Bird and Wildlife Strikes Pest Management at Airports and Surrounding Areas

Total Page:16

File Type:pdf, Size:1020Kb

Bird and Wildlife Strikes Pest Management at Airports and Surrounding Areas AUG/SEPT 2 0 0 9 N P M A L I B R A R Y U P D A T E Insert this update into the NPMA Pest Management Library, which can be Updatepurchased from the Resource Center. Phone: 703-352-NPMA (6762); Fax: 703-352-3031 Bird and Wildlife Strikes Pest Management at Airports and Surrounding Areas Experts within the Federal Aviation Ad- The National Transportation Safety Board ministration (FAA), U.S. Department of Agri- (NTSB) confirmed that the birds that brought culture (USDA), and U.S. Air Force recognize the plane down into the Hudson River were that the threat to human health and safety Canada geese. Researchers determined that from aircraft collisions with wildlife (called they were not migratory geese from Canada, wildlife strikes) is increasing, and they expect but, instead, resident birds from the sur- the risk, frequency, and potential severity of rounding New York area. Migrating Canada wildlife-aircraft collisions to grow over the geese typically weigh from six to 11 pounds, next decade. the safety board said, but non-migrating The events involving the US Airways geese are typically heavier. Most airplane flight 1549 crash into the Hudson River fol- engines can handle only a four pound bird lowing take off from LaGuardia airport in entering it. The identification of bird remains January, 2009 illustrates this point. A mid-air from the US Airways flight was made by the collision after takeoff with a flock of Canada bird lab at the Smithsonian’s National Muse- geese put the pest management of birds at um of Natural History; microscopic analysis of airport facilities front and center in the news feathers found inside the engines and DNA headlines. Most of the listening and reading tests on bird tissue also found there were public had never before considered the im- used in the diagnosis. portance of pest management at and around Airports where planes have struck birds neighboring areas to airports. Few had ever are required to take measures to scare birds heard of the term “snarge” used to describe off, but the plane that crashed in the Hud- the birds’ remains left on the plane that are analyzed after a bird strike. Fortunately, no After a mid-air deaths (except to the birds) occurred and few collision with a flock of Canada injuries resulted. This is not always the case geese, US Air- with a mid-air plane bird strike. Pest man- ways flight 1549 agement at airports and surrounding areas crashed into the is hugely important, and not just for manag- Hudson River in ing birds, but for urban wildlife as well, to January, 2009. prevent pests from straying onto tarmacs or runways with potentially disastrous conse- quences. N P M A son, flown by US Airways, hit the birds no- Pest Wildlife Facts where near the La Guardia Airport, from which L I B R A R Y it took off. It was at 3,200 feet. Non-migratory Thirteen of the 14 bird species in U P D A T E geese commonly fly at that altitude when North America with mean body traveling from their feeding grounds to their masses greater than eight pounds roosting grounds. include: the more frequently encoun- tered Canada geese, turkeys, turkey A Growing Problem vultures, American white pelicans, Globally, wildlife strikes have killed more sand hill cranes, double-crested cor- than 219 people and destroyed over 200 air- morants and bald eagles. All of these craft since 1988. Three major factors contrib- bird species have shown significant ute to this increasing threat: 1) populations of population increases over the past wildlife species commonly involved in strikes three decades (Dolbeer and Eschen- have increased and are now well-adapted to felder 2003). living in urban environments like those around airports; 2) air traffic has increased substan- The white-tailed deer population tially since 1980; and 3) commercial air carriers increased from a low of about 350,000 are replacing their older three- or four-engine in 1900 to over 17 million in the past aircraft fleets with more efficient, quieter, two- decade (McCabe and McCabe 1997, engine aircraft that wildlife do not perceive Hubbard et al. 2000). easily. The FAA has initiated several programs to address this important safety issue. Among various programs are the collection and analy- The first annual report on wildlife strikes sis of data from post plane-wildlife strikes. FAA to civil aircraft in the United States, covering has collected wildlife strike data since 1965. In 1994, was completed in November, 1995. 1995, the FAA, through an interagency agree- Since then, annual subsequent reports have ment with the USDA, Wildlife Services, (USDA/ been published. These reports cover an 18-year WS), initiated a project to obtain more objec- period, 1990-2007. During this time frame, tive estimates of the magnitude and nature 79,972 bird strikes were reported; 63,973 of the national wildlife strike problem for civil provided some indication as to the nature and aviation. Such analyses are critical to determin- extent of any damage. Of these, 86% indicat- ing the economic cost of wildlife strikes, the ed the strike did not damage the aircraft; 8% magnitude of safety issues, and most impor- indicated the aircraft suffered minor damage; tant, the nature of the problems (e.g., wildlife 4% indicated the aircraft suffered substantial species involved, types of damage, height and damage; 3% reported an uncertain level of phase of flight during which strikes occur, and damage; and less than 1% indicated the air- seasonal patterns of strikes). The information craft was destroyed as a result of the strike. obtained from these analyses provides the Of the 1,737 terrestrial mammal strikes foundation for refinements in the develop- reported, 1,176 reports provided some indica- ment, implementation, and justification of tion as to the nature and extent of any dam- research and integrated pest management age. Of these, 39% indicated the strike did not (IPM) efforts to reduce wildlife strikes at and damage the aircraft; 27% indicated the aircraft near airports. suffered minor damage; 27% indicated the air- Nuisance bird and wildlife management is the fastest grow- ing sector of the pest management industry. In response to this growth, NPMA has developed a one-of-a-kind meeting — The Nuisance Bird and Wildlife Management Conference & Marketplace, November 18-20, 2009 in Indianapolis, Indiana. Geared toward the needs of pest management professionals and wildlife management professionals, this program will in- clude educational sessions (avian species track and ground wildlife track), a Marketplace, and networking opportunities. For more information, visit npmapestworld.org/events. Photo — http://www.100ambiente.it/uploads/birdstrike_02.jpg craft suffered substantial damage; 5% reported Wildlife Management N P M A an uncertain level of damage; and 2 percent Hazard Plan (WMHP) indicated the aircraft was destroyed as a result L I B R A R Y A variety of pest management methods of the strike. As would be expected, a much U P D A T E may be employed at airports including all of higher percentage of terrestrial mammal strikes the basic IPM (integrated pest management) (61%) resulted in aircraft damage than did bird steps. If birds, mammals or reptiles cannot strikes (14%). Deer were involved in 44% of the locate food, water or harborage (shelter), reported terrestrial mammal strikes. In 13% and then these pests will not be found on airport 54% of the bird and terrestrial mammal strike grounds. The basic IPM steps include Sani- reports, respectively, an adverse effect-on-flight tation, Exclusion, Mechanical Alteration or was reported. Three (3%) percent of bird strikes Modification, Non-Chemical and Chemical resulted in an aborted takeoff compared to methods all integrated into an overall Wildlife 17% of terrestrial mammal strikes. In addition Management Hazard Plan (called a WMHP) to birds and mammals, large reptiles, including scheme. Examples of sanitation measures at alligators and iguanas, have also accounted for airport grounds might include frequent mow- some wildlife strikes in semitropical to tropical ing, standing water abatement and proper geographical areas of the United States. trash management to prevent the presence of The most deadly civil (62 human fatalities, food, water, and shelter. Examples of exclu- Massachusetts, 1960) and military (34 fatalities, sion might include fencing and netting and Netherlands, 1996) bird strikes were caused ditches to prevent wildlife from entering by flocks of starlings. But, 166 identified bird airport areas. Mechanical alteration measures species have been reported as causing airplane might include things like proper grading and damage. These include: gulls (20%), doves/ drainage systems to remove water; pruning of pigeons (14%), raptors (13%), and waterfowl vegetation, removal of weeds, tree and plant (9%) as the most frequently struck bird groups. or fruit removal or alternative plantings to be Gulls are responsible for the greatest number of less attractive to wildlife, or removal of eggs bird strikes (27%) that had a negative effect-on- and/or nests from roosting areas. Non-chemical flight. measures might include trapping and removal The most frequently struck terrestrial mam- of problem wildlife; or scare techniques such mals are deer (46%) and coyotes (32%). Deer as canons and pyrotechnics to remove wildlife are responsible for 92% of the mammal strikes that result in damage and 80% of the mammal strikes that have a negative effect-on-flight. In all, 36 identified species of terrestrial mam- mals and eight identified species of bats were Air Travel Facts reported struck; 19 identified species of terres- trial mammals and two identified species of bat Passenger enplanements in the United States increased caused damage. from about 310 million in 1980 to a record 749 million in To address the problem, airport manag- 2007 and commercial air traffic increased from about 18 ers must work with wildlife pest management million aircraft movements in 1980 to over 28 million in professionals to assess wildlife hazards at their 2007, according to the FAA.
Recommended publications
  • Dynamic Load Measurement of Ballistic Gelatin Impact Using an Instrumented Tube
    NASA/TM—2012-217661 Dynamic Load Measurement of Ballistic Gelatin Impact Using an Instrumented Tube J.D. Seidt The Ohio State University, Columbus, Ohio J.M. Pereira Glenn Research Center, Cleveland, Ohio J.T. Hammer and A. Gilat The Ohio State University, Columbus, Ohio C.R. Ruggeri Glenn Research Center, Cleveland, Ohio August 2012 NASA STI Program . in Profi le Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientifi c and technical NASA Scientifi c and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientifi c, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Offi cer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports • TECHNICAL TRANSLATION. English- Server, thus providing one of the largest collections language translations of foreign scientifi c and of aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major signifi cant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis.
    [Show full text]
  • COMPETITION in the AIR: BIRDS VERSUS AIRCRAFT Author(S) :Navjot S
    COMPETITION IN THE AIR: BIRDS VERSUS AIRCRAFT Author(s) :Navjot S. Sodhi Source: The Auk, 119(3):587-595. 2002. Published By: The American Ornithologists' Union DOI: 10.1642/0004-8038(2002)119[0587:CITABV]2.0.CO;2 URL: http://www.bioone.org/doi/full/10.1642/0004-8038%282002%29119%5B0587%3ACITABV %5D2.0.CO%3B2 BioOne (www.bioone.org) is a a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. The Auk A Quarterly Journal of Ornithology Vol. 119 No. 3 July 2002 The Auk 119(3):587±595, 2002 PERSPECTIVES IN ORNITHOLOGY COMPETITION IN THE AIR: BIRDS VERSUS AIRCRAFT NAVJOT S. SODHI1 Department of Biological Sciences, National University of Singapore, Blk S2, 14 Science Drive 4, Singapore 117543, Republic of Singapore THE FIRST KNOWN aircraft fatality that was HUMAN SAFETY AND ECONOMICS directly attributable to a bird occurred in 1912, when a gull (Larus sp.) was caught in the con- Incidents.
    [Show full text]
  • AC 150/5200-32B, Reporting Wildlife Aircraft Strikes, 31 May 2013
    Advisory U.S. Department of Transportation Federal Aviation Administration Circular Subject: Reporting Wildlife Aircraft Strikes Date: 5/31/2013 AC No: 150/5200-32B Initiated by: AAS-300 Change: 1. Purpose. This Advisory Circular (AC) explains the importance of reporting collisions between aircraft and wildlife, more commonly referred to as wildlife strikes. It also explains recent improvements in the Federal Aviation Administration’s (FAA’s) Bird/Other Wildlife Strike Reporting system, how to report a wildlife strike, what happens to the wildlife strike report data, how to access the FAA National Wildlife Strike Database (NWSD), and the FAA’s Feather Identification program. 2. Applicability. The FAA provides the standards and practices in this AC as guidance for all public-use airports, aviation industry personnel (e.g., Air Traffic Control, pilots and airline personnel, and engine manufacturers), and others who possess strike information. The FAA strongly recommends that the above aviation representatives and others possessing strike information participate in reporting. 3. Cancellation. This AC cancels AC 150/5200-32A, Reporting Wildlife Aircraft Strikes, dated December 22, 2004. 4. Background. The FAA has long recognized the threat to aviation safety posed by wildlife strikes. Each year in the United States, wildlife strikes to U.S. civil aircraft cause about $718 million in damage to aircraft and about 567,000 hours of civil aircraft down time. For the period 1990 to 2011, over 115,000 wildlife strikes were reported to the FAA. About 97 percent of all wildlife strikes reported to the FAA involved birds, about 2 percent involved terrestrial mammals, and less than 1 percent involved flying mammals (bats) and reptiles.
    [Show full text]
  • Wildlife Hazard Management
    Deer Hazards Reporting Wildlife Strikes Deer and other mammals pose an extreme The FAA has a standard form (FAA Form hazard to aircraft due to their size and the 5200-7) for the voluntary reporting of bird and possibility of a strike during the critical flight other wildlife strikes with aircraft. To improve periods of takeoff and landing. Airports offer an the ease of reporting, strikes can also be excellent habitat for deer and the possibility for reported via the Internet at http://www.faa.gov/ Wildlife wildlife incursions is a potential threat at many documentLibrary/media/form/faa5200-7.pdf. Wisconsin airports. Deer are most active in the It is very important that strikes be reported Hazard early morning and evening by anyone who has knowledge of the strike. It and pilots should take is important to include as much information as extra precaution during possible on FAA Form 5200-7. The Management operations at these time identification of the species of wildlife struck is periods. particularly important. Bird strike remains that can not be identified can be identified by a Pilot Actions local biologist or by sending feather remains in a sealed bag with FAA Form 5200-7 to: Check NOTAMs and airport directories for Federal Aviation Administration information regarding deer activity. If Office of Airport Safety and Standards unsure call ahead by telephone or unicom for deer advisories. AAS-310 800 Independence Avenue, SW Use landing lights during takeoff and Washington, DC 20591 landing. Make a low approach to determine if any deer are present. If necessary, have airport personnel, if available, disperse deer before landing.
    [Show full text]
  • Bird Strike Damage & Windshield Bird Strike Final Report
    COMMERCIAL-IN-CONFIDENCE Bird Strike Damage & Windshield Bird Strike Final Report 5078609-rep-03 Version 1.1 EUROPEAN AVIATION SAFETY AGENCY COMMERCIAL-IN-CONFIDENCE COMMERCIAL-IN-CONFIDENCE Approval & Authorisation Prepared by: N Dennis (fera) D Lyle Approved for issue R Budgey (fera) by: P Kirrane Authorised for issue A M Whitehead by: Record of Revisions Version Description of Revision 0.1 First Draft for review by EASA 0.2 Second Draft responding to EASA Comments 1.0 Draft Final Report 1.1 Final Report This document was created by Atkins Limited and the Food & Environment Research Agency under Contract Number EASA.2008.C49 Copyright vests in the European Community. ATKINS Limited The Barbican, East Street, Farnham, Surrey GU9 7TB Tel: +44 1252 738500 Fax: +44 1252 717065 www.atkinsglobal.com 5078609-rep-03, Version 1.1 Page 2 COMMERCIAL-IN-CONFIDENCE COMMERCIAL-IN-CONFIDENCE Executive Summary Background to the Study This report presents the findings of a study carried out by Atkins and the UK Food & Environment Research Agency (FERA). The study was commissioned in 2009 by the European Aviation Safety Agency (EASA), under contract number EASA.2008.C49 [1.]. Its aim was to investigate the adequacy of the current aircraft certification requirement in relation to current and future bird strike risks on aircraft structures and windshields. Bird strikes are random events. The intersection of bird and aircraft flight paths, the mass of the bird and the part of the aircraft struck are all random elements that will determine the outcome. In managing risk all that can be controlled are the design and testing of the aircraft driven by certification specifications, the aircraft’s flight profile and, to a limited extent, the populations of birds near airports.
    [Show full text]
  • An Airlines Perspective by Capt Andrew Carroll Ryanair
    Captain Andrew Carroll Safety Services Office © Ryanair 2014 Birdstrike Hazard Mitigation and Analysis © Ryanair 2014 15th January 2009 © Ryanair 2014 © Ryanair 2014 © Ryanair 2014 © Ryanair 2014 Costs Of A Birdstrike - Operational EU passenger compensation rules: 261/2004 Cost of refreshments if a flight is delayed ( X 189) Up to €400 per passenger if a flight is cancelled ( X 189) Overnight accommodation and transportation cost ( X 195) Wet lease operating cost for a replacement aircraft ~€10,000 per hour 7 © Ryanair 2014 Ryanair’s Network 200 airports 32 countries 1,600+ routes 113m pax p.a. 369 x B737-800’s 320 x B737s on order Over 2000 sectors per day 8 © Ryanair 2014 Recognising the risk © Ryanair 2014 SMS Mental Model Safety Policy & Objectives SMS © Ryanair 2014 Risk Mitigation Using the Bow Tie Methodology © Ryanair 2014 Example of a Full Bow Tie Analysis © Ryanair 2014 Post Event Mitigation Controls © Ryanair 2014 Post Event Mitigation Controls Airframe impact/Engine system malfunctions • Aircraft and system design • Standard operating procedures • Flight crew normal checklist • Captain’s inspection and release to service if there is no damage • QRH Non normal checklists • Recurrent flight crew training © Ryanair 2014 Threats To Ryanair Operations © Ryanair 2014 ARMS Methodology © Ryanair 2014 EU no 139/2014 ADR.OPS B.020 © Ryanair 2014 REPORTING “Without data, you don’t have an SMS” Captain D Maurino Safety Management Advisor, ICAO © Ryanair 2014 Ryanair Risk Assessment Model The Ryanair bird strike risk assessment
    [Show full text]
  • Bird Strike – Typical Fan Blade Damage
    Developments in Aircraft Engine Design for Bird Ingestion ICAO Wildlife Symposium Montreal, Canada 18 May 2017 Presented by: Chris G. Demers Contains No Technical Data Subject to EAR - ITAR Approved for Public Release FAA Bird Requirements Evolution Increased Regulations due to Industry Study of Bird Populations Med Bird Large Bird 5 min. Run- Incr. Med Large Bird, ARAC 1.5 lbs., non- Safe On Reqmt & Large Bird 20 min. Proposed specific Run-On Shutdown Added Reqmts Run-On Enhanced Core AC33-1 Amd 33-6 Amd 33-10 Amd 33-20 Amd 33-24 We Requirements Are Here 1960 1970 1980 1990 2000 2010 2020 B707 DC-9 B747 A300 B767/B757 B777 A318 B787 CS100/CS300 B727 A380 A310 A320neo A320 E195-E5 MRJ Contains No Technical Data Subject to EAR - ITAR Approved for Public Release High By-Pass Turbofan Engine Inlet Fan Blade Intake Airflow Spinner Contains No Technical Data Subject to EAR - ITAR Approved for Public Release Bird Strike – Typical Fan Blade Damage Soft Body “Cusps” Contains No Technical Data Subject to EAR - ITAR Approved for Public Release Design Process for Bird Strike Mitigation 2 - Computer 1 - Regulation Modeling / 3 - Component and Field Data Design Testing Review Iterations 4 - Rig / Engine 6 - Service 5 - Certification Development Experience Testing Testing Contains No Technical Data Subject to EAR - ITAR Approved for Public Release Computer Modeling Fan blade design is optimized via computer modeling for bird strike response Contains No Technical Data Subject to EAR - ITAR Approved for Public Release Component Testing Fan blades are
    [Show full text]
  • The Crash of the Boston Electra / Michael N
    The Story of Man and Bird in Conflict BirdThe Crash of theStrike Boston Electra michael n. kalafatas Bird Strike The Crash of the Bird Boston Electra Strike michael n. kalafatas Brandeis University Press Waltham, Massachusetts published by university press of new england hanover and london Brandeis University Press Published by University Press of New England One Court Street, Lebanon NH 03766 www.upne.com © 2010 Brandeis University All rights reserved Manufactured in the United States of America Designed by Katherine B. Kimball Typeset in Scala by Integrated Publishing Solutions University Press of New England is a member of the Green Press Initiative. The paper used in this book meets their minimum requirement for recycled paper. For permission to reproduce any of the material in this book, contact Permissions, University Press of New England, One Court Street, Lebanon NH 03766; or visit www.upne.com Library of Congress Cataloging- in- Publication Data Kalafatas, Michael N. Bird strike : the crash of the Boston Electra / Michael N. Kalafatas. p. cm. Includes bibliographical references. ISBN 978-1-58465-897-9 (cloth : alk. paper) 1. Aircraft bird strikes—Massachusetts— Boston. 2. Aircraft accidents —Massachusetts— Boston. 3. Electra (Turboprop transports) I. Title. TL553.525.M4K35 2010 363.12Ј465—dc22 2010013165 5 4 3 2 1 Across the veil of time, for the passengers and crew of Eastern Airlines Flight 375, and for my grandchildren: may they fl y in safe skies The bell- beat of their wings above my head. —w. b. yeats, “The Wild Swans at Coole” Contents Preface: A Clear and Present Danger xi 1.
    [Show full text]
  • Wildlife Strikes to Canadian Aircraft 1.1 How This Report Is Organized
    2008 Summary Report – Wildlife Strikes to Canadian Aircraft 1.1 How This Report is Organized This report provides a summary of Canadian wildlife strike statistics for 2008. It is intended for the use of all stakeholders involved with Airport Bird and Mammal Control Programs. Included in this group are pilots, airfield staff, airline maintenance personnel, airport managers, and Transport Canada staff. The information contained in this edition reflects the 2008 situation only, and therefore may differ from established trends. It should be noted that Wildlife Strike incidents are reported from four major sources, each with a different emphasis. A large portion of the information is derived from Canada’s major international airports, and therefore reflects wildlife strikes for transport aircraft, and within these, mostly commercial airlines. These sources are: i. Pilot Reports: These reports are completed by private and commercial pilots in one of several formats. They are submitted voluntarily and regularly by most airline pilots and emphasize aircraft and flight parameters at the time of a strike. ii. Department of National Defense Reports: Pilots of all DND aircraft and Air Traffic Services personnel are required to complete and submit reports of wildlife strikes. They use forms similar to those used by civilian pilots, but submit them to DND. This information is then forwarded to Transport Canada for incorporation into this report. iii. Airline Headquarters Reports: Airlines submit summaries of wildlife strike incidents to Transport Canada on a voluntary basis. These reports emphasize aircraft damage, repair costs, and the operational effects of wildlife strikes. iv. Airport Site Reports: Canadian airport operators are required to submit reports on all wildlife incidents that occur at their sites.
    [Show full text]
  • A Model to Determine the Severity of a Birdstrike With
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 1999 Bird Strike Committee-USA/Canada, First Bird Strike Committee Proceedings Joint Annual Meeting, Vancouver, BC 5-1-1999 A model to determine the severity of a birdstrike with flocks of Canada Geese Richard Budgey Central Science Laboratory, Birdstrike Avoidance Team, Sand Hutton, York, UK J. R. Allan Central Science Laboratory, Birdstrike Avoidance Team, Sand Hutton, York, UK Follow this and additional works at: http://digitalcommons.unl.edu/birdstrike1999 Part of the Environmental Health and Protection Commons Budgey, Richard and Allan, J. R., "A model to determine the severity of a birdstrike with flocks of Canada Geese" (1999). 1999 Bird Strike Committee-USA/Canada, First Joint Annual Meeting, Vancouver, BC. Paper 10. http://digitalcommons.unl.edu/birdstrike1999/10 This Article is brought to you for free and open access by the Bird Strike Committee Proceedings at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in 1999 Bird Strike Committee-USA/Canada, First Joint Annual Meeting, Vancouver, BC by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Bird Strike '99 - Proceedings A model to determine the severity of a birdstrike with flocks of Canada Geese R Budgey JR Allan Birdstrike Avoidance Team Central Science Laboratory Sand Hutton, York, UK, YO41 1LZ Key words Flock density, Certification standards, Mathematical models, Canada Goose, Branta canadensis, Birdstrike Introduction The number of birds of a flocking species likely to be ingested into an aircraft engine in a multiple birdstrike is of profound interest to engineers when they consider birdstrike tolerance in engine design.
    [Show full text]
  • Bird Strikes and Aircraft Fuselage Color: a Correlational Study
    Human–Wildlife Interactions 5(2):224–234, Fall 2011 Bird strikes and aircraft fuselage color: a correlational study ESTEBAN FERNÁNDEZ-JURICIC, Department of Biological Sciences, Purdue University, Lilly Hall G-302, 915 W. State Street, West Lafayette, Indiana 47907, USA [email protected] JIMMY GAFFNEY, Department of Biological Sciences, Purdue University, Lilly Hall, 915 W. State Street, West Lafayette, Indiana 47907, USA BRADLEY F. B LACKWELL, USDA/APHIS/Wildlife Services’ National Wildlife Research Center, Ohio Field Station, 6100 Columbus Avenue, Sandusky, OH 44870, USA PATRICE BAUMHARDT, Department of Biological Sciences, Purdue University, Lilly Hall G-302, 915 W. State Street, West Lafayette, Indiana 47907, USA Abstract: Collisions between birds and aircraft (bird strikes) pose safety risks to the public, cost airports and airlines money, and result in liability issues. Recent research suggests that aircraft visibility could be enhanced to increase detection and avoidance by birds. We questioned whether aircraft color scheme might play a role in bird-strike frequency. We used public records of bird strikes along with information on fl ights that were gathered by federal agencies in the United States. We estimated the bird-strike rates and compared them among airline companies using different fuselage color schemes, while controlling for aircraft type. Using an avian vision modeling approach, we fi rst corroborated the hypothesis that brighter colors would contrast more against the sky than darker colors. We found differences in bird-strike rates among airline companies with different color schemes in 3 out of the 7 aircraft types investigated: Boeing 737, DC-9, and Embraer RJ145. With each of these aircraft, we found that brighter aircraft were associated with lower bird-strike rates.
    [Show full text]
  • Apparent Efficacy of Bird Aircraft Strike Hazard Programs at Four Naval Air Stations
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 2 - Second Eastern Wildlife Damage Control Conference (1985) Eastern Wildlife Damage Control Conferences September 1985 APPARENT EFFICACY OF BIRD AIRCRAFT STRIKE HAZARD PROGRAMS AT FOUR NAVAL AIR STATIONS Thomas C. Walker Naval Facilities Engineering Command, Phila., PA C. Willard Bennett Naval Facilities Engineering Command, Charleston, SC. Follow this and additional works at: https://digitalcommons.unl.edu/ewdcc2 Part of the Environmental Health and Protection Commons Walker, Thomas C. and Bennett, C. Willard , "APPARENT EFFICACY OF BIRD AIRCRAFT STRIKE HAZARD PROGRAMS AT FOUR NAVAL AIR STATIONS" (1985). 2 - Second Eastern Wildlife Damage Control Conference (1985). 47. https://digitalcommons.unl.edu/ewdcc2/47 This Article is brought to you for free and open access by the Eastern Wildlife Damage Control Conferences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in 2 - Second Eastern Wildlife Damage Control Conference (1985) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. APPARENT EFFICACY OF BIRD AIRCRAFT STRIKE HAZARD PROGRAMS AT FOUR NAVAL AIR STATIONS by Thomas C. Walker and C. Willard Bennett* ABSTRACT evaluations or trials of bird control methods. Many have The Department of the Navy- involved a single species or implemented its present manda- management technique. Boudreau tory bird-aircraft strike (1971a, 1971b) reported the reporting system in 1981. effectiveness of bio-accoustics Reported bird-aircraft strikes in dispersing horned larks, have increased each year, house finches and gulls. presumably due to increased Nemergut, et al. (1976) success- awareness and compliance with fully dispersed starlings from regulations. Four Naval air Seymour-Johnson Air Force Base, stations implementing bird- NC using distress calls.
    [Show full text]