Obstructions for Bounded Branch-Depth in Matroids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biased Graphs. Vii. Contrabalance and Antivoltages
BIASED GRAPHS. VII. CONTRABALANCE AND ANTIVOLTAGES THOMAS ZASLAVSKY Abstract. We develop linear representation theory for bicircular matroids, a chief exam- ple being a matroid associated with forests of a graph, and bicircular lift matroids, a chief example being a matroid associated with spanning forests. (These are bias and lift matroids of contrabalanced biased graphs.) The theory is expressed largely in terms of antivoltages (edge labellings that defy Kirchhoff’s voltage law) with values in the multiplicative or ad- ditive group of the scalar field. We emphasize antivoltages with values in cyclic groups and finite vector spaces since they are crucial for representing the matroids over finite fields; and integer-valued antivoltages with bounded breadth since they are crucial in constructions. We find bounds for the existence of antivoltages and we solve some examples. Other results: The number of antivoltages in an abelian group is a polynomial function of the group order, and the number of integral antivoltages with bounded breadth is a polynomial in the breadth bound. We conclude with an application to complex representation. There are many open questions. Contents Introduction 2 1. Background 3 2. General bounds on representability and antivoltages 5 3. Modular, integral, and prime-power antivoltages 7 4. Minors and matroids 11 5. Completegraphsandcomplete-graphbounds 11 6. More examples 16 7. The number of antivoltages 18 8. Root-of-unity representations 21 References 21 Date: March 2001; Aug., 2002; Aug.–Sept., 2004; Nov.–Dec., 2005. Version of April 3, 2007. 2000 Mathematics Subject Classification. Primary 05B35, 05C22; Secondary 05A15, 05C35. Key words and phrases. Antivoltage, bicircular matroid, bicircular lift matroid, forest matroid, spanning forest matroid, biased graph, gain graph, contrabalance, bias matroid, frame matroid, matroid representation, transversal matroid. -
Some Topics Concerning Graphs, Signed Graphs and Matroids
SOME TOPICS CONCERNING GRAPHS, SIGNED GRAPHS AND MATROIDS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Vaidyanathan Sivaraman, M.S. Graduate Program in Mathematics The Ohio State University 2012 Dissertation Committee: Prof. Neil Robertson, Advisor Prof. Akos´ Seress Prof. Matthew Kahle ABSTRACT We discuss well-quasi-ordering in graphs and signed graphs, giving two short proofs of the bounded case of S. B. Rao's conjecture. We give a characterization of graphs whose bicircular matroids are signed-graphic, thus generalizing a theorem of Matthews from the 1970s. We prove a recent conjecture of Zaslavsky on the equality of frus- tration number and frustration index in a certain class of signed graphs. We prove that there are exactly seven signed Heawood graphs, up to switching isomorphism. We present a computational approach to an interesting conjecture of D. J. A. Welsh on the number of bases of matroids. We then move on to study the frame matroids of signed graphs, giving explicit signed-graphic representations of certain families of matroids. We also discuss the cycle, bicircular and even-cycle matroid of a graph and characterize matroids arising as two different such structures. We study graphs in which any two vertices have the same number of common neighbors, giving a quick proof of Shrikhande's theorem. We provide a solution to a problem of E. W. Dijkstra. Also, we discuss the flexibility of graphs on the projective plane. We conclude by men- tioning partial progress towards characterizing signed graphs whose frame matroids are transversal, and some miscellaneous results. -
The Steiner Problem for Count Matroids
Egervary´ Research Group on Combinatorial Optimization Technical reportS TR-2020-03. Published by the Egerv´aryResearch Group, P´azm´any P. s´et´any 1/C, H{1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587{4451. The Steiner problem for count matroids Tibor Jord´an,Yusuke Kobayashi, Ryoga Mahara, and Kazuhisa Makino December 2020 EGRES Technical Report No. 2020-03 1 The Steiner problem for count matroids? Tibor Jord´an??, Yusuke Kobayashi, Ryoga Mahara, and Kazuhisa Makino ??? Abstract We introduce and study a generalization of the well-known Steiner tree prob- lem to count matroids. In the count matroid Mk;l(G), defined on the edge set of a graph G = (V; E), a set F ⊆ E is independent if every vertex set X ⊆ V spans at most kjXj − l edges of F . The graph is called (k; l)-tight if its edge set is independent in Mk;l(G) and jEj = kjV j − l holds. Given a graph G = (V; E), a non-negative length function w : E ! R, a set T ⊆ V of terminals and parameters k; l, our goal is to find a shortest (k; l)- tight subgraph of G that contains the terminals. Since M1;1(G) is isomorphic to the graphic matroid of G, the special case k = l = 1 corresponds to the Steiner tree problem. We obtain other interesting problems by choosing different parameters: for example, in the case k = 2, l = 3 the target is a shortest rigid subgraph containing all terminals. First we show that this problem is NP-hard even if k = 2, l = 3, and w is metric, or w ≡ 1 and jT j = 2. -
Parameterized Algorithms Using Matroids Lecture I: Matroid Basics and Its Use As Data Structure
Parameterized Algorithms using Matroids Lecture I: Matroid Basics and its use as data structure Saket Saurabh The Institute of Mathematical Sciences, India and University of Bergen, Norway, ADFOCS 2013, MPI, August 5{9, 2013 1 Introduction and Kernelization 2 Fixed Parameter Tractable (FPT) Algorithms For decision problems with input size n, and a parameter k, (which typically is the solution size), the goal here is to design an algorithm with (1) running time f (k) nO , where f is a function of k alone. · Problems that have such an algorithm are said to be fixed parameter tractable (FPT). 3 A Few Examples Vertex Cover Input: A graph G = (V ; E) and a positive integer k. Parameter: k Question: Does there exist a subset V 0 V of size at most k such ⊆ that for every edge( u; v) E either u V 0 or v V 0? 2 2 2 Path Input: A graph G = (V ; E) and a positive integer k. Parameter: k Question: Does there exist a path P in G of length at least k? 4 Kernelization: A Method for Everyone Informally: A kernelization algorithm is a polynomial-time transformation that transforms any given parameterized instance to an equivalent instance of the same problem, with size and parameter bounded by a function of the parameter. 5 Kernel: Formally Formally: A kernelization algorithm, or in short, a kernel for a parameterized problem L Σ∗ N is an algorithm that given ⊆ × (x; k) Σ∗ N, outputs in p( x + k) time a pair( x 0; k0) Σ∗ N such that 2 × j j 2 × • (x; k) L (x 0; k0) L , 2 () 2 • x 0 ; k0 f (k), j j ≤ where f is an arbitrary computable function, and p a polynomial. -
Lecture 0: Matroid Basics
Parameterized Algorithms using Matroids Lecture 0: Matroid Basics Saket Saurabh The Institute of Mathematical Sciences, India and University of Bergen, Norway. ADFOCS 2013, MPI, August 04-09, 2013 Kruskal's Greedy Algorithm for MWST Let G = (V; E) be a connected undirected graph and let ≥0 w : E ! R be a weight function on the edges. Kruskal's so-called greedy algorithm is as follows. The algorithm consists of selecting successively edges e1; e2; : : : ; er. If edges e1; e2; : : : ; ek has been selected, then an edge e 2 E is selected so that: 1 e=2f e1; : : : ; ekg and fe; e1; : : : ; ekg is a forest. 2 w(e) is as small as possible among all edges e satisfying (1). We take ek+1 := e. If no e satisfying (1) exists then fe1; : : : ; ekg is a spanning tree. Kruskal's Greedy Algorithm for MWST Let G = (V; E) be a connected undirected graph and let ≥0 w : E ! R be a weight function on the edges. Kruskal's so-called greedy algorithm is as follows. The algorithm consists of selecting successively edges e1; e2; : : : ; er. If edges e1; e2; : : : ; ek has been selected, then an edge e 2 E is selected so that: 1 e=2f e1; : : : ; ekg and fe; e1; : : : ; ekg is a forest. 2 w(e) is as small as possible among all edges e satisfying (1). We take ek+1 := e. If no e satisfying (1) exists then fe1; : : : ; ekg is a spanning tree. It is obviously not true that such a greedy approach would lead to an optimal solution for any combinatorial optimization problem. -
Branch-Depth: Generalizing Tree-Depth of Graphs
Branch-depth: Generalizing tree-depth of graphs ∗1 †‡23 34 Matt DeVos , O-joung Kwon , and Sang-il Oum† 1Department of Mathematics, Simon Fraser University, Burnaby, Canada 2Department of Mathematics, Incheon National University, Incheon, Korea 3Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, Korea 4Department of Mathematical Sciences, KAIST, Daejeon, Korea [email protected], [email protected], [email protected] November 5, 2020 Abstract We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the no- tions of tree-depth and shrub-depth of graphs as follows. For a graph G = (V, E) and a subset A of E we let λG(A) be the number of vertices incident with an edge in A and an edge in E A. For a subset X of V , \ let ρG(X) be the rank of the adjacency matrix between X and V X over the binary field. We prove that a class of graphs has bounded\ tree-depth if and only if the corresponding class of functions λG has arXiv:1903.11988v2 [math.CO] 4 Nov 2020 bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree- depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by restriction. -
Sparsity Counts in Group-Labeled Graphs and Rigidity
Sparsity Counts in Group-labeled Graphs and Rigidity Rintaro Ikeshita1 Shin-ichi Tanigawa2 1University of Tokyo 2CWI & Kyoto University July 15, 2015 1 / 23 I Examples I k = ` = 1: forest I k = 1; ` = 0: pseudoforest I k = `: Decomposability into edge-disjoint k forests (Nash-Williams) I ` ≤ k: Decomposability into edge-disjoint k − ` pseudoforests and ` forests I general k; `: Rigidity of graphs and scene analysis (k; `)-sparsity def I A finite undirected graph G = (V ; E) is (k; `)-sparse , jF j ≤ kjV (F )j − ` for every F ⊆ E with kjV (F )j − ` ≥ 1. 2 / 23 (k; `)-sparsity def I A finite undirected graph G = (V ; E) is (k; `)-sparse , jF j ≤ kjV (F )j − ` for every F ⊆ E with kjV (F )j − ` ≥ 1. I Examples I k = ` = 1: forest I k = 1; ` = 0: pseudoforest I k = `: Decomposability into edge-disjoint k forests (Nash-Williams) I ` ≤ k: Decomposability into edge-disjoint k − ` pseudoforests and ` forests I general k; `: Rigidity of graphs and scene analysis 2 / 23 I Examples I k = ` = 1: graphic matroid I k = 1; ` = 0: bicircular matroid I ` ≤ k: union of k − ` copies of bicircular matroid and ` copies of graphic matroid I k = 2; ` = 3: generic 2-rigidity matroid (Laman70) Count Matroids I Suppose ` ≤ 2k − 1. Then Mk;`(G) = (E; Ik;`) forms a matroid, called the (k; `)-count matroid, where Ik;` = fI ⊆ E : I is (k; `)-sparseg: 3 / 23 Count Matroids I Suppose ` ≤ 2k − 1. Then Mk;`(G) = (E; Ik;`) forms a matroid, called the (k; `)-count matroid, where Ik;` = fI ⊆ E : I is (k; `)-sparseg: I Examples I k = ` = 1: graphic matroid I k = 1; ` = 0: bicircular matroid I ` ≤ k: union of k − ` copies of bicircular matroid and ` copies of graphic matroid I k = 2; ` = 3: generic 2-rigidity matroid (Laman70) 3 / 23 Group-labeled Graphs I A group-labeled graph (Γ-labeled graph) (G; ) is a directed finite graph whose edges are labeled invertibly from a group Γ. -
Matroids Graphs Give Isomorphic Matroid Structure?
EECS 495: Combinatorial Optimization Lecture 7 Matroid Representation, Matroid Optimization Reading: Schrijver, Chapters 39 and 40 graph and S = E. A set F ⊆ E is indepen- dent if it is acyclic. Food for thought: can two non-isomorphic Matroids graphs give isomorphic matroid structure? Recap Representation Def: A matroid M = (S; I) is a finite ground Def: For a field F , a matroid M is repre- set S together with a collection of indepen- sentable over F if it is isomorphic to a linear dent sets I ⊆ 2S satisfying: matroid with matrix A and linear indepen- dence taken over F . • downward closed: if I 2 I and J ⊆ I, 2 then J 2 I, and Example: Is uniform matroid U4 binary? Need: matrix A with entries in f0; 1g s.t. no • exchange property: if I;J 2 I and jJj > column is the zero vector, no two rows sum jIj, then there exists an element z 2 J nI to zero over GF(2), any three rows sum to s.t. I [ fzg 2 I. GF(2). Def: A basis is a maximal independent set. • if so, can assume A is 2×4 with columns The cardinality of a basis is the rank of the 1/2 being (0; 1) and (1; 0) and remaining matroid. two vectors with entries in 0; 1 neither all k Def: Uniform matroids Un are given by jSj = zero. n, I = fI ⊆ S : jIj ≤ kg. • only three such non-zero vectors, so can't Def: Linear matroids: Let F be a field, A 2 have all pairs indep. -
DEFINING BICIRCULAR MATROIDS in MONADIC LOGIC 1. Introduction
DEFINING BICIRCULAR MATROIDS IN MONADIC LOGIC DARYL FUNK, DILLON MAYHEW, AND MIKE NEWMAN Abstract. We conjecture that the class of frame matroids can be char- acterised by a sentence in the monadic second-order logic of matroids, and we prove that there is such a characterisation for the class of bi- circular matroids. The proof does not depend on an excluded-minor characterisation. 1. Introduction The ability of monadic second-order logic to express graph properties has been investigated for some time [5, 10, 22]. This study continues to be motivated by Courcelle's famous theorem showing that such a property can be tested in polynomial time for any class of input graphs with bounded tree-width [4]. On the other hand, the literature on matroid properties that can be expressed in monadic second-order logic is more recent, and sparser [16,19]. Our aim here is to add to this literature, by making progress towards the following conjecture. Conjecture 1.1. There is a sentence in the monadic second-order language of matroids which characterises the class of frame matroids. The monadic second-order logic for matroids (MS 0) is formally defined in Section 3. We also conjecture that there are MS 0-characterisations of Zaslavsky's class of lift matroids [23] and the class of quasi-graphic matroids [1,15]. Let G be a graph. If X is a set of edges in G, then V (X) is the set of vertices incident with at least one edge in X, and G[X] is the subgraph with X as its edge-set and V (X) as its vertex-set. -
Bicircular Matroids Are 3-Colorable
Bicircular Matroids are 3-colorable Luis Goddyn Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada Winfried Hochst¨attler FernUniversit¨atin Hagen, Fakult¨atf¨urMathematik und Informatik, 58084 Hagen Nancy Ann Neudauer Nancy Ann Neudauer, Department of Mathematics and Computer Science, Pacific University, Forest Grove, OR 97116, USA Abstract Hugo Hadwiger proved that a graph that is not 3-colorable must have a K4- minor and conjectured that a graph that is not k-colorable must have a Kk+1- minor. By using the Hochst¨attler-Neˇsetˇrildefinition for the chromatic number of an oriented matroid, we formulate a generalized version of Hadwiger's conjecture that might hold for the class of oriented matroids. In particular, it is possible that every oriented matroid with no M(K4)-minor is 3-colorable. The fact that K4-minor-free graphs are characterized as series-parallel net- works leads to an easy proof that they are all 3-colorable. We show how to extend this argument to a particular subclass of M(K4)-minor-free oriented matroids. Specifically we generalize the notion of being series-parallel to ori- ented matroids, and then show that generalized series-parallel oriented matroids are 3-colorable. To illustrate the method, we show that every orientation of a bicircular matroid is 3-colorable. Keywords: colorings, series-parallel networks, matroids, oriented matroids 2000 MSC: 05C15, 05B35, 52C40 1. Introduction Hadwiger's conjecture [13], that every graph that is not k-colorable must have a Kk+1-minor for k ≥ 1, is \one of the deepest unsolved problems in graph theory"[5]. -
Bicircular Matroids with Circuits of at Most Two Sizes
University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 1-1-2010 Bicircular Matroids with Circuits of at Most Two Sizes Torina Deachune Lewis University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Mathematics Commons Recommended Citation Lewis, Torina Deachune, "Bicircular Matroids with Circuits of at Most Two Sizes" (2010). Electronic Theses and Dissertations. 1437. https://egrove.olemiss.edu/etd/1437 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. To The Graduate Council: I am submitting herewith a dissertation written by Torina Deachune Lewis entitled Bicircular Matroids with Circuits of at Most Two Sizes I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics. Dr. Talmage James Reid Professor of Mathematics We have read this dissertation and recommend its acceptance: Dr. Iwo Labuda, Chair and Professor of Mathematics Dr. Laura Sheppardson, Associate Professor of Mathematics Dr. Dawn Wilkins, Associate Professor of Computer and Information Science Dr. Haidong Wu, Associate Professor of Mathematics Bicircular Matroids with Circuits of at Most Two Sizes A Dissertation Presented for the Doctor of Philosophy Degree Department of Mathematics University of Mississippi Torina Deachune Lewis Advisers: Drs. Talmage James Reid and Laura Sheppardson December 3, 2010 Acknowledgments The writing of a dissertation can be a lonely and isolating experience, yet it is obviously not possible without the personal and practical support of numerous people. -
A Gentle Introduction to Matroid Algorithmics
A Gentle Introduction to Matroid Algorithmics Matthias F. Stallmann April 14, 2016 1 Matroid axioms The term matroid was first used in 1935 by Hassler Whitney [34]. Most of the material in this overview comes from the textbooks of Lawler [25] and Welsh [33]. A matroid is defined by a set of axioms with respect to a ground set S. There are several ways to do this. Among these are: Independent sets. Let I be a collection of subsets defined by • (I1) ; 2 I • (I2) if X 2 I and Y ⊆ X then Y 2 I • (I3) if X; Y 2 I with jXj = jY j + 1 then there exists x 2 X n Y such that Y [ x 2 I A classic example is a graphic matroid. Here S is the set of edges of a graph and X 2 I if X is a forest. (I1) and (I2) are clearly satisfied. (I3) is a simplified version of the key ingredient in the correctness proofs of most minimum spanning tree algorithms. If a set of edges X forms a forest then jV (X)j − jXj = jc(X)j, where V (x) is the set of endpoints of X and c(X) is the set of components induced by X. If jXj = jY j + 1, then jc(X)j = jc(Y )j − 1, meaning X must have at least one edge x that connects two of the components induced by Y . So Y [ x is also a forest. Another classic algorithmic example is the following uniprocessor scheduling problem, let's call it the scheduling matroid.