A Gentle Introduction to Matroid Algorithmics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linear Algebraic Techniques for Spanning Tree Enumeration
LINEAR ALGEBRAIC TECHNIQUES FOR SPANNING TREE ENUMERATION STEVEN KLEE AND MATTHEW T. STAMPS Abstract. Kirchhoff's Matrix-Tree Theorem asserts that the number of spanning trees in a finite graph can be computed from the determinant of any of its reduced Laplacian matrices. In many cases, even for well-studied families of graphs, this can be computationally or algebraically taxing. We show how two well-known results from linear algebra, the Matrix Determinant Lemma and the Schur complement, can be used to elegantly count the spanning trees in several significant families of graphs. 1. Introduction A graph G consists of a finite set of vertices and a set of edges that connect some pairs of vertices. For the purposes of this paper, we will assume that all graphs are simple, meaning they do not contain loops (an edge connecting a vertex to itself) or multiple edges between a given pair of vertices. We will use V (G) and E(G) to denote the vertex set and edge set of G respectively. For example, the graph G with V (G) = f1; 2; 3; 4g and E(G) = ff1; 2g; f2; 3g; f3; 4g; f1; 4g; f1; 3gg is shown in Figure 1. A spanning tree in a graph G is a subgraph T ⊆ G, meaning T is a graph with V (T ) ⊆ V (G) and E(T ) ⊆ E(G), that satisfies three conditions: (1) every vertex in G is a vertex in T , (2) T is connected, meaning it is possible to walk between any two vertices in G using only edges in T , and (3) T does not contain any cycles. -
Even Factors, Jump Systems, and Discrete Convexity
Even Factors, Jump Systems, and Discrete Convexity Yusuke KOBAYASHI¤ Kenjiro TAKAZAWAy May, 2007 Abstract A jump system, which is a set of integer lattice points with an exchange property, is an extended concept of a matroid. Some combinatorial structures such as the degree sequences of the matchings in an undirected graph are known to form a jump system. On the other hand, the maximum even factor problem is a generalization of the maximum matching problem into digraphs. When the given digraph has a certain property called odd- cycle-symmetry, this problem is polynomially solvable. The main result of this paper is that the degree sequences of all even factors in a digraph form a jump system if and only if the digraph is odd-cycle-symmetric. Furthermore, as a gen- eralization, we show that the weighted even factors induce M-convex (M-concave) functions on jump systems. These results suggest that even factors are a natural generalization of matchings and the assumption of odd-cycle-symmetry of digraphs is essential. 1 Introduction In the study of combinatorial optimization, extensions of matroids are introduced as abstract con- cepts including many combinatorial objects. A number of optimization problems on matroidal structures can be solved in polynomial time. One of the extensions of matroids is a jump system of Bouchet and Cunningham [2]. A jump system is a set of integer lattice points with an exchange property (to be described in Section 2.1); see also [18, 22]. It is a generalization of a matroid [4], a delta-matroid [1, 3, 8], and a base polyhedron of an integral polymatroid (or a submodular sys- tem) [14]. -
Matroid Theory
MATROID THEORY HAYLEY HILLMAN 1 2 HAYLEY HILLMAN Contents 1. Introduction to Matroids 3 1.1. Basic Graph Theory 3 1.2. Basic Linear Algebra 4 2. Bases 5 2.1. An Example in Linear Algebra 6 2.2. An Example in Graph Theory 6 3. Rank Function 8 3.1. The Rank Function in Graph Theory 9 3.2. The Rank Function in Linear Algebra 11 4. Independent Sets 14 4.1. Independent Sets in Graph Theory 14 4.2. Independent Sets in Linear Algebra 17 5. Cycles 21 5.1. Cycles in Graph Theory 22 5.2. Cycles in Linear Algebra 24 6. Vertex-Edge Incidence Matrix 25 References 27 MATROID THEORY 3 1. Introduction to Matroids A matroid is a structure that generalizes the properties of indepen- dence. Relevant applications are found in graph theory and linear algebra. There are several ways to define a matroid, each relate to the concept of independence. This paper will focus on the the definitions of a matroid in terms of bases, the rank function, independent sets and cycles. Throughout this paper, we observe how both graphs and matrices can be viewed as matroids. Then we translate graph theory to linear algebra, and vice versa, using the language of matroids to facilitate our discussion. Many proofs for the properties of each definition of a matroid have been omitted from this paper, but you may find complete proofs in Oxley[2], Whitney[3], and Wilson[4]. The four definitions of a matroid introduced in this paper are equiv- alent to each other. -
Modeling Ddos Attacks by Generalized Minimum Cut Problems
Modeling DDoS Attacks by Generalized Minimum Cut Problems Qi Duan, Haadi Jafarian and Ehab Al-Shaer Jinhui Xu Department of Software and Information Systems Department of Computer Science and Engineering University of North Carolina at Charlotte State University of New York at Buffalo Charlotte, NC, USA Buffalo, NY, USA Abstract—Distributed Denial of Service (DDoS) attack is one applications in many different areas [24]–[26], [32]. In this of the most preeminent threats in Internet. Despite considerable paper, we investigate two important generalizations of the progress on this problem in recent years, a remaining challenge minimum cut problem and their applications in link/node cut is to determine its hardness by adopting proper mathematical models. In this paper, we propose to use generalized minimum based DDoS attacks. The first generalization is denoted as cut as basic tools to model various types of DDoS attacks. the Connectivity Preserving Minimum Cut (CPMC) problem, Particularly, we study two important extensions of the classical which is to find the minimum cut that separates a pair (or pairs) minimum cut problem, called Connectivity Preserving Minimum of source and destination nodes and meanwhile preserve the Cut (CPMC) and Threshold Minimum Cut (TMC), to model large- connectivity between the source and its partner node(s). The scale DDoS attacks. In the CPMC problem, a minimum cut is sought to separate a source node from a destination node second generalization is denoted as the Threshold Minimum and meanwhile preserve the connectivity between the source Cut (TMC) problem in which a minimum cut is sought to and its partner node(s). -
Teacher's Guide for Spanning and Weighted Spanning Trees
Teacher’s Guide for Spanning and weighted spanning trees: a different kind of optimization by sarah-marie belcastro 1TheMath. Let’s talk about spanning trees. No, actually, first let’s talk about graph theory,theareaof mathematics within which the topic of spanning trees lies. 1.1 Graph Theory Background. Informally, a graph is a collection of vertices (that look like dots) and edges (that look like curves), where each edge joins two vertices. Formally, A graph is a pair G =(V,E), where V is a set of dots and E is a set of pairs of vertices. Here are a few examples of graphs, in Figure 1: e b f a Figure 1: Examples of graphs. Note that the word vertex is singular; its plural is vertices. Two vertices that are joined by an edge are called adjacent. For example, the vertices labeled a and b in the leftmost graph of Figure 1 are adjacent. Two edges that meet at a vertex are called incident. For example, the edges labeled e and f in the leftmost graph of Figure 1 are incident. A subgraph is a graph that is contained within another graph. For example, in Figure 1 the second graph is a subgraph of the fourth graph. You can see this at left in Figure 2 where the subgraph in question is emphasized. Figure 2: More examples of graphs. In a connected graph, there is a way to get from any vertex to any other vertex without leaving the graph. The second graph of Figure 2 is not connected. -
A Combinatorial Abstraction of the Shortest Path Problem and Its Relationship to Greedoids
A Combinatorial Abstraction of the Shortest Path Problem and its Relationship to Greedoids by E. Andrew Boyd Technical Report 88-7, May 1988 Abstract A natural generalization of the shortest path problem to arbitrary set systems is presented that captures a number of interesting problems, in cluding the usual graph-theoretic shortest path problem and the problem of finding a minimum weight set on a matroid. Necessary and sufficient conditions for the solution of this problem by the greedy algorithm are then investigated. In particular, it is noted that it is necessary but not sufficient for the underlying combinatorial structure to be a greedoid, and three ex tremely diverse collections of sufficient conditions taken from the greedoid literature are presented. 0.1 Introduction Two fundamental problems in the theory of combinatorial optimization are the shortest path problem and the problem of finding a minimum weight set on a matroid. It has long been recognized that both of these problems are solvable by a greedy algorithm - the shortest path problem by Dijk stra's algorithm [Dijkstra 1959] and the matroid problem by "the" greedy algorithm [Edmonds 1971]. Because these two problems are so fundamental and have such similar solution procedures it is natural to ask if they have a common generalization. The answer to this question not only provides insight into what structural properties make the greedy algorithm work but expands the class of combinatorial optimization problems known to be effi ciently solvable. The present work is related to the broader question of recognizing gen eral conditions under which a greedy algorithm can be used to solve a given combinatorial optimization problem. -
Matroids and Tropical Geometry
matroids unimodality and log concavity strategy: geometric models tropical models directions Matroids and Tropical Geometry Federico Ardila San Francisco State University (San Francisco, California) Mathematical Sciences Research Institute (Berkeley, California) Universidad de Los Andes (Bogotá, Colombia) Introductory Workshop: Geometric and Topological Combinatorics MSRI, September 5, 2017 (3,-2,0) Who is here? • This is the Introductory Workshop. • Focus on accessibility for grad students and junior faculty. • # (questions by students + postdocs) # (questions by others) • ≥ matroids unimodality and log concavity strategy: geometric models tropical models directions Preface. Thank you, organizers! • This is the Introductory Workshop. • Focus on accessibility for grad students and junior faculty. • # (questions by students + postdocs) # (questions by others) • ≥ matroids unimodality and log concavity strategy: geometric models tropical models directions Preface. Thank you, organizers! • Who is here? • matroids unimodality and log concavity strategy: geometric models tropical models directions Preface. Thank you, organizers! • Who is here? • This is the Introductory Workshop. • Focus on accessibility for grad students and junior faculty. • # (questions by students + postdocs) # (questions by others) • ≥ matroids unimodality and log concavity strategy: geometric models tropical models directions Summary. Matroids are everywhere. • Many matroid sequences are (conj.) unimodal, log-concave. • Geometry helps matroids. • Tropical geometry helps matroids and needs matroids. • (If time) Some new constructions and results. • Joint with Carly Klivans (06), Graham Denham+June Huh (17). Properties: (B1) B = /0 6 (B2) If A;B B and a A B, 2 2 − then there exists b B A 2 − such that (A a) b B. − [ 2 Definition. A set E and a collection B of subsets of E are a matroid if they satisfies properties (B1) and (B2). -
Arxiv:1403.0920V3 [Math.CO] 1 Mar 2019
Matroids, delta-matroids and embedded graphs Carolyn Chuna, Iain Moffattb, Steven D. Noblec,, Ralf Rueckriemend,1 aMathematics Department, United States Naval Academy, Chauvenet Hall, 572C Holloway Road, Annapolis, Maryland 21402-5002, United States of America bDepartment of Mathematics, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom cDepartment of Mathematics, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom d Aschaffenburger Strasse 23, 10779, Berlin Abstract Matroid theory is often thought of as a generalization of graph theory. In this paper we propose an analogous correspondence between embedded graphs and delta-matroids. We show that delta-matroids arise as the natural extension of graphic matroids to the setting of embedded graphs. We show that various basic ribbon graph operations and concepts have delta-matroid analogues, and illus- trate how the connections between embedded graphs and delta-matroids can be exploited. Also, in direct analogy with the fact that the Tutte polynomial is matroidal, we show that several polynomials of embedded graphs from the liter- ature, including the Las Vergnas, Bollab´as-Riordanand Krushkal polynomials, are in fact delta-matroidal. Keywords: matroid, delta-matroid, ribbon graph, quasi-tree, partial dual, topological graph polynomial 2010 MSC: 05B35, 05C10, 05C31, 05C83 1. Overview Matroid theory is often thought of as a generalization of graph theory. Many results in graph theory turn out to be special cases of results in matroid theory. This is beneficial -
Matroids You Have Known
26 MATHEMATICS MAGAZINE Matroids You Have Known DAVID L. NEEL Seattle University Seattle, Washington 98122 [email protected] NANCY ANN NEUDAUER Pacific University Forest Grove, Oregon 97116 nancy@pacificu.edu Anyone who has worked with matroids has come away with the conviction that matroids are one of the richest and most useful ideas of our day. —Gian Carlo Rota [10] Why matroids? Have you noticed hidden connections between seemingly unrelated mathematical ideas? Strange that finding roots of polynomials can tell us important things about how to solve certain ordinary differential equations, or that computing a determinant would have anything to do with finding solutions to a linear system of equations. But this is one of the charming features of mathematics—that disparate objects share similar traits. Properties like independence appear in many contexts. Do you find independence everywhere you look? In 1933, three Harvard Junior Fellows unified this recurring theme in mathematics by defining a new mathematical object that they dubbed matroid [4]. Matroids are everywhere, if only we knew how to look. What led those junior-fellows to matroids? The same thing that will lead us: Ma- troids arise from shared behaviors of vector spaces and graphs. We explore this natural motivation for the matroid through two examples and consider how properties of in- dependence surface. We first consider the two matroids arising from these examples, and later introduce three more that are probably less familiar. Delving deeper, we can find matroids in arrangements of hyperplanes, configurations of points, and geometric lattices, if your tastes run in that direction. -
Invitation to Matroid Theory
Invitation to Matroid Theory Gregory Henselman-Petrusek January 21, 2021 Abstract This text is a companion to the short course Invitation to matroid theory taught in the Univer- sity of Oxford Centre for TDA in January 2021. It was first written for algebraic topologists, but should be suitable for all audiences; no background in matroid theory is assumed! 1 How to use this text Matroid theory is a beautiful, powerful, and accessible. Many important subjects can be understood and even researched with just a handful of concepts and definitions from matroid theory. Even so, getting use out of matroids often depends on knowing the right keywords for an internet search, and finding the right keyword depends on two things: (i) a precise knowledge of the core terms/definitions of matroid theory, and (ii) a birds eye view of the network of relationships that interconnect some of the main ideas in the field. These are the focus of this text; it falls far short of a comprehensive overview, but provides a strong start to (i) and enough of (ii) to build an interesting (and fun!) network of ideas including some of the most important concepts in matroid theory. The proofs of most results can be found in standard textbooks (e.g. Oxley, Matroid theory). Exercises are chosen to maximize the fraction intellectual reward time required to solve Therefore, if an exercise takes more than a few minutes to solve, it is fine to look up answers in a textbook! Struggling is not prerequisite to learning, at this level. 2 References The following make no attempt at completeness. -
Parity Systems and the Delta-Matroid Intersection Problem
Parity Systems and the Delta-Matroid Intersection Problem Andr´eBouchet ∗ and Bill Jackson † Submitted: February 16, 1998; Accepted: September 3, 1999. Abstract We consider the problem of determining when two delta-matroids on the same ground-set have a common base. Our approach is to adapt the theory of matchings in 2-polymatroids developed by Lov´asz to a new abstract system, which we call a parity system. Examples of parity systems may be obtained by combining either, two delta- matroids, or two orthogonal 2-polymatroids, on the same ground-sets. We show that many of the results of Lov´aszconcerning ‘double flowers’ and ‘projections’ carry over to parity systems. 1 Introduction: the delta-matroid intersec- tion problem A delta-matroid is a pair (V, ) with a finite set V and a nonempty collection of subsets of V , called theBfeasible sets or bases, satisfying the following axiom:B ∗D´epartement d’informatique, Universit´edu Maine, 72017 Le Mans Cedex, France. [email protected] †Department of Mathematical and Computing Sciences, Goldsmiths’ College, London SE14 6NW, England. [email protected] 1 the electronic journal of combinatorics 7 (2000), #R14 2 1.1 For B1 and B2 in and v1 in B1∆B2, there is v2 in B1∆B2 such that B B1∆ v1, v2 belongs to . { } B Here P ∆Q = (P Q) (Q P ) is the symmetric difference of two subsets P and Q of V . If X\ is a∪ subset\ of V and if we set ∆X = B∆X : B , then we note that (V, ∆X) is a new delta-matroid.B The{ transformation∈ B} (V, ) (V, ∆X) is calledB a twisting. -
Oasics-SOSA-2019-14.Pdf (0.4
Simple Greedy 2-Approximation Algorithm for the Maximum Genus of a Graph Michal Kotrbčík Department of Computer Science, Comenius University, 842 48 Bratislava, Slovakia [email protected] Martin Škoviera1 Department of Computer Science, Comenius University, 842 48 Bratislava, Slovakia [email protected] Abstract The maximum genus γM (G) of a graph G is the largest genus of an orientable surface into which G has a cellular embedding. Combinatorially, it coincides with the maximum number of disjoint pairs of adjacent edges of G whose removal results in a connected spanning subgraph of G. In this paper we describe a greedy 2-approximation algorithm for maximum genus by proving that removing pairs of adjacent edges from G arbitrarily while retaining connectedness leads to at least γM (G)/2 pairs of edges removed. As a consequence of our approach we also obtain a 2-approximate counterpart of Xuong’s combinatorial characterisation of maximum genus. 2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms → Graph algorithms analysis, Mathematics of computing → Graph algorithms, Mathematics of computing → Graphs and surfaces Keywords and phrases maximum genus, embedding, graph, greedy algorithm Digital Object Identifier 10.4230/OASIcs.SOSA.2019.14 Acknowledgements The authors would like to thank Rastislav Královič and Jana Višňovská for reading preliminary versions of this paper and making useful suggestions. 1 Introduction One of the paradigms in topological graph theory is the study of all surface embeddings of a given graph. The maximum genus γM (G) parameter of a graph G is then the maximum integer g such that G has a cellular embedding in the orientable surface of genus g.A result of Duke [12] implies that a graph G has a cellular embedding in the orientable surface of genus g if and only if γ(G) ≤ g ≤ γM (G) where γ(G) denotes the (minimum) genus of G.