Matroids Graphs Give Isomorphic Matroid Structure?

Total Page:16

File Type:pdf, Size:1020Kb

Matroids Graphs Give Isomorphic Matroid Structure? EECS 495: Combinatorial Optimization Lecture 7 Matroid Representation, Matroid Optimization Reading: Schrijver, Chapters 39 and 40 graph and S = E. A set F ⊆ E is indepen- dent if it is acyclic. Food for thought: can two non-isomorphic Matroids graphs give isomorphic matroid structure? Recap Representation Def: A matroid M = (S; I) is a finite ground Def: For a field F , a matroid M is repre- set S together with a collection of indepen- sentable over F if it is isomorphic to a linear dent sets I ⊆ 2S satisfying: matroid with matrix A and linear indepen- dence taken over F . • downward closed: if I 2 I and J ⊆ I, 2 then J 2 I, and Example: Is uniform matroid U4 binary? Need: matrix A with entries in f0; 1g s.t. no • exchange property: if I;J 2 I and jJj > column is the zero vector, no two rows sum jIj, then there exists an element z 2 J nI to zero over GF(2), any three rows sum to s.t. I [ fzg 2 I. GF(2). Def: A basis is a maximal independent set. • if so, can assume A is 2×4 with columns The cardinality of a basis is the rank of the 1/2 being (0; 1) and (1; 0) and remaining matroid. two vectors with entries in 0; 1 neither all k Def: Uniform matroids Un are given by jSj = zero. n, I = fI ⊆ S : jIj ≤ kg. • only three such non-zero vectors, so can't Def: Linear matroids: Let F be a field, A 2 have all pairs indep. F m×n an m×n matrix over F , S = f1; : : : ; ng be index set of columns of A. Then I ⊆ S is 2 independent if the corresponding columns are Question: representation of U4 ? linearly independent. (1; 0); (0; 1); (1; −1); (1; 1) in <. Note: WLOG any linear matroids can be Def: A binary matroid is a matroid repre- sentable over GF (2). written as A = [ImjB] where m is rank of matroid and B is an (n−m)×m matrix over Def: A regular matroid is representable over F . any field. Def: Graphic matroids: Let G = (V; E) be a Example: Graphic matroids are regular. 1 Proof: Take A to be vertex/edge incidence Conjecture (Rota, 1971): Matroids repre- matrix with +1= − 1 in each column in any sentable over a finite field can be character- order. ized by a finite list of excluded minors. Much like planar graphs are those with no • Minimally dependent sets sum to zero K or K as a minor. perhaps with multiplying by −1. 3;3 5 • Works over any field with +1 as multi- Matroid Optimization plicative identity and −1 additive inverse of +1. Given: Matroid M = (S; I) and weights c : S ! R Note: Have graphic ⊂ binary ⊂ regular ⊂ linear. Find: max-weight (or min-weight) basis ""Recall Kruskal's Alg for min spanning## Note: There are matroids that are not linear tree: select edges in increasing order of (MacLane, 1936; Lazarson, 1958). weight Algorithm: Greedy Matroid Operations • Set J = ;. Def: (from last lecture): The dual M ∗ of ma- • Order S s.t. c ≥ ::: ≥ c . troid M = (S; I) is the matroid with ground 1 n set S whose independent sets I are such that • For i = 1 to n, if J [ fig is independent, S n I contains a basis of M. J := J [ fig Def: The deletion M n Z of matroid M = 22If weights are non-neg, this is max-weight33 (S; I) and subset Z ⊂ S is the matroid with indep set; otherwise stop selecting elts ground set S n Z and independent sets fI ⊆ 66 77 44when ci becomes negative for max-weight55 S n Z : I 2 Ig. indep set. Example: Take graph, delete edges, take Claim: Greedy finds maximal-weight basis. acyclic subsets of remaining edges. [[First rephrase second axiom. ]] Def: The contraction M=Z of ::: is ::: (M ∗ n Proof: Clearly a basis. Suppose not max- Z)∗. weight, i.e., for greedy set J and opt J 0, ""So for X ⊆ Z maximal independent set## c(J) < c(J 0). of M, I independent in M=Z if I [ X independent in M. • Let J = fe1; : : : ; elg be greedy set la- 0 Def: If a matroid M arises from M by a beled according to chosen order so ce1 ≥ 0 series of deletions and contractions, then M ::: ≥ cel . is a minor of M. 0 • Let J = fq1; : : : ; qkg be max-weight ba- Claim: (Tutte, 1958) A matroid is binary if sis labeled s.t. cq ≥ ::: ≥ cq . 2 1 k and only if it has no U4 minor. • Let i be smallest index s.t. c > c (if ""Similar characterization of ternary ma-## qi ei no such index, must have k > l so let troids as those that exclude the so-called i = l + 1). Fano matroid and its dual as a minor. 2 • Consider independent sets I = Let OP ;OD be primal/dual value. To prove 0 n fe1; : : : ; ei−1g and I = fq1; : : : ; qig. TDI need for any w 2 Z exists opt dual soln that's integral. • since jI0j > jIj exchange property says 22Recall TDI means for integral cost vector33 9z 2 I0 s.t. I + z independent 66c s.t. primal soln finite, there exists in-77 66 77 • but each elt in I0 has greater weight than 66tegral opt dual. Furthermore if polytope77 I and z was available to greedy at step i 44is TDI and b is integral, then polytope is55 integral. by above, so greedy can't have chosen ei over z. • WLOG w non-negative (else discard neg In fact, matroids are precisely set systems elts and note dual constraint satisfied on which greedy works, see book. since y ≥ 0. 22What about running time? Depends on33 • Let J be independent set found by 66matroid representation to test if I + z in-77 66 77 greedy. 66dependent. Want poly in jSj given indep77 66 77 66set oracle, or sometimes given sucinct77 • Note w(J) ≤ maxI2I w(I) ≤ OP = OD. 66 77 66representation of M like in graphs (note77 66 77 • Find integral y s.t. dual value equals 66listing all indep sets is exponential in77 66 77 w(J) hence proving both claims. Label 66jSj). Question, is there a matroid with77 44a sucinct rep in which checking indepen-55 elts in decreasing order of weight and let dence is hard? Ui = fs1; : : : ; sig. y = w(s ) − w(s ) Matroid Polytopes Ui i i+1 yUn = w(sn) Variables: xs for each s 2 S Constraints: yU = 0; otherwise xS ≥ 0; 8s 2 S { feasible: for any si 2 S, P Pn X yU = yU x ≤ r(U); 8U ⊆ S U:si2U j=i j s Pn−1 s2U = j=i (w(si)+w(si+1))+w(sn) = w(si). Claim: Greedy is optimal. { optimal: Claim: Matroid polytope integral. n−1 X X Proof: Consider primal objective r(U)y = r(U )(w(s ) − w(s )) max P w(s)x . Dual is: U i i i+1 s2S S U⊆S i=1 X +r(Un)w(sn) min r(U)yU = w(s1)r(U1) n U⊆S X + w(si)(r(Ui) − r(Ui−1)) X s:t: y ≥ w(s); 8s 2 S i=2 U = w(J) U:s2U yU ≥ 0; 8U ⊆ S 3.
Recommended publications
  • Some Topics Concerning Graphs, Signed Graphs and Matroids
    SOME TOPICS CONCERNING GRAPHS, SIGNED GRAPHS AND MATROIDS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Vaidyanathan Sivaraman, M.S. Graduate Program in Mathematics The Ohio State University 2012 Dissertation Committee: Prof. Neil Robertson, Advisor Prof. Akos´ Seress Prof. Matthew Kahle ABSTRACT We discuss well-quasi-ordering in graphs and signed graphs, giving two short proofs of the bounded case of S. B. Rao's conjecture. We give a characterization of graphs whose bicircular matroids are signed-graphic, thus generalizing a theorem of Matthews from the 1970s. We prove a recent conjecture of Zaslavsky on the equality of frus- tration number and frustration index in a certain class of signed graphs. We prove that there are exactly seven signed Heawood graphs, up to switching isomorphism. We present a computational approach to an interesting conjecture of D. J. A. Welsh on the number of bases of matroids. We then move on to study the frame matroids of signed graphs, giving explicit signed-graphic representations of certain families of matroids. We also discuss the cycle, bicircular and even-cycle matroid of a graph and characterize matroids arising as two different such structures. We study graphs in which any two vertices have the same number of common neighbors, giving a quick proof of Shrikhande's theorem. We provide a solution to a problem of E. W. Dijkstra. Also, we discuss the flexibility of graphs on the projective plane. We conclude by men- tioning partial progress towards characterizing signed graphs whose frame matroids are transversal, and some miscellaneous results.
    [Show full text]
  • Quasipolynomial Representation of Transversal Matroids with Applications in Parameterized Complexity
    Quasipolynomial Representation of Transversal Matroids with Applications in Parameterized Complexity Daniel Lokshtanov1, Pranabendu Misra2, Fahad Panolan1, Saket Saurabh1,2, and Meirav Zehavi3 1 University of Bergen, Bergen, Norway. {daniello,pranabendu.misra,fahad.panolan}@ii.uib.no 2 The Institute of Mathematical Sciences, HBNI, Chennai, India. [email protected] 3 Ben-Gurion University, Beersheba, Israel. [email protected] Abstract Deterministic polynomial-time computation of a representation of a transversal matroid is a longstanding open problem. We present a deterministic computation of a so-called union rep- resentation of a transversal matroid in time quasipolynomial in the rank of the matroid. More precisely, we output a collection of linear matroids such that a set is independent in the trans- versal matroid if and only if it is independent in at least one of them. Our proof directly implies that if one is interested in preserving independent sets of size at most r, for a given r ∈ N, but does not care whether larger independent sets are preserved, then a union representation can be computed deterministically in time quasipolynomial in r. This consequence is of independent interest, and sheds light on the power of union representation. Our main result also has applications in Parameterized Complexity. First, it yields a fast computation of representative sets, and due to our relaxation in the context of r, this computation also extends to (standard) truncations. In turn, this computation enables to efficiently solve various problems, such as subcases of subgraph isomorphism, motif search and packing problems, in the presence of color lists. Such problems have been studied to model scenarios where pairs of elements to be matched may not be identical but only similar, and color lists aim to describe the set of compatible elements associated with each element.
    [Show full text]
  • Partial Fields and Matroid Representation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UC Research Repository Partial Fields and Matroid Representation Charles Semple and Geoff Whittle Department of Mathematics Victoria University PO Box 600 Wellington New Zealand April 10, 1995 Abstract A partial field P is an algebraic structure that behaves very much like a field except that addition is a partial binary operation, that is, for some a; b ∈ P, a + b may not be defined. We develop a theory of matroid representation over partial fields. It is shown that many im- portant classes of matroids arise as the class of matroids representable over a partial field. The matroids representable over a partial field are closed under standard matroid operations such as the taking of mi- nors, duals, direct sums and 2{sums. Homomorphisms of partial fields are defined. It is shown that if ' : P1 → P2 is a non-trivial partial field homomorphism, then every matroid representable over P1 is rep- resentable over P2. The connection with Dowling group geometries is examined. It is shown that if G is a finite abelian group, and r>2, then there exists a partial field over which the rank{r Dowling group geometry is representable if and only if G has at most one element of order 2, that is, if G is a group in which the identity has at most two square roots. 1 1 Introduction It follows from a classical (1958) result of Tutte [19] that a matroid is rep- resentable over GF (2) and some field of characteristic other than 2 if and only if it can be represented over the rationals by the columns of a totally unimodular matrix, that is, by a matrix over the rationals all of whose non- zero subdeterminants are in {1; −1}.
    [Show full text]
  • Parameterized Algorithms Using Matroids Lecture I: Matroid Basics and Its Use As Data Structure
    Parameterized Algorithms using Matroids Lecture I: Matroid Basics and its use as data structure Saket Saurabh The Institute of Mathematical Sciences, India and University of Bergen, Norway, ADFOCS 2013, MPI, August 5{9, 2013 1 Introduction and Kernelization 2 Fixed Parameter Tractable (FPT) Algorithms For decision problems with input size n, and a parameter k, (which typically is the solution size), the goal here is to design an algorithm with (1) running time f (k) nO , where f is a function of k alone. · Problems that have such an algorithm are said to be fixed parameter tractable (FPT). 3 A Few Examples Vertex Cover Input: A graph G = (V ; E) and a positive integer k. Parameter: k Question: Does there exist a subset V 0 V of size at most k such ⊆ that for every edge( u; v) E either u V 0 or v V 0? 2 2 2 Path Input: A graph G = (V ; E) and a positive integer k. Parameter: k Question: Does there exist a path P in G of length at least k? 4 Kernelization: A Method for Everyone Informally: A kernelization algorithm is a polynomial-time transformation that transforms any given parameterized instance to an equivalent instance of the same problem, with size and parameter bounded by a function of the parameter. 5 Kernel: Formally Formally: A kernelization algorithm, or in short, a kernel for a parameterized problem L Σ∗ N is an algorithm that given ⊆ × (x; k) Σ∗ N, outputs in p( x + k) time a pair( x 0; k0) Σ∗ N such that 2 × j j 2 × • (x; k) L (x 0; k0) L , 2 () 2 • x 0 ; k0 f (k), j j ≤ where f is an arbitrary computable function, and p a polynomial.
    [Show full text]
  • Lecture 0: Matroid Basics
    Parameterized Algorithms using Matroids Lecture 0: Matroid Basics Saket Saurabh The Institute of Mathematical Sciences, India and University of Bergen, Norway. ADFOCS 2013, MPI, August 04-09, 2013 Kruskal's Greedy Algorithm for MWST Let G = (V; E) be a connected undirected graph and let ≥0 w : E ! R be a weight function on the edges. Kruskal's so-called greedy algorithm is as follows. The algorithm consists of selecting successively edges e1; e2; : : : ; er. If edges e1; e2; : : : ; ek has been selected, then an edge e 2 E is selected so that: 1 e=2f e1; : : : ; ekg and fe; e1; : : : ; ekg is a forest. 2 w(e) is as small as possible among all edges e satisfying (1). We take ek+1 := e. If no e satisfying (1) exists then fe1; : : : ; ekg is a spanning tree. Kruskal's Greedy Algorithm for MWST Let G = (V; E) be a connected undirected graph and let ≥0 w : E ! R be a weight function on the edges. Kruskal's so-called greedy algorithm is as follows. The algorithm consists of selecting successively edges e1; e2; : : : ; er. If edges e1; e2; : : : ; ek has been selected, then an edge e 2 E is selected so that: 1 e=2f e1; : : : ; ekg and fe; e1; : : : ; ekg is a forest. 2 w(e) is as small as possible among all edges e satisfying (1). We take ek+1 := e. If no e satisfying (1) exists then fe1; : : : ; ekg is a spanning tree. It is obviously not true that such a greedy approach would lead to an optimal solution for any combinatorial optimization problem.
    [Show full text]
  • Matroid Theory Release 9.4
    Sage 9.4 Reference Manual: Matroid Theory Release 9.4 The Sage Development Team Aug 24, 2021 CONTENTS 1 Basics 1 2 Built-in families and individual matroids 77 3 Concrete implementations 97 4 Abstract matroid classes 149 5 Advanced functionality 161 6 Internals 173 7 Indices and Tables 197 Python Module Index 199 Index 201 i ii CHAPTER ONE BASICS 1.1 Matroid construction 1.1.1 Theory Matroids are combinatorial structures that capture the abstract properties of (linear/algebraic/...) dependence. For- mally, a matroid is a pair M = (E; I) of a finite set E, the groundset, and a collection of subsets I, the independent sets, subject to the following axioms: • I contains the empty set • If X is a set in I, then each subset of X is in I • If two subsets X, Y are in I, and jXj > jY j, then there exists x 2 X − Y such that Y + fxg is in I. See the Wikipedia article on matroids for more theory and examples. Matroids can be obtained from many types of mathematical structures, and Sage supports a number of them. There are two main entry points to Sage’s matroid functionality. The object matroids. contains a number of con- structors for well-known matroids. The function Matroid() allows you to define your own matroids from a variety of sources. We briefly introduce both below; follow the links for more comprehensive documentation. Each matroid object in Sage comes with a number of built-in operations. An overview can be found in the documen- tation of the abstract matroid class.
    [Show full text]
  • Branch-Depth: Generalizing Tree-Depth of Graphs
    Branch-depth: Generalizing tree-depth of graphs ∗1 †‡23 34 Matt DeVos , O-joung Kwon , and Sang-il Oum† 1Department of Mathematics, Simon Fraser University, Burnaby, Canada 2Department of Mathematics, Incheon National University, Incheon, Korea 3Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, Korea 4Department of Mathematical Sciences, KAIST, Daejeon, Korea [email protected], [email protected], [email protected] November 5, 2020 Abstract We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the no- tions of tree-depth and shrub-depth of graphs as follows. For a graph G = (V, E) and a subset A of E we let λG(A) be the number of vertices incident with an edge in A and an edge in E A. For a subset X of V , \ let ρG(X) be the rank of the adjacency matrix between X and V X over the binary field. We prove that a class of graphs has bounded\ tree-depth if and only if the corresponding class of functions λG has arXiv:1903.11988v2 [math.CO] 4 Nov 2020 bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree- depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by restriction.
    [Show full text]
  • Covering Vectors by Spaces: Regular Matroids∗
    Covering vectors by spaces: Regular matroids∗ Fedor V. Fomin1, Petr A. Golovach1, Daniel Lokshtanov1, and Saket Saurabh1,2 1 Department of Informatics, University of Bergen, Norway, {fedor.fomin,petr.golovach,daniello}@ii.uib.no 2 Institute of Mathematical Sciences, Chennai, India, [email protected] Abstract We consider the problem of covering a set of vectors of a given finite dimensional linear space (vector space) by a subspace generated by a set of vectors of minimum size. Specifically, we study the Space Cover problem, where we are given a matrix M and a subset of its columns T ; the task is to find a minimum set F of columns of M disjoint with T such that that the linear span of F contains all vectors of T . This is a fundamental problem arising in different domains, such as coding theory, machine learning, and graph algorithms. We give a parameterized algorithm with running time 2O(k) · ||M||O(1) solving this problem in the case when M is a totally unimodular matrix over rationals, where k is the size of F . In other words, we show that the problem is fixed-parameter tractable parameterized by the rank of the covering subspace. The algorithm is “asymptotically optimal” for the following reasons. Choice of matrices: Vector matroids corresponding to totally unimodular matrices over ration- als are exactly the regular matroids. It is known that for matrices corresponding to a more general class of matroids, namely, binary matroids, the problem becomes W[1]-hard being parameterized by k. Choice of the parameter: The problem is NP-hard even if |T | = 3 on matrix-representations of a subclass of regular matroids, namely cographic matroids.
    [Show full text]
  • Lecture 13 — February, 1 2014 1 Overview 2 Matroids
    Advanced Graph Algorithms Jan-Apr 2014 Lecture 13 | February, 1 2014 Lecturer: Saket Saurabh Scribe: Sanjukta Roy 1 Overview In this lecture we learn what is Matroid, the connection between greedy algorithms and matroids. We also look at some examples of Matroids e.g., Linear Matroids, Graphic Matroids etc. 2 Matroids 2.1 A Greedy Approach Let G = (V, E) be a connected undirected graph and let w : E ! R≥0 be a weight function on the edges. For MWST Kruskal's so-called greedy algorithm works. Consider Maximum Weight Matching problem. 1 a b 3 3 d c 4 Application of the greedy algorithm gives (d,c) and (a,b). However, (d,c) and (a,b) do not form a matching of maximum weight. It is obviously not true that such a greedy approach would lead to an optimal solution for any combinatorial optimization problem. It turns out that the structures for which the greedy algorithm does lead to an optimal solution, are the matroids. 2.2 Matroids Definition 1. A pair M = (E, I), where E is a ground set and I is a family of subsets (called independent sets) of E, is a matroid if it satisfies the following conditions: (I1) φ 2 IorI = ø: 1 (I2) If A0 ⊆ A and A 2 I then A0 2 I. (I3) If A, B 2 I and jAj < jBj, then 9e 2 (B n A) such that A [feg 2 I: The axiom (I2) is also called the hereditary property and a pair M = (E, I) satisfying (I1) and (I2) is called hereditary family or set-family.
    [Show full text]
  • Partial Fields and Matroid Representation
    ADVANCES IN APPLIED MATHEMATICS 17, 184]208Ž. 1996 ARTICLE NO. 0010 Partial Fields and Matroid Representation Charles Semple and Geoff Whittle Department of Mathematics, Victoria Uni¨ersity, PO Box 600 Wellington, New Zealand Received May 12, 1995 A partial field P is an algebraic structure that behaves very much like a field except that addition is a partial binary operation, that is, for some a, b g P, a q b may not be defined. We develop a theory of matroid representation over partial fields. It is shown that many important classes of matroids arise as the class of matroids representable over a partial field. The matroids representable over a partial field are closed under standard matroid operations such as the taking of minors, duals, direct sums, and 2-sums. Homomorphisms of partial fields are defined. It is shown that if w: P12ª P is a non-trivial partial-field homomorphism, then every matroid representable over P12is representable over P . The connec- tion with Dowling group geometries is examined. It is shown that if G is a finite abelian group, and r ) 2, then there exists a partial field over which the rank-r Dowling group geometry is representable if and only if G has at most one element of order 2, that is, if G is a group in which the identity has at most two square roots. Q 1996 Academic Press, Inc. 1. INTRODUCTION It follows from a classical result of Tuttewx 19 that a matroid is repre- sentable over GFŽ.2 and some field of characteristic other than 2 if and only if it can be represented over the rationals by the columns of a totally unimodular matrix, that is, by a matrix over the rationals all of whose non-zero subdeterminants are inÄ4 1, y1 .
    [Show full text]
  • Arxiv:1910.05689V1 [Math.CO]
    ON GRAPHIC ELEMENTARY LIFTS OF GRAPHIC MATROIDS GANESH MUNDHE1, Y. M. BORSE2, AND K. V. DALVI3 Abstract. Zaslavsky introduced the concept of lifted-graphic matroid. For binary matroids, a binary elementary lift can be defined in terms of the splitting operation. In this paper, we give a method to get a forbidden-minor characterization for the class of graphic matroids whose all lifted-graphic matroids are also graphic using the splitting operation. Keywords: Elementary lifts; splitting; binary matroids; minors; graphic; lifted-graphic Mathematics Subject Classification: 05B35; 05C50; 05C83 1. Introduction For undefined notions and terminology, we refer to Oxley [13]. A matroid M is quotient of a matroid N if there is a matroid Q such that, for some X ⊂ E(Q), N = Q\X and M = Q/X. If |X| = 1, then M is an elementary quotient of N. A matroid N is a lift of M if M is a quotient of N. If M is an elementary quotient of N, then N is an elementary lift of M. A matroid N is a lifted-graphic matroid if there is a matroid Q with E(Q)= E(N) ∪ e such that Q\e = N and Q/e is graphic. The concept of lifted-graphic matroid was introduced by Zaslavsky [19]. Lifted-graphic matroids play an important role in the matroid minors project of Geelen, Gerards and Whittle [9, 10]. Lifted- graphic matroids are studied in [4, 5, 6, 7, 19]. This class is minor-closed. In [5], it is proved that there exist infinitely many pairwise non-isomorphic excluded minors for the class of lifted-graphic matroids.
    [Show full text]
  • Matroid Optimization and Algorithms Robert E. Bixby and William H
    Matroid Optimization and Algorithms Robert E. Bixby and William H. Cunningham June, 1990 TR90-15 MATROID OPTIMIZATION AND ALGORITHMS by Robert E. Bixby Rice University and William H. Cunningham Carleton University Contents 1. Introduction 2. Matroid Optimization 3. Applications of Matroid Intersection 4. Submodular Functions and Polymatroids 5. Submodular Flows and other General Models 6. Matroid Connectivity Algorithms 7. Recognition of Representability 8. Matroid Flows and Linear Programming 1 1. INTRODUCTION This chapter considers matroid theory from a constructive and algorithmic viewpoint. A substantial part of the developments in this direction have been motivated by opti­ mization. Matroid theory has led to a unification of fundamental ideas of combinatorial optimization as well as to the solution of significant open problems in the subject. In addition to its influence on this larger subject, matroid optimization is itself a beautiful part of matroid theory. The most basic optimizational property of matroids is that for any subset every max­ imal independent set contained in it is maximum. Alternatively, a trivial algorithm max­ imizes any {O, 1 }-valued weight function over the independent sets. Most of matroid op­ timization consists of attempts to solve successive generalizations of this problem. In one direction it is generalized to the problem of finding a largest common independent set of two matroids: the matroid intersection problem. This problem includes the matching problem for bipartite graphs, and several other combinatorial problems. In Edmonds' solu­ tion of it and the equivalent matroid partition problem, he introduced the notions of good characterization (intimately related to the NP class of problems) and matroid (oracle) algorithm.
    [Show full text]