PLANETARY FORMATION SCENARIOS REVISTIED: CORE-ACCRETION VERSUS DISK INSTABILITY Matsuo, T., Shibai, H., and Ootsubo, T., Tamura
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Maio - 2017 Francisco Jânio Cavalcante
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA DEPARTAMENTO DE FÍSICA TEÓRICA E EXPERIMENTAL PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA EVOLUÇÃO DO ÍNDICE DE FREIO MAGNÉTICO PARA ESTRELAS DO TIPO SOLAR FRANCISCO JÂNIO CAVALCANTE NATAL (RN) MAIO - 2017 FRANCISCO JÂNIO CAVALCANTE EVOLUÇÃO DO ÍNDICE DE FREIO MAGNÉTICO PARA ESTRELAS DO TIPO SOLAR Tese de Doutorado apresentada ao Programa de Pós-Graduação em Física do Departamento de Física Teórica e Experimental da Universidade Federal do Rio Grande do Norte como requisito parcial para a obtenção do grau de Doutor em Física. Orientador: Dr. Daniel Brito de Freitas NATAL (RN) MAIO - 2017 UFRN / Biblioteca Central Zila Mamede Catalogação da Publicação na Fonte Cavalcante, Francisco Jânio. Evolução do índice de freio magnético para estrelas do tipo solar / Francisco Jânio Cavalcante. - 2017. 166 f. : il. Tese (doutorado) - Universidade Federal do Rio Grande do Norte, Centro de Ciências Exatas e da Terra, Programa de Pós-Graduação em Física. Natal, RN, 2017. Orientador: Prof. Dr. Daniel Brito de Freitas. 1. Rotação estelar - Tese. 2. Freio magnético - Tese. 3. Distribuição e estatística - Tese. I. Freitas, Daniel Brito de. II. Título. RN/UF/BCZM CDU 524.3 Para Pessoas Especiais: A minha avó, minha mãe e minha namorada Ester Saraiva da Silva (in memorian) Cleta Carneiro Cavalcante Simone Santos Martins Agradecimentos Agradeço ao bom e generoso Deus, quem me deu muitas coisas no decorrer da minha vida. Deu-me compreensão e amparo nos momento de aflição e tristeza, saúde para continuar nesta caminhada. Ofereceu-me sua luz no momento em que a escuridão sufocava meu espírito. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
In-Depth Study of Photometric Variability and Radiative Timescales for Atmospheric Evolution in Four L Dwarfs
Weather on Other Worlds IV: In-Depth Study of Photometric Variability and Radiative Timescales for Atmospheric Evolution in Four L Dwarfs Item Type text; Electronic Thesis Authors Flateau, Davin C. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 30/09/2021 07:25:39 Link to Item http://hdl.handle.net/10150/594630 WEATHER ON OTHER WORLDS IV: IN-DEPTH STUDY OF PHOTOMETRIC VARIABILITY AND RADIATIVE TIMESCALES FOR ATMOSPHERIC EVOLUTION IN FOUR L DWARFS by Davin C. Flateau A Thesis Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2015 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. -
Exoplanet Community Report
JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probeclass missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2 -
Arxiv:Astro-Ph/0603836V1 30 Mar 2006
to appear in the Astrophysical Journal Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems Deepak Raghavan, Todd J. Henry Georgia State University, Atlanta, GA 30302-4106 Brian D. Mason US Naval Observatory, 3450 Massachusetts Avenue NW, Washington DC 20392-5420 John P. Subasavage, Wei-Chun Jao, Thom D. Beaulieu Georgia State University, Atlanta, GA 30302-4106 Nigel C. Hambly Institute for Astronomy, School of Physics, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, Scotland, UK [email protected] ABSTRACT We present results of a reconnaissance for stellar companions to all 131 radial- velocity-detected candidate extrasolar planetary systems known as of July 1, arXiv:astro-ph/0603836v1 30 Mar 2006 2005. Common proper motion companions were investigated using the multi- epoch STScI Digitized Sky Surveys, and confirmed by matching the trigonometric parallax distances of the primaries to companion distances estimated photometri- cally. We also attempt to confirm or refute companions listed in the Washington Double Star Catalog, the Catalogs of Nearby Stars Series by Gliese and Jahreiß, in Hipparcos results, and in Duquennoy & Mayor (1991). Our findings indicate that a lower limit of 30 (23%) of the 131 exoplanet systems have stellar companions. We report new stellar companions to HD 38529 and HD 188015, and a new candidate companion to HD 169830. We confirm many previously reported stellar companions, including six stars in five systems, that are recognized for the first time as companions to exoplanet hosts. We have found evidence that 20 entries in the Washington Double Star Catalog –2– are not gravitationally bound companions. -
Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis, -
Mètodes De Detecció I Anàlisi D'exoplanetes
MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits -
L0 and M0 Photometry of Ultracool Dwarfs D
The Astronomical Journal, 127:3516–3536, 2004 June # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. L0 AND M0 PHOTOMETRY OF ULTRACOOL DWARFS D. A. Golimowski,1 S. K. Leggett,2 M. S. Marley,3 X. Fan,4 T. R. Geballe,5 G. R. Knapp,6 F. J. Vrba,7 A. A. Henden,7 C. B. Luginbuhl,7 H. H. Guetter,7 J. A. Munn,7 B. Canzian,7 W. Zheng,1 Z. I. Tsvetanov,8 K. Chiu,1 K. Glazebrook,1 E. A. Hoversten,1 D. P. Schneider,9,10 and J. Brinkmann10, 11 Received 2003 November 13; accepted 2004 February 18 ABSTRACT We have compiled L0 (3.4–4.1 m) and M0 (4.6–4.8 m) photometry of 63 single and binary M, L, and T dwarfs obtained at the United Kingdom Infrared Telescope using the Mauna Kea Observatory filter set. This compilation includes new L0 measurements of eight L dwarfs and 13 T dwarfs and new M0 measurements of seven L dwarfs, five T dwarfs, and the M1 dwarf Gl 229A. These new data increase by factors of 0.6 and 1.6, 0 0 respectively, the numbers of ultracool dwarfs (Teff P 2400 K) for which L and M measurements have been 0 reported. We compute Lbol,BCK ,andTeff for 42 dwarfs whose flux-calibrated JHK spectra, L photometry, and trigonometric parallaxes are available, and we estimate these quantities for nine other dwarfs whose parallaxes and flux-calibrated spectra have been obtained. BCK is a well-behaved function of near-infrared spectral type with a dispersion of 0.1 mag for types M6–T5; it is significantly more scattered for types T5–T9. -
The Chemistry of Extrasolar Planetary Systems
The Chemistry of Extrasolar Planetary Systems Item Type text; Electronic Dissertation Authors Bond, Jade Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 05:25:17 Link to Item http://hdl.handle.net/10150/194946 THE CHEMISTRY OF EXTRASOLAR PLANETARY SYSTEMS by Jade Chantelle Bond A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2 0 0 8 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Final Examination Committee, we certify that we have read the dis- sertation prepared by Jade Chantelle Bond entitled The Chemistry of Extrasolar Planetary Systems and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date: 31 October 2008 Dante S. Lauretta Date: 31 October 2008 Michael J. Drake Date: 31 October 2008 David P. O’Brien Date: 31 October 2008 Michael R. Meyer Date: 31 October 2008 Adam P. Showman Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. -
Lab 09 - Exoplanets
LAB 09 - EXOPLANETS NAME ____________________________ CLASS (CIRCLE ONE) DAY NIGHT DATE ____________________________ INTRODUCTION In this lab, you are going to use real data obtained from observations of exoplanets to determine their orbital characteristics. An exoplanet is a planet that orbits another star (i.e. they are planets that do not orbit our sun). There are many methods used to detect exoplanets, but the most successful has been the transit method. In this method, the planet’s orbit is aligned such that, as it moves between us and its parent star, it blocks a small amount of the light from that star. The amount of starlight that is blocked is extremely small and requires many careful observations to discern. There are many current and past observation projects dedicated to the search for exoplanets. PROCEDURES Go to the premier online repository of exoplanetary data at http://www.exoplanet.eu/catalog/ and use the search feature to complete the table below. Input the name of each star into the Planet Search feature on the page and it will filter the list to show you the planets that are known to be part of that star system. For each star system, you will record the following information: ● Star Name - Record the star’s name in the first column. ● Planet Letter - The first planet will be designated “b” the next one “c” and so on. For example, first planet in the 16 Cygni system is called 16 Cygni b. ● Mass - The number you see in the table is a multiple of the mass of Jupiter (MJupiter). -
Determining the True Mass of Radial-Velocity Exoplanets with Gaia F
Determining the true mass of radial-velocity exoplanets with Gaia F. Kiefer, G. Hébrard, A. Lecavelier Des Etangs, E. Martioli, S. Dalal, A. Vidal-Madjar To cite this version: F. Kiefer, G. Hébrard, A. Lecavelier Des Etangs, E. Martioli, S. Dalal, et al.. Determining the true mass of radial-velocity exoplanets with Gaia: Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets. Astronomy and Astrophysics - A&A, EDP Sciences, 2021, 645, pp.A7. 10.1051/0004-6361/202039168. hal-03085694 HAL Id: hal-03085694 https://hal.archives-ouvertes.fr/hal-03085694 Submitted on 21 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 645, A7 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039168 & © F. Kiefer et al. 2020 Astrophysics Determining the true mass of radial-velocity exoplanets with Gaia Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets? F. Kiefer1,2, G. Hébrard1,3, A. Lecavelier des Etangs1, E. Martioli1,4, S. Dalal1, and A. Vidal-Madjar1 1 Institut d’Astrophysique de Paris, Sorbonne