 2 Department of Biology, Denison University, Granville, OH, USA 43023 * Corresponding author. E-mail: [email protected] Abstract: We compiled a checklist of the amphibians crops. At higher elevations in the provinces of Sierra and reptiles of the state of Hidalgo, Mexico. The Madre Oriental and the Transvolcanic Belt, there are herpetofauna of Hidalgo consists of a total of 175 conifer forests of pine (Pinus spp.), oak (Quercus spp.), species: 54 amphibians (14 salamanders and 40 and Mexican Fir (Abies religiosa (Kunth) Schlechtendahl anurans); and 121 reptiles (one crocodile, five turtles, 36 and Chamisso, 1830), among other species. In the lizards, 79 snakes). These taxa represent 32 families (12 lower areas of these provinces is mountain cloud forest amphibian families, 20 reptile families) and 87 genera characterized by the most diverse vegetation type per (24 amphibian genera, 63 reptile genera). Two of these unit area of the country (Rzedowski 1996). The cloud species are non-native species (Hemidactylus frenatus forest of the mountains on the outskirts of the village Duméril and Bibron, 1836 and Indotyphlops braminus of La Mojonera is home to the most important Fagus (Daudin, 1803)). This herpetofauna represents a mixture grandifolia spp. mexicana (Martínez) forest in the country. of species from both the Sierra Madre Oriental and the Fagus grandifolia spp. mexicana (Martínez) is a relict Transvolcanic Belt. In addition, 26% of all categorized taxon whose distribution in Mexico represents relictual amphibian and reptile species in Hidalgo are considered areas worthy of greater attention in biogeographic and Vulnerable, Near Threatened, Endangered, or Critically conservation studies (Alcántara-Ayala and Luna-Vega Endangered by the IUCN Red List. Thus, Hidalgo 2001). Such cloud forests in Mexico are also under threat represents a relatively unique and threatened diversity from climate change (Ponce-Reyes et al. 2012). of amphibians and reptiles. The complex topography of Hidalgo, along with the climates and vegetation types present, has resulted in Key words: amphibians, reptiles, Hidalgo, Mexico great faunal diversity that has caught the attention of biologists. In recent years there have been important contributions that have attempted to summarize INTRODUCTION and describe some groups of reptiles or the entire Hidalgo is one of the smallest states in Mexico; herpetofauna of Hidalgo (e.g., Bryson and Mendoza- ranking 26th out of 31 states, with a surface area of Quijano 2007; Valencia-Hernández et al. 2007; 20,905 km2, which represents 1.1% of the surface area of Ramírez-Bautista et al. 2010, 2014), of specific areas, the country. The topography of Hidalgo is very rugged, habitats or localities within Hidalgo (e.g., Fernandez- its lowest point is a few meters above sea level and its Badillo and Goyenechea Mayer-Goyenechea, 2010; highest point is over 3,300 m above sea level. Parts of Vite-Silva et al., 2010; Huitzel-Mendoza and Goyenechea three physiographic provinces are found in the state: the Mayer-Goyenechea 2011; Cruz-Elizalde and Ramírez- Sierra Madre Oriental; the Transvolcanic Belt; and the Bautista 2012; Hernández-Salinas and Ramírez-Bautista North Gulf Coastal Plain. 2013). Indeed, there appears to be a new interest in Much of Hidalgo is subject to severe human pressures the herpetofauna of Hidalgo, as epitomized by several such as extraction of timber, agriculture, animal recent range extensions or rediscoveries of snakes husbandry, and expansion of human settlements, so (Roth-Monzon et al. 2011; Berriozabal-Islas et al. 2012; that more than 60% of the native vegetation has been Ramírez-Bautista et al. 2013; Badillo-Saldaña et al. 2014; transformed into some kind of anthropogenic habitat. Lara-Tufino et al. 2014), salamanders (Badillo-Saldaña Almost the entire southern half of the state (i.e., the et al. 2015) and crocodilians (Mejenes-López and area occupied by the Transvolcanic Belt province) has Hernández-Bautista 2013), and the description of a new been modified by the establishment of agricultural species of lizard in the genus Xenosaurus (Woolrich-Piña Check List | www.biotaxa.org/cl 1 Volume 11 | Number 3 | Article 1642 Lemos-Espinal and Smith | Herpetofauna of Hidalgo, Mexico Figure 1. Topographical map of the state of Hidalgo, Mexico (CONABIO 2004). The * refer to the locations of the North Gulf Coastal Plains within the state of Hidalgo. and Smith 2012). Cruz-Elizalde et al. (2015) have also bordered by Querétaro, San Luis Potosí, and Veracruz; recently evaluated the effectiveness of protected areas to the south by Puebla, Tlaxcala, and México; to the east in conserving the herpetofauna of Hidalgo. by Veracruz and Puebla; and, to the west, by México and The goal of this publication is to report on the list of Querétaro. the amphibians and reptiles known to occur in the state The province of the Sierra Madre Oriental in Hidalgo of Hidalgo. We hope that this publication will help to is represented by the subprovince of Carso Huasteco, increase the knowledge of these two classes of tetrapods so named for possessing features of a major karst and encourage the development of future work on them topography (INEGI 2009). This province is divided by in this small, but biologically important Mexican state, important rivers, such as Acoyoapa, Amajac, Atlapexco, especially given the extensive conversion of Hidalgo’s and Candelaria, flowing through it. The highest elevations landscape to agricultural purposes. in this region exceed 2,000 m above sea level. This region is dominated by limestone. Within the state of Hidalgo, MATERIALS AND METHODS this province covers approximately 9,713 km2 (46.46% of Study site the state surface area) and occupies approximately the Hidalgo is located in the central part of Mexico, northern half of the state. In this portion of the Carso between latitudes 21°24ʹ and 19°36ʹ N and longitudes Huasteco, mountain ranges dominate. Its lowest areas 097°58ʹ and 099°53ʹ W (Figure 1). To the north it is are localized in the north and northeastern part of the Check List | www.biotaxa.org/cl 2 Volume 11 | Number 3 | Article 1642 Lemos-Espinal and Smith | Herpetofauna of Hidalgo, Mexico state and constitute the region known as Huasteca (LSUMZ); Museum of Zoology, University of Michigan, Hidalguense, where the topographical systems classified Ann Arbor (UMMZ); Southern Illinois University as “lying valley slopes” are common (INEGI 2009). Carbondale; Texas Cooperative Wildlife Collections, In Hidalgo, the Transvolcanic Belt province occupies a Texas A & M University (TCWC); University of Arizona surface area of approximately 11,136 km2 and represents (UA); University of Colorado Museum (UCM); University 53.27% of the state’s surface area. It occupies slightly of Illinois Museum of Natural History (UIMNH); more than the southern half of the state and contains University of Texas at Arlington (UTA); (3) a thorough two subprovinces: 1) Coastal and Mountain Regions examination of the available literature on amphibians of Querétaro and Hidalgo. This subprovince runs from and reptiles in the state such as: Badillo-Saldaña west to east as low hills of volcanic material, < 2,000 m et al. (2014); Berriozabal-Islas et al. (2012); Bryson elevation, which is essentially enclosed on all sides by a and Mendoza-Quijano (2007); Goyenechea Mayer- system of mountains, plateaus, and hills, almost all of Goyenechea (2003); Huitzil-Mendoza and Goyenechea which have a volcanic origin. Only one peak, the Nopala, Mayer-Goyenechea (2011); Lemos-Espinal and Dixon has an altitude > 3,000 m; and 2) Lakes and Volcanoes of (forthcoming); Rabb (1958); Ramírez-Bautista et al. Anáhuac that enters the southern part of Hidalgo and (2010); Roth-Monzon et al. (2011); Valencia-Hernández occupies 15.86% of the state’s surface area (INEGI 2009). et al. (2007); Woodall (1941); and (4) our personal field The province of the North Gulf Coastal Plains covers work, primarily focused around the municipalities of approximately 56 km2 of the surface area of Hidalgo (= Molango, San Agustín Metzquititlán, Tlanchinol, and 0.27%). It occupies a small portion of the northeastern Zacualtipán. We visited this region periodically from corner of the state in parts of the municipalities of 2002 to 2014, taking notes on the amphibians and Huautla and Huehuetla (INEGI 2009). reptiles observed during visual encounter surveys. All relevant Mexican laws and regulations pertaining to Data collection observation and collection of reptiles and amphibians We obtained the list of amphibians and reptiles were followed during these surveys. of the state of Hidalgo from the following sources: Species were included in the checklist only if we were (1) specimens from the Laboratorio de Ecología- able to confirm the record, either by direct observation UBIPRO (LEUBIPRO) collections; (2) databases from or through documented museum records or vouchers the Comisión Nacional para el Conocimiento y Uso in the state.
Recommended publications
  • Other Contributions
    Other Contributions NATURE NOTES Amphibia: Caudata Ambystoma ordinarium. Predation by a Black-necked Gartersnake (Thamnophis cyrtopsis). The Michoacán Stream Salamander (Ambystoma ordinarium) is a facultatively paedomorphic ambystomatid species. Paedomorphic adults and larvae are found in montane streams, while metamorphic adults are terrestrial, remaining near natal streams (Ruiz-Martínez et al., 2014). Streams inhabited by this species are immersed in pine, pine-oak, and fir for- ests in the central part of the Trans-Mexican Volcanic Belt (Luna-Vega et al., 2007). All known localities where A. ordinarium has been recorded are situated between the vicinity of Lake Patzcuaro in the north-central portion of the state of Michoacan and Tianguistenco in the western part of the state of México (Ruiz-Martínez et al., 2014). This species is considered Endangered by the IUCN (IUCN, 2015), is protected by the government of Mexico, under the category Pr (special protection) (AmphibiaWeb; accessed 1April 2016), and Wilson et al. (2013) scored it at the upper end of the medium vulnerability level. Data available on the life history and biology of A. ordinarium is restricted to the species description (Taylor, 1940), distribution (Shaffer, 1984; Anderson and Worthington, 1971), diet composition (Alvarado-Díaz et al., 2002), phylogeny (Weisrock et al., 2006) and the effect of habitat quality on diet diversity (Ruiz-Martínez et al., 2014). We did not find predation records on this species in the literature, and in this note we present information on a predation attack on an adult neotenic A. ordinarium by a Thamnophis cyrtopsis. On 13 July 2010 at 1300 h, while conducting an ecological study of A.
    [Show full text]
  • Herpetological Information Service No
    Type Descriptions and Type Publications OF HoBART M. Smith, 1933 through June 1999 Ernest A. Liner Houma, Louisiana smithsonian herpetological information service no. 127 2000 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. Introduction Hobart M. Smith is one of herpetology's most prolific autiiors. As of 30 June 1999, he authored or co-authored 1367 publications covering a range of scholarly and popular papers dealing with such diverse subjects as taxonomy, life history, geographical distribution, checklists, nomenclatural problems, bibliographies, herpetological coins, anatomy, comparative anatomy textbooks, pet books, book reviews, abstracts, encyclopedia entries, prefaces and forwords as well as updating volumes being repnnted. The checklists of the herpetofauna of Mexico authored with Dr. Edward H. Taylor are legendary as is the Synopsis of the Herpetofalhva of Mexico coauthored with his late wife, Rozella B.
    [Show full text]
  • CAT Vertebradosgt CDC CECON USAC 2019
    Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico
    [Show full text]
  • A New Species of Dibamus (Squamata: Dibamidae) from West Malaysia
    2004 Asiatic Herpetological Research Vol. 10, pp. 1-7 A New Species of Dibamus (Squamata: Dibamidae) from West Malaysia RAUL E. DIAZ1,2,*, MING TZI LEONG3, L. LEE GRISMER1, AND NORSHAM S. YAAKOB4 1Department of Biology, La Sierra University, Riverside, CA 92515-8247, USA 2Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA *Corresponding author E-mail: [email protected] 3Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore 4Forest Research Institute Malaysia, Kepong, 52109 Kuala Lumpur, Malaysia Abstract. - A new lizard of the genus Dibamus is described from Pulau Tioman and Pulau Tulai, Pahang, West Malaysia. This species most closely resembles D. novaeguineae, D. kondaoensis, D. leucurus and D. montanus, but differs from all congeneric species in exhibiting the following combination of characters: postoculars 1, scales bor- dering first infralabial 4, SVL 123 mm, 25-26 midbody scale rows, frontonasal and rostral sutures complete, and the presence of slightly posteriorly notched cycloid body scales as an adult. Key words. - Dibamus, Dibamus tiomanensis, new species, Dibamidae, Pulau Tioman, West Malaysia. Introduction were sexed externally under a dissecting microscope; males were identified by having two small, flap-like The genus Dibamus presently contains 18 species (see limbs (one on each side of the vent) (Duméril and Greer, 1985; Darevsky, 1992; Das, 1996; Honda et al., Bibron, 1839). 1997; Ineich, 1999; Honda et al., 2001; Das and Lim, 2003; Das and Yaakob, 2003), a two-fold difference Taxonomy from the detailed review of the group by Greer (1985). Species of the genus Dibamus collectively range Dibamus tiomanensis, new species throughout southeast Asia, from southern China and the Figs.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Aquiloeurycea Scandens (Walker, 1955). the Tamaulipan False Brook Salamander Is Endemic to Mexico
    Aquiloeurycea scandens (Walker, 1955). The Tamaulipan False Brook Salamander is endemic to Mexico. Originally described from caves in the Reserva de la Biósfera El Cielo in southwestern Tamaulipas, this species later was reported from a locality in San Luis Potosí (Johnson et al., 1978) and another in Coahuila (Lemos-Espinal and Smith, 2007). Frost (2015) noted, however, that specimens from areas remote from the type locality might be unnamed species. This individual was found in an ecotone of cloud forest and pine-oak forest near Ejido La Gloria, in the municipality of Gómez Farías. Wilson et al. (2013b) determined its EVS as 17, placing it in the middle portion of the high vulnerability category. Its conservation status has been assessed as Vulnerable by IUCN, and as a species of special protection by SEMARNAT. ' © Elí García-Padilla 42 www.mesoamericanherpetology.com www.eaglemountainpublishing.com The herpetofauna of Tamaulipas, Mexico: composition, distribution, and conservation status SERGIO A. TERÁN-JUÁREZ1, ELÍ GARCÍA-PADILLA2, VICENTE Mata-SILva3, JERRY D. JOHNSON3, AND LARRY DavID WILSON4 1División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Ciudad Victoria, Boulevard Emilio Portes Gil No. 1301 Pte. Apartado postal 175, 87010, Ciudad Victoria, Tamaulipas, Mexico. Email: [email protected] 2Oaxaca de Juárez, Oaxaca, Código Postal 68023, Mexico. E-mail: [email protected] 3Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas 79968-0500, United States. E-mails: [email protected] and [email protected] 4Centro Zamorano de Biodiversidad, Escuela Agrícola Panamericana Zamorano, Departamento de Francisco Morazán, Honduras. E-mail: [email protected] ABSTRACT: The herpetofauna of Tamaulipas, the northeasternmost state in Mexico, is comprised of 184 species, including 31 anurans, 13 salamanders, one crocodylian, 124 squamates, and 15 turtles.
    [Show full text]
  • Other Contributions
    Other Contributions NATURE NOTES Amphibia: Anura Family Bufonidae Incilius marmoreus (Wiegmann, 1833). Reproduction. The distribution of the Marbled Toad, Incilius marmo- reus, a Mexican endemic, extends from northern Sinaloa to Chiapas along the Pacific coastal plain, with an isolated population in Veracruz (Frost, 2017); on the Atlantic versant, Lemos Espinal and Dixon (2016: 354) also noted that this species occurs from “northern Hidalgo to the Isthmus of Tehuantepec.” Hardy and McDiarmid (1969) reported that most individuals in Sinaloa were found on the road at night during or just after rains, and that most females were collected in July and contained eggs. In Hidalgo, I. marmoreus aggregates in temporary ponds during the rainy season (Lemos Espinal and Dixon, 2016). Herein, I present data from a histological examination of I. marmoreus gonadal material from Colima and Sinaloa, and provide the minimum sizes for reproductive activity in males and females. The use of museum collections for obtaining reproductive data avoids removing additional animals from the wild. I examined 42 specimens of I. marmoreus (11 from Colima, collected in 1967, and 31 from Sinaloa, collected in 1960, 1962, 1963, and 1968). The combined samples consisted of 17 males (mean snout–vent length [SVL] = 54.5 mm ± 3.1 SD, range = 48–58 mm), 21 females (mean SVL = 60.9 mm ± 4.5 SD, range = 54–70 mm) and four juveniles from Sinaloa (mean SVL = 38.4 mm ± 7.1 SD, range = 29–44 mm); the specimens are maintained in the herpetology collection of the Natural History Museum of Los Angeles County (LACM), Los Angeles, California, United States (Appendix 1).
    [Show full text]
  • Multi-National Conservation of Alligator Lizards
    MULTI-NATIONAL CONSERVATION OF ALLIGATOR LIZARDS: APPLIED SOCIOECOLOGICAL LESSONS FROM A FLAGSHIP GROUP by ADAM G. CLAUSE (Under the Direction of John Maerz) ABSTRACT The Anthropocene is defined by unprecedented human influence on the biosphere. Integrative conservation recognizes this inextricable coupling of human and natural systems, and mobilizes multiple epistemologies to seek equitable, enduring solutions to complex socioecological issues. Although a central motivation of global conservation practice is to protect at-risk species, such organisms may be the subject of competing social perspectives that can impede robust interventions. Furthermore, imperiled species are often chronically understudied, which prevents the immediate application of data-driven quantitative modeling approaches in conservation decision making. Instead, real-world management goals are regularly prioritized on the basis of expert opinion. Here, I explore how an organismal natural history perspective, when grounded in a critique of established human judgements, can help resolve socioecological conflicts and contextualize perceived threats related to threatened species conservation and policy development. To achieve this, I leverage a multi-national system anchored by a diverse, enigmatic, and often endangered New World clade: alligator lizards. Using a threat analysis and status assessment, I show that one recent petition to list a California alligator lizard, Elgaria panamintina, under the US Endangered Species Act often contradicts the best available science.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Squamate Reptiles Challenge Paradigms of Genomic Repeat Element Evolution Set by Birds and Mammals
    ARTICLE DOI: 10.1038/s41467-018-05279-1 OPEN Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals Giulia I.M. Pasquesi1, Richard H. Adams1, Daren C. Card 1, Drew R. Schield1, Andrew B. Corbin1, Blair W. Perry1, Jacobo Reyes-Velasco1,2, Robert P. Ruggiero2, Michael W. Vandewege3, Jonathan A. Shortt4 & Todd A. Castoe1 1234567890():,; Broad paradigms of vertebrate genomic repeat element evolution have been largely shaped by analyses of mammalian and avian genomes. Here, based on analyses of genomes sequenced from over 60 squamate reptiles (lizards and snakes), we show that patterns of genomic repeat landscape evolution in squamates challenge such paradigms. Despite low variance in genome size, squamate genomes exhibit surprisingly high variation among spe- cies in abundance (ca. 25–73% of the genome) and composition of identifiable repeat ele- ments. We also demonstrate that snake genomes have experienced microsatellite seeding by transposable elements at a scale unparalleled among eukaryotes, leading to some snake genomes containing the highest microsatellite content of any known eukaryote. Our analyses of transposable element evolution across squamates also suggest that lineage-specific var- iation in mechanisms of transposable element activity and silencing, rather than variation in species-specific demography, may play a dominant role in driving variation in repeat element landscapes across squamate phylogeny. 1 Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX 76019, USA. 2 Department of Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates. 3 Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.
    [Show full text]
  • Bulletin of the Essex Institute
    THE NORTH AMERICAN REPTILES AND BATRACHIANS. A LIST OF THE SPECIES OCCURRING NORTH OF THE ISTHMUS OF TEHUANTEPEC, WITH REFERENCES. BY SAMUEL GARMAN. The following list is presented in the shape in which it has proved most useful in my own work. As in other pub- lications, I have placed the date immediately after the au- thority, as one naturally thinks it. In order accurately to determine species, comparison should be made with the original description rather than with the opinion of a sub- sequent writer ; for this reason reference is made to the discoverer and not to one in whose opinion the species belonofs to a o^enus some other than that in which it was originally placed. Consequently, the references are under names unaffected by frequent changes from one genus to another. Heretofore, the faunal limit for North America has been patriotically placed at the Mexican boundary. The distribution of the reptiles and Batrachians proves this limit to be unscientific, and shows the nearest approach to a separation between the faunae of the Americas, North and South, at the southern extremity of the tableland of Mexico. Attempt is made in this list to include all the species known to occur north of that point. When several localities for a species are given, they are chosen to indicate the extent of its range as nearly as possible. With a slight modification, the binomial system is fol- lowed. For various reasons, as will be seen below, the tri- (3) 4 garman's list op or polynomiiils affected by different authors, can hardly be considered improvements.
    [Show full text]
  • Diversity-Dependent Cladogenesis Throughout Western Mexico: Evolutionary Biogeography of Rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus)
    City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology 2016 Diversity-dependent cladogenesis throughout western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) Christopher Blair CUNY New York City College of Technology Santiago Sánchez-Ramírez University of Toronto How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/ny_pubs/344 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] 1Blair, C., Sánchez-Ramírez, S., 2016. Diversity-dependent cladogenesis throughout 2 western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: 3 Crotalus and Sistrurus ). Molecular Phylogenetics and Evolution 97, 145–154. 4 https://doi.org/10.1016/j.ympev.2015.12.020. © 2016. This manuscript version is made 5 available under the CC-BY-NC-ND 4.0 license. 6 7 8 Diversity-dependent cladogenesis throughout western Mexico: evolutionary 9 biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) 10 11 12 CHRISTOPHER BLAIR1*, SANTIAGO SÁNCHEZ-RAMÍREZ2,3,4 13 14 15 1Department of Biological Sciences, New York City College of Technology, Biology PhD 16 Program, Graduate Center, The City University of New York, 300 Jay Street, Brooklyn, 17 NY 11201, USA. 18 2Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks 19 Street, Toronto, ON, M5S 3B2, Canada. 20 3Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, 21 ON, M5S 2C6, Canada. 22 4Present address: Environmental Genomics Group, Max Planck Institute for 23 Evolutionary Biology, August-Thienemann-Str.
    [Show full text]