ON the COMPOSITION and NOMENCLATURE of the LOELLINGITEGROUP DIARSENIDE MINERALS Raisa A

Total Page:16

File Type:pdf, Size:1020Kb

ON the COMPOSITION and NOMENCLATURE of the LOELLINGITE�GROUP DIARSENIDE MINERALS Raisa A New Data on Minerals. М., 2007. Volume 42 93 ON THE COMPOSITION AND NOMENCLATURE OF THE LOELLINGITEGROUP DIARSENIDE MINERALS Raisa A. Vinogradova Lomonosov Moscow State University. Moscow The composition of loellingitegroup diarsenide minerals with wide range of Fe, Co, and Ni content is discussed. A nomenclature distinguishing mineral species loellingite, safflorite and rammelsbergite, and Cobearing loellin- gite, Nibearing loellingite, Febearing safflorite, Cobearing rammelsbergite, and Febearing rammelsbergiteis suggested. Chemical composition fields and Fe, Co, Ni concentration (at %) range in minerals and varieties are presented. This nomenclature allows to recognize features of individual compositions of the loellingitegroup diarsenides that corresponds to their names. 1 table, 1 figure, 12 reference Rhombic diarsenides of the loellingite the practically complete isomorphic substitu- group including loellingite FeAs2, safflorite tion between Fe, Co, and Ni in the loellin- CoAs2, and rammelsbergite NiAs2 with struc- gitegroup diarsenides and wide range of con- tures similar to marcasite (Borishanskaya et al., centrations of these elements (Fig. 1a). 1981; Vinogradova & Bochek, 1980). Rhombic Previously, some scientists have tried to pararammelsbergite NiAs2, cubic krutovite define limits of the loellingitegroup minerals NiAs2, and monoclinic clinosafflorite CoAs2 are on the basis of chemical composition, but such less abundant and are different from the limits are not universally agreed upon loellingitegroup minerals in structure. (Vinogadova & Bochek, 1980). Current avail- However, the structure of clinosafflorite is very able compositional data for the loellin- similar to the structure of loellingite/safflorite. gitegroup diarsenides and suggested nomen- Diarsenides of the loellingite group clature of minerals in ternary systems (Nickel, (Borishanskaya et al., 1981) are characteristic 1992) allow development of a comprehensive of CoNiAgBiU deposits and similar NiCo nomenclature of the loellingitegroup arsenide deposits. In addition, they occur in diarsenides. According to Nickel (1992), CuNi sulfide deposits and in niccol- loellingite (Fe,Co,Ni)As2, safflorite itechromite veins. Loellingite and safflorite (Co,Fe,Ni)As2, rammelsbergite (Ni,Co,Fe)As2, have been described from ironbearing skarns, and corresponding composition fields should alkaline and granitic pegmatites. Furthemore, be defined on the basis of the predominant loellingite has been identified in greisen, sul- irongroup metal (Fig. 1b). However, composi- fidecassiterite, and arsenopyrite deposits. tional features of individual representatives of Compositional data on the natural the loellingite group are lost in this approach diarsenides of the loellingite group are due to the wide range of composition of each reviewed by Borishanskaya et al. (1981), mineral. Therefore, modification of the nomen- Vinogradova & Bochek (1980) and Gritsenko et clature is advisable, and proper minerals al. (2004). All three metals of the iron group (loellingite, safflorite, and rammelsbergite) and form these diarsenides with one or two of them their varieties should be defined. The 80 at.% predominating. Natural solidsolutions of the content of the major metal is taken as the limit continuous loellingitesafflorite series are com- between a mineral species and a variety. This is mon, whereas the solid solutions of the contin- justified by the observation that diarsenides uous saffloriterammelsbergite series are less with 80 and more at.% of the major metal are abundant. Recently, solid solutions of the con- not zoned under reflected light, whereas tinuous saffloriterammelsbergite series were diearsenides with more complex composition discovered (Gritsenko et al., 2004). Due to the are characterized by zoning. It should be noted latter discovery, the previously recorded field that the rhombic symmetry of safflorite is mod- of ternary solidsolution (Vinogradova & ified to monoclinic (clinosafflorite) at a Co con- Bochek, 1980) in the loellingite group indicates tent of 80 at.% (Radcliffe & Berry, 1968; 1971) 94 New Data on Minerals. М., 2007. Volume 42 and there is dimorphism of CoAs2 at higher Co and a predominance of one of two other metals: contents. Furthermore, it should be taken into Co and Nibearing loellingite, Fe and account that simple formulae MeAs2, corre- Nibearing safflorite, and Co and Febearing sponding to the compositions of type minerals rammelsbergite (Fig. 1c, Table). with dominant content of Fe, Co, or Ni, are The nomenclature suggested here is more given in textbooks and handbooks on mineral- exact and the individual compositions of ogy. Previously reported Corich rammelsber- diarsenide minerals are represented in the cor- gite (Vinogradova et al., 1972), Nirich loellin- responding name. gite (Oen et al., 1971; Bukovshin & Chernyshov, 1985; Cervilla & Ronsbo, 1992; Acknowledgements Gamyanin & Lykhina, 2000), Ni and Corich The author is grateful to O.L. Sveshnikova, loellingite (Distler et al., 1975), and Nirich saf- senior scientific researcher, Fersman Minera lo - florite (Radcliffe, Berry, 1968) correspond to gi cal Museum, Russian Academy of Sciences varieties of corresponding minerals named and S.N. Bubnov, scientific researcher, Institute according to their chemical features. of Geology of Ore Deposits, Russian Academy of Taking into account the above arguments, Sciences, for the constructive discussion of this the nomenclature of the rhombic diarsenides of paper. the loellingite group can be presented as fol- lows. In the composition fields of loellingite, safflorite and rammelsbergite (Fig. 1b), mineral References species (end members) are defined as follows: loellingite, safflorite and rammelsbergite with a Borishanskaya, S.S., Vinogradova, R.A. & content of the major metal of 80 and more at.%. Krutov, G.A. (1981): Minerals of cobalt and Varieties (intermediate members) are as having nickel. Mos cow State University Publ., a content of major metal of less than 80 at.% Moscow (in Russ.). Table. Nomenclature and chemical composition of the loellingitegroup diarsenides (MeAs2) based on relation- ship of Fe, Co, and Ni Mineral species (endmembers of isomorphic series) Variety (intermediate members of isomorphic series) Content of major Me > 80 at.% Content of major Me < 80 at.% 1. Loellingite 1а. Cobearing loellingite Fe>>(Co+Ni) Fe>Co>Ni Fe80100* (Co+Ni)200 Fe8033.3Co1050Ni033.3 1b. Nibearing loellingite Fe>Ni>Co Fe8033.3Ni 1050Co033.3 2. Safflorite 2а. Febearing safflorite Co>>(Fe+Ni) Co>Fe>Ni Co80100(Fe+Ni)200 Co 8033.3 Fe 1050 Ni 033.3 2b. Nibearing safflorite Сo>Ni>Fe Co8033.3Ni1050Fe033.3 3. Rammelsbergite 3а. Cobearing rammelsbergite Ni>>(Co+Fe) Ni>Co>Fe Ni80100(Co+Fe)200 Ni8033.3Co1050Fe033.3 3b. Febearing rammelsbergite Ni>Fe>Co Ni8033.3Fe1050Co033.3 Notes: * is range of concentration of the irongroup metals (at.%). The composition fields of mineral species and varieties listed in this table are shown in Figure 1c. On the Composition and Nomenclature of the Loellingitegroup Diarsenide Minerals 95 a b c Fig. 1. Chemical composition and nomenclature of the loellingitegroup diarsenide minerals on the basis of the proportion of Fe, Co и Ni (at.%). (a) data on chemical composition (Vinogradova & Bochek, 1980; Gritsenko et al., 2004); not identified natural compositions are white field. (b) nomenclature and composition fields according to (Nickel, 1992): loellingite (1), safflorite (2), and rammelsbergite (3). (c) suggested nomenclature and composition fields: loellingite (1), Cobearing loellingite (1a), Nibearing loellingite (1b), saf- florite (2), Febearing safflorite (2a), Nibearing safflorite (2b), rammelsbergite (3), Cobearing rammelsbergite (3a), and Febearing rammelsbergite (3b). Crosspoint of lines in the center of ternary plot corresponds to equal contents of three metals (by 33.3 at.%) Bukovshin, V.V. & Chernyshov, N.N. (1985): Nickel, E. H. (1992): Solid solutions in mineral Arsenides and diarsenides of the CuNi nomenclature // Can. Mineral., 30, ores from the Voronezh crystalline massif 231–234. // Zap. VMO., 114(3), 335–340 (in Russ.). Oen, J.S., Burke, E.A., Kieft, C. & Westerhof, Cervilla, F. & Ronsbo J. (1992): New date on A.B. (1971): Niarsenides, Nirich loellin- (Ni,Co,Fe) diarsenides and sulfarsenides in gite and (Fe,Co)rich gersdorffite in chromiteniccolite ores from Malaga CrNiores Malaga Province, Spain // Provins, Spain // Neues Jahrb. Mineral Neues Jahrb. Mineral. Abh. Bd 115. Hf. 2., Monatsh., 193–206. 123–139. Distler, V.V., Laputina I.P. & Smirnov A.V. Radcliffe D. & Berry L.G. (1968): The safflorite (1975): Arsenides, sulfarsenides, and anti- loellingite solid series // Amer. Mineral., monides of nickel, cobalt, and iron in the 53, 1856–1881. Talnakh ore field // In: Minerals and min- Radcliffe D. & Berry L.G. (1971): Clinosafflorite: eral parageneses of endognic deposits. a monocllinic polymorphe of safflorite // Nauka, Leningrad (61–74) (in Russ.). Can. Mineral., 10, 877–881. Gamyanin, G.N. & Lykhina, E.I. (2000): NiCo Vinogradova, R.A., Eremin, N.I. & Krutov, G.A. arsenides and sulfoarsenides of goldrare (1972): The Corich rammelsbergite from metal deposits, East Yakutia // Zap. RMO, the Bouazzer district, Morocco // Dokl. AN 129(5), 126–138 (in Russ.). SSSR, 207(1), 161–163 (in Russ.). Gritsenko, Yu.D., Spiridonov, E.M. & Vinogradova, R.A. & Bochek, L.I. (1980): Vinogradova, R.A. (2004): New data on Composiiotn and optical parameters of diarsenides of the loellin- iron, cobalt, and nickel diarsenides // Izv. giterammelsberite series // Dokl. RAS, AN SSSR. Ser. Geol., No 2, 87–100 (in Earth Sci. Sect., 399A(9), 1264–1267. Russ.)..
Recommended publications
  • LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, and COBALT ARSENIDE and SULFIDE ORE FORMATION Nicholas Allin
    Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2019 EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION Nicholas Allin Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geotechnical Engineering Commons EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION by Nicholas C. Allin A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Geoscience: Geology Option Montana Technological University 2019 ii Abstract Experiments were conducted to determine the relative rates of reduction of aqueous sulfate and aqueous arsenite (As(OH)3,aq) using foils of copper, nickel, or cobalt as the reductant, at temperatures of 150ºC to 300ºC. At the highest temperature of 300°C, very limited sulfate reduction was observed with cobalt foil, but sulfate was reduced to sulfide by copper foil (precipitation of Cu2S (chalcocite)) and partly reduced by nickel foil (precipitation of NiS2 (vaesite) + NiSO4·xH2O). In the 300ºC arsenite reduction experiments, Cu3As (domeykite), Ni5As2, or CoAs (langisite) formed. In experiments where both sulfate and arsenite were present, some produced minerals were sulfarsenides, which contained both sulfide and arsenide, i.e. cobaltite (CoAsS). These experiments also produced large (~10 µm along longest axis) euhedral crystals of metal-sulfide that were either imbedded or grown upon a matrix of fine-grained metal-arsenides, or, in the case of cobalt, metal-sulfarsenide. Some experimental results did not show clear mineral formation, but instead demonstrated metal-arsenic alloying at the foil edges.
    [Show full text]
  • 5. Production, Import/Export, Use, and Disposal
    COBALT 195 5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 5.1 PRODUCTION Cobalt is the 33rd most abundant element, comprising approximately 0.0025% of the weight of the earth’s crust. It is often found in association with nickel, silver, lead, copper, and iron ores and occurs in mineral form as arsenides, sulfides, and oxides. The most import cobalt minerals are: linnaeite, Co3S4; carrolite, CuCo2S4; safflorite, CoAs2; skutterudite, CoAs3; erythrite, Co3(AsO4)2•8H2O; and glaucodot, CoAsS (Hodge 1993; IARC 1991; Merian 1985; Smith and Carson 1981). The largest cobalt reserves are in the Congo (Kinshasa), Cuba, Australia, New Caledonia, United States, and Zambia. Most of the U.S. cobalt deposits are in Minnesota, but other important deposits are in Alaska, California, Idaho, Missouri, Montana, and Oregon. Cobalt production from these deposits, with the exception of Idaho and Missouri, would be as a byproduct of another metal (USGS 2004). Cobalt is also found in meteorites and deep sea nodules. The production of pure metal from these ores depends on the nature of the ore. Sulfide ores are first finely ground (i.e., milled) and the sulfides are separated by a floatation process with the aid of frothers (i.e., C5–C8 alcohols, glycols, or polyethylene or polypropylene glycol ethers). The concentrated product is subjected to heating in air (roasting) to form oxides or sulfates from the sulfide, which are more easily reduced. The resulting matte is leached with water and the cobalt sulfate leachate is precipitated as its hydroxide by the addition of lime. The hydroxide is dissolved in sulfuric acid, and the resulting cobalt sulfate is electrolyzed to yield metallic cobalt.
    [Show full text]
  • History of Discovery and Study of New Primary Minerals at Jáchymov
    Journal of the Czech Geological Society 48/34(2003) 207 History of discovery and study of new primary minerals at Jáchymov Historie objevù a výzkumù nových primárních minerálù z Jáchymova (2 figs, 1 tab.) FRANTIEK VESELOVSKÝ1 PETR ONDRU1 ANANDA GABAOVÁ1 JAN HLOUEK2 PAVEL VLAÍMSKÝ 1 1 Czech Geological Survey, Klárov 3, CZ-118 21, Prague 1 2 U Roháèových kasáren 24, CZ-100 00, Prague 10 Jáchymov is the type locality for the following primary minerals: argentopyrite, krutovite, millerite, sternbergite, and uraninite. The history of their discovery is described in this contribution. The paper sums up the history of discovery of other type minerals at Jáchymov [560]. Key words: Jáchymov, mineralogy, history of discovery Argentopyrite marcasite pseudomorphs after stephanite or proustite by (W. Sartorius von Waltershausen 1866) Zippe in 1832. In 1852 and 1853, Kenngott described the mineral as accompanying pyrargyrite and by that time The discovery of this mineral was reported by W. Sarto- A. E. Reuss designated it as pyrrhotite. His observations rius von Waltershausen at the meeting of the Royal So- led Tschermak to the conclusion that argentopyrite is not ciety of Sciences on December 6, 1865 and published in an independent mineral but a pseudomorph of several January 1866 in a joint Newsletter of the Society and the minerals after an unknown mineral. Göttingen University [438]. He named the new mineral Silberkies. The history behind the discovery of argen- topyrite is as follows: During his stay in Pøíbram in summer 1865, W. Sarto- rius met the ministerial Councillor Kudernatsch, who had just returned from his inspection trip to Jáchymov, and he showed W.
    [Show full text]
  • PGE) Mineralization Associated with Fe-Ti-V Deposit, Rio Jacare Intrusion, Bahia State, Brazil
    Platinum Group Element (PGE) Mineralization Associated with Fe-Ti-V Deposit, Rio Jacare Intrusion, Bahia State, Brazil Robert Anderson Campbell Submitted in Partial Fulfillment of the Requirements For the Degree of Bachelor of Earth Sciences, Honours Department of Earth Sciences Dalhousie University, Halifax Nova Scotia April, 2012 Distribution License DalSpace requires agreement to this non-exclusive distribution license before your item can appear on DalSpace. NON-EXCLUSIVE DISTRIBUTION LICENSE You (the author(s) or copyright owner) grant to Dalhousie University the non-exclusive right to reproduce and distribute your submission worldwide in any medium. You agree that Dalhousie University may, without changing the content, reformat the submission for the purpose of preservation. You also agree that Dalhousie University may keep more than one copy of this submission for purposes of security, back-up and preservation. You agree that the submission is your original work, and that you have the right to grant the rights contained in this license. You also agree that your submission does not, to the best of your knowledge, infringe upon anyone's copyright. If the submission contains material for which you do not hold copyright, you agree that you have obtained the unrestricted permission of the copyright owner to grant Dalhousie University the rights required by this license, and that such third-party owned material is clearly identified and acknowledged within the text or content of the submission. If the submission is based upon work that has been sponsored or supported by an agency or organization other than Dalhousie University, you assert that you have fulfilled any right of review or other obligations required by such contract or agreement.
    [Show full text]
  • Nickeline Nias C 2001-2005 Mineral Data Publishing, Version 1
    Nickeline NiAs c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 6/m 2/m 2/m. Commonly in granular aggregates, reniform masses with radial structure, and reticulated and arborescent growths. Rarely as distorted, horizontally striated, {1011} terminated crystals, to 1.5 cm. Twinning: On {1011} producing fourlings; possibly on {3141}. Physical Properties: Fracture: Conchoidal. Tenacity: Brittle. Hardness = 5–5.5 VHN = n.d. D(meas.) = 7.784 D(calc.) = 7.834 Optical Properties: Opaque. Color: Pale copper-red, tarnishes gray to blackish; white with strong yellowish pink hue in reflected light. Streak: Pale brownish black. Luster: Metallic. Pleochroism: Strong; whitish, yellow-pink to pale brownish pink. Anisotropism: Very strong, pale greenish yellow to slate-gray in air. R1–R2: (400) 39.2–45.4, (420) 38.0–44.2, (440) 36.8–43.5, (460) 36.2–43.2, (480) 37.2–44.3, (500) 39.6–46.4, (520) 42.3–48.6, (540) 45.3–50.7, (560) 48.2–52.8, (580) 51.0–54.8, (600) 53.7–56.7, (620) 55.9–58.4, (640) 57.8–59.9, (660) 59.4–61.3, (680) 61.0–62.5, (700) 62.2–63.6 Cell Data: Space Group: P 63/mmc. a = 3.621(1) c = 5.042(1) Z = 2 X-ray Powder Pattern: Unknown locality. 2.66 (100), 1.961 (90), 1.811 (80), 1.071 (40), 1.328 (30), 1.033 (30), 0.821 (30) Chemistry: (1) (2) Ni 43.2 43.93 Co 0.4 Fe 0.2 As 55.9 56.07 Sb 0.1 S 0.1 Total 99.9 100.00 (1) J´achymov, Czech Republic; by electron microprobe, corresponds to (Ni0.98Co0.01 Fe0.01)Σ=1.00As1.00.
    [Show full text]
  • Geochemistry, Mineralogy and Microbiology of Cobalt in Mining-Affected Environments
    minerals Article Geochemistry, Mineralogy and Microbiology of Cobalt in Mining-Affected Environments Gabriel Ziwa 1,2,*, Rich Crane 1,2 and Karen A. Hudson-Edwards 1,2 1 Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; [email protected] (R.C.); [email protected] (K.A.H.-E.) 2 Camborne School of Mines, University of Exeter, Penryn TR10 9FE, UK * Correspondence: [email protected] Abstract: Cobalt is recognised by the European Commission as a “Critical Raw Material” due to its irreplaceable functionality in many types of modern technology, combined with its current high-risk status associated with its supply. Despite such importance, there remain major knowledge gaps with regard to the geochemistry, mineralogy, and microbiology of cobalt-bearing environments, particu- larly those associated with ore deposits and subsequent mining operations. In such environments, high concentrations of Co (up to 34,400 mg/L in mine water, 14,165 mg/kg in tailings, 21,134 mg/kg in soils, and 18,434 mg/kg in stream sediments) have been documented. Co is contained in ore and mine waste in a wide variety of primary (e.g., cobaltite, carrolite, and erythrite) and secondary (e.g., erythrite, heterogenite) minerals. When exposed to low pH conditions, a number of such minerals are 2+ known to undergo dissolution, typically forming Co (aq). At circumneutral pH, such aqueous Co can then become immobilised by co-precipitation and/or sorption onto Fe and Mn(oxyhydr)oxides. This paper brings together contemporary knowledge on such Co cycling across different mining environments.
    [Show full text]
  • GEOLOGY 9 Investigations Into Mineral Occurences in the Nickel
    GEOLOGY 9 Investigations into Mineral Occurences in the Nickel Plate Ore April 1942 R. Haywood-Farmer ACKTTP'. Jinxes T,I:TS The author wishes to acknowledge the able assistance and timely hints and suggestions given by Dr. H.V.Warren in connection with this work. Wy thanks are also due to Dr. Warren for his work on duplicate sections and for his help in the photography. The author would also like to acknowledge the assistance of the Messrs. H. -Thompson and C, Hey for their help in the laboratory. T? ^T T? University of British Columbia «• April, 1942. Table of Contents Introduction Conclusions (summary) Preliminary Observations Cobalt Identification Tests to Identify Cobalt Minerals Results of Etch Tests and Micr<£fehemical Tests Size of the Cobalt Inclusions Relationship Between the Minerals Comparison of Assays with Estimated Values (10) Conclusions Investigations into Mineral Oocurances in the Nickel Plate Ore Introduction Object of Investigation The work was done in an effort to identify the cobalt bearing minerals > and to find the relationship between the cobalt minerals and the other metallic minerals present* The association of the gold in the ore was considered in wiaw of future mineral dressing work for the recovery of cobalt and gold* It was hoped, that by microscopic work an answer could be obtained as to the possibility of making a high grade cobalt concentrate* At present, no recovery of cobalt is made from the ore* The concentrator heads run about 0*4 ounces in gold and about 0*05$ cobalt* The ore, after mining is ground
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 62, pages 173-176, 1977 NEW MINERAL NAMES* MrcHlrI- Fr-BlscHrnAND J. A. MeNnn'ntNo and Institute Agrellite* Museum of Canada, Geological Survey of Canada, for the Mineralogy, Geochemistryand Crystal Chemistry of the J. GrrrrNs, M. G. BowN .qNoB. D. Srunlt.ltt (1976)Agrellite, a Rare Elements(Moscow). J. A. M. new rock-forming mineral in regionally metamorphosed agpaitic alkafic rocks Can. Mineral. 14, 120-126. Fedorovskite+ The mineral occurs as lensesand pods in mafic gneissescom- posed of albite, microcline, alkalic amphibole, aegirine-augite, S. V. MeltNro, D P SsrsurlN and K V. YunrtN'l (1976) eudialyte,and nepheline.Other mineralspresent are: hiortdahlite, Fedorovskite,a new boron mineral,and the isomorphousseries other members of the w<ihleritegroup, mosandrite, miserite, brith- roweite-fedorovskite olite, vlasovite, calcite, fluorite, clinohumite, norbergite, zircon, Zap. Vses Mineral- O'uo 105,71-85 (in Russian)' biotite, phlogopite, galena, and a new unnamed mineral, CaZr- SirO, [seeabstract in Am. Mineral 61, 178-179 (1976)]. The local- ity is on the Kipawa River, Villedieu Township, T6miscamingue County, Quebei, Canada, at about Lat.46" 4'7' 49" N, and Long 78" 29'3l" W (Note by J.A.M.: The Lat. and Long. figuresare interchangedin the paper,and the figurefor the latitudeshould be 46" not 45" ) Agrellite occurs as crystals up to 100 mm in length. They are HCI elongatedparallel to [001] and are flattened on either {010} or X-ray powder data are given for the first 3 samplesanalyzed For { I l0} The color is white to greyishor greenishwhite The lusteron sample(Mg*Mn.u), the strongestlines (41 given) are 3'92 cleavagesis pearly.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • Clarke Jeff a 201709 Mscproj
    THE CHARACTERIZATION OF ARSENIC MINERAL PHASES FROM LEGACY MINE WASTE AND SOIL NEAR COBALT, ONTARIO by Jeff Clarke A research project submitted to the Department of Geological Sciences and Geological Engineering In conformity with the requirements for the degree of Master of Science in Applied Geology Queen’s University Kingston, Ontario, Canada (July, 2017) Copyright © Jeff Clarke, 2017 i ABSTRACT The Cobalt-Coleman silver (Ag) mining camp has a long history of mining dating back to 1903. Silver mineralization is hosted within carbonate veins and occurs in association with Fe-Co-Ni arsenide and sulpharsenide mineral species. The complex mineralogy presented challenges to early mineral processing methods with varying success of Ag recovery and a significant amount of arsenic (As) in waste material which was disposed in the numerous tailings deposits scattered throughout the mining camp, and in many instances disposed of uncontained. The oxidation and dissolution of As-bearing mineral phases in these tailings and legacy waste sites releases As into the local aquatic environment. Determining the distribution of primary and secondary As mineral species in different legacy mine waste materials provides an understanding of the stability of As. Few studies have included detailed advanced mineralogical characterization of As mineral species from legacy mine waste in the Cobalt area. As part of this study, a total of 28 samples were collected from tailings, processed material near mill sites and soils from the legacy Nipissing and Cart Lake mining sites. The samples were analyzed for bulk chemistry to delineate material with strongly elevated As returned from all sample sites. This sampling returned highly elevated As with up to 6.01% As from samples near mill sites, 1.71% As from tailings and 0.10% As from soils.
    [Show full text]
  • Primary Minerals of the Jáchymov Ore District
    Journal of the Czech Geological Society 48/34(2003) 19 Primary minerals of the Jáchymov ore district Primární minerály jáchymovského rudního revíru (237 figs, 160 tabs) PETR ONDRU1 FRANTIEK VESELOVSKÝ1 ANANDA GABAOVÁ1 JAN HLOUEK2 VLADIMÍR REIN3 IVAN VAVØÍN1 ROMAN SKÁLA1 JIØÍ SEJKORA4 MILAN DRÁBEK1 1 Czech Geological Survey, Klárov 3, CZ-118 21 Prague 1 2 U Roháèových kasáren 24, CZ-100 00 Prague 10 3 Institute of Rock Structure and Mechanics, V Holeovièkách 41, CZ-182 09, Prague 8 4 National Museum, Václavské námìstí 68, CZ-115 79, Prague 1 One hundred and seventeen primary mineral species are described and/or referenced. Approximately seventy primary minerals were known from the district before the present study. All known reliable data on the individual minerals from Jáchymov are presented. New and more complete X-ray powder diffraction data for argentopyrite, sternbergite, and an unusual (Co,Fe)-rammelsbergite are presented. The follow- ing chapters describe some unknown minerals, erroneously quoted minerals and imperfectly identified minerals. The present work increases the number of all identified, described and/or referenced minerals in the Jáchymov ore district to 384. Key words: primary minerals, XRD, microprobe, unit-cell parameters, Jáchymov. History of mineralogical research of the Jáchymov Chemical analyses ore district Polished sections were first studied under the micro- A systematic study of Jáchymov minerals commenced scope for the identification of minerals and definition early after World War II, during the period of 19471950. of their relations. Suitable sections were selected for This work was aimed at supporting uranium exploitation. electron microprobe (EMP) study and analyses, and in- However, due to the general political situation and the teresting domains were marked.
    [Show full text]
  • Minor Elements in Pyrites from the Smithers Map Area
    MINOR ELEMENTS IN PYRITES FROM THE SMITHERS MAP AREA, AND-EXPLORATION APPLICATIONS OF MINOR ELEMENT STUDIES by BARRY JAMES PRICE B.Sc. (1965) U.B.C. A thesis submitted in partial fulfillment of the requirements, for the degree of Master of Science in the DEPARTMENT OF GEOLOGY We accept this thesis as conforming to the required standard TEE UNIVERSITY OF BRITISH. COLUMBIA April 1972 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, 1 agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver 8, Canada i MINOR ELEMENTS IN PYRITES FROM THE SMITHERS MAP AREA, B.C. AND EXPLORATION APPLICATIONS OF MINOR ELEMENT STUDIES • ABSTRACT This study was undertaken to determine minor element geo• chemistry of pyrite and the applicability of pyrite minor-element research to exploration for mineral deposits. Previous studies show that Co, Ni, and Cu are the most prevalent cations substituting for Fe in the pyrite lattice; significant amounts of As and Se can substitute for S. Other elements substitute less commonly and in smaller amounts within the lattice, in interstitial sites, or within discrete mechanically-admixed phases. Mode of substitution is determined most effectively with the electron microprobe.
    [Show full text]