Generic Attacks against Beyond-Birthday-Bound MACs Gaëtan Leurent1, Mridul Nandi2, and Ferdinand Sibleyras1 1 Inria, France {gaetan.leurent,ferdinand.sibleyras}@inria.fr 2 Indian Statistical Institute, Kolkata
[email protected] Abstract. In this work, we study the security of several recent MAC constructions with provable security beyond the birthday bound. We con- sider block-cipher based constructions with a double-block internal state, such as SUM-ECBC, PMAC+, 3kf9, GCM-SIV2, and some variants (LightMAC+, 1kPMAC+). All these MACs have a security proof up to 22n/3 queries, but there are no known attacks with less than 2n queries. We describe a new cryptanalysis technique for double-block MACs based on finding quadruples of messages with four pairwise collisions in halves of the state. We show how to detect such quadruples in SUM-ECBC, PMAC+, 3kf9, GCM-SIV2 and their variants with O(23n/4) queries, and how to build a forgery attack with the same query complexity. The time com- plexity of these attacks is above 2n, but it shows that the schemes do not reach full security in the information theoretic model. Surprisingly, our attack on LightMAC+ also invalidates a recent security proof by Naito. Moreover, we give a variant of the attack against SUM-ECBC and GCM-SIV2 with time and data complexity O˜(26n/7). As far as we know, this is the first attack with complexity below 2n against a deterministic beyond- birthday-bound secure MAC. As a side result, we also give a birthday attack against 1kf9, a single-key variant of 3kf9 that was withdrawn due to issues with the proof.