Xinjiang Tianshan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Moüjmtaiim Operations
L f\f¿ áfó b^i,. ‘<& t¿ ytn) ¿L0d àw 1 /1 ^ / / /This publication contains copyright material. *FM 90-6 FieW Manual HEADQUARTERS No We DEPARTMENT OF THE ARMY Washington, DC, 30 June 1980 MOÜJMTAIIM OPERATIONS PREFACE he purpose of this rUanual is to describe how US Army forces fight in mountain regions. Conditions will be encountered in mountains that have a significant effect on. military operations. Mountain operations require, among other things^ special equipment, special training and acclimatization, and a high decree of self-discipline if operations are to succeed. Mountains of military significance are generally characterized by rugged compartmented terrain witn\steep slopes and few natural or manmade lines of communication. Weather in these mountains is seasonal and reaches across the entireSspectrum from extreme cold, with ice and snow in most regions during me winter, to extreme heat in some regions during the summer. AlthoughNthese extremes of weather are important planning considerations, the variability of weather over a short period of time—and from locality to locahty within the confines of a small area—also significantly influences tactical operations. Historically, the focal point of mountain operations has been the battle to control the heights. Changes in weaponry and equipment have not altered this fact. In all but the most extreme conditions of terrain and weather, infantry, with its light equipment and mobility, remains the basic maneuver force in the mountains. With proper equipment and training, it is ideally suited for fighting the close-in battfe commonly associated with mountain warfare. Mechanized infantry can\also enter the mountain battle, but it must be prepared to dismount and conduct operations on foot. -
Glaciers in Xinjiang, China: Past Changes and Current Status
water Article Glaciers in Xinjiang, China: Past Changes and Current Status Puyu Wang 1,2,3,*, Zhongqin Li 1,3,4, Hongliang Li 1,2, Zhengyong Zhang 3, Liping Xu 3 and Xiaoying Yue 1 1 State Key Laboratory of Cryosphere Science/Tianshan Glaciological Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] (Z.L.); [email protected] (H.L.); [email protected] (X.Y.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 College of Sciences, Shihezi University, Shihezi 832000, China; [email protected] (Z.Z.); [email protected] (L.X.) 4 College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China * Correspondence: [email protected] Received: 18 June 2020; Accepted: 11 August 2020; Published: 24 August 2020 Abstract: The Xinjiang Uyghur Autonomous Region of China is the largest arid region in Central Asia, and is heavily dependent on glacier melt in high mountains for water supplies. In this paper, glacier and climate changes in Xinjiang during the past decades were comprehensively discussed based on glacier inventory data, individual monitored glacier observations, recent publications, as well as meteorological records. The results show that glaciers have been in continuous mass loss and dimensional shrinkage since the 1960s, although there are spatial differences between mountains and sub-regions, and the significant temperature increase is the dominant controlling factor of glacier change. The mass loss of monitored glaciers in the Tien Shan has accelerated since the late 1990s, but has a slight slowing after 2010. Remote sensing results also show a more negative mass balance in the 2000s and mass loss slowing in the latest decade (2010s) in most regions. -
Kinematics of Active Deformation Across the Western Kunlun Mountain Range (Xinjiang, China), and Potential Seismic Hazards Within the Southern Tarim Basin
Downloaded from orbit.dtu.dk on: Oct 03, 2021 Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie; Laborde, Amandine; Van der Woerd, Jérôme; Li, Haibing; Tapponnier, Paul; Coudroy, Thomas; Murray, Andrew Sean Published in: Journal of Geophysical Research: Solid Earth Link to article, DOI: 10.1002/2017JB014069 Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Guilbaud, C., Simoes, M., Barrier, L., Laborde, A., Van der Woerd, J., Li, H., Tapponnier, P., Coudroy, T., & Murray, A. S. (2017). Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin. Journal of Geophysical Research: Solid Earth, 122(12), 10,398-10,426. https://doi.org/10.1002/2017JB014069 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Selected Works of Chokan Valikhanov Selected Works of Chokan Valikhanov
SELECTED WORKS OF CHOKAN VALIKHANOV CHOKAN OF WORKS SELECTED SELECTED WORKS OF CHOKAN VALIKHANOV Pioneering Ethnographer and Historian of the Great Steppe When Chokan Valikhanov died of tuberculosis in 1865, aged only 29, the Russian academician Nikolai Veselovsky described his short life as ‘a meteor flashing across the field of oriental studies’. Set against his remarkable output of official reports, articles and research into the history, culture and ethnology of Central Asia, and more important, his Kazakh people, it remains an entirely appropriate accolade. Born in 1835 into a wealthy and powerful Kazakh clan, he was one of the first ‘people of the steppe’ to receive a Russian education and military training. Soon after graduating from Siberian Cadet Corps at Omsk, he was taking part in reconnaissance missions deep into regions of Central Asia that had seldom been visited by outsiders. His famous mission to Kashgar in Chinese Turkestan, which began in June 1858 and lasted for more than a year, saw him in disguise as a Tashkent mer- chant, risking his life to gather vital information not just on current events, but also on the ethnic make-up, geography, flora and fauna of this unknown region. Journeys to Kuldzha, to Issyk-Kol and to other remote and unmapped places quickly established his reputation, even though he al- ways remained inorodets – an outsider to the Russian establishment. Nonetheless, he was elected to membership of the Imperial Russian Geographical Society and spent time in St Petersburg, where he was given a private audience by the Tsar. Wherever he went he made his mark, striking up strong and lasting friendships with the likes of the great Russian explorer and geographer Pyotr Petrovich Semyonov-Tian-Shansky and the writer Fyodor Dostoyevsky. -
Mission and Revolution in Central Asia
Mission and Revolution in Central Asia The MCCS Mission Work in Eastern Turkestan 1892-1938 by John Hultvall A translation by Birgitta Åhman into English of the original book, Mission och revolution i Centralasien, published by Gummessons, Stockholm, 1981, in the series STUDIA MISSIONALIA UPSALIENSIA XXXV. TABLE OF CONTENTS Foreword by Ambassador Gunnar Jarring Preface by the author I. Eastern Turkestan – An Isolated Country and Yet a Meeting Place 1. A Geographical Survey 2. Different Ethnic Groups 3. Scenes from Everyday Life 4. A Brief Historical Survey 5. Religious Concepts among the Chinese Rulers 6. The Religion of the Masses 7. Eastern Turkestan Church History II. Exploring the Mission Field 1892 -1900. From N. F. Höijer to the Boxer Uprising 1. An Un-known Mission Field 2. Pioneers 3. Diffident Missionary Endeavours 4. Sven Hedin – a Critic and a Friend 5. Real Adversities III. The Foundation 1901 – 1912. From the Boxer Uprising to the Birth of the Republic. 1. New Missionaries Keep Coming to the Field in a Constant Stream 2. Mission Medical Care is Organized 3. The Chinese Branch of the Mission Develops 4. The Bible Dispute 5. Starting Children’s Homes 6. The Republican Frenzy Reaches Kashgar 7. The Results of the Founding Years IV. Stabilization 1912 – 1923. From Sjöholm’s Inspection Tour to the First Persecution. 1. The Inspection of 1913 2. The Eastern Turkestan Conference 3. The Schools – an Attempt to Reach Young People 4. The Literary Work Transgressing all Frontiers 5. The Church is Taking Roots 6. The First World War – Seen from a Distance 7. -
Without Land, There Is No Life: Chinese State Suppression of Uyghur Environmental Activism
Without land, there is no life: Chinese state suppression of Uyghur environmental activism Table of Contents Summary ..............................................................................................................................2 Cultural Significance of the Environment and Environmentalism ......................................5 Nuclear Testing: Suppression of Uyghur Activism ...........................................................15 Pollution and Ecological Destruction in East Turkestan ...................................................30 Lack of Participation in Decision Making: Development and Displacement ....................45 Legal Instruments...............................................................................................................61 Recommendations ..............................................................................................................66 Acknowledgements ............................................................................................................69 Endnotes .............................................................................................................................70 Cover image: Dead toghrak (populus nigra) tree in Niya. Photo courtesy of Flickr 1 Summary The intimate connection between the Uyghur people and the land of East Turkestan is celebrated in songs and poetry written and performed in the Uyghur language. Proverbs in Uyghur convey how the Uyghur culture is tied to reverence of the land and that an individual’s identity is inseparable -
Thermochronology of the Highest Central Asian Massifs (Khan Tengri -Pobedi, SE Kyrgyztan): Evidence for Late Miocene (Ca
Thermochronology of the highest Central Asian massifs (Khan Tengri -Pobedi, SE Kyrgyztan): evidence for Late Miocene (ca. 8 Ma) reactivation of Permian faults and insights into building the Tian Shan Yann Rolland, Anthony Jourdon, Carole Petit, Nicolas Bellahsen, C. Loury, Edward Sobel, Johannes Glodny To cite this version: Yann Rolland, Anthony Jourdon, Carole Petit, Nicolas Bellahsen, C. Loury, et al.. Thermochronology of the highest Central Asian massifs (Khan Tengri -Pobedi, SE Kyrgyztan): evidence for Late Miocene (ca. 8 Ma) reactivation of Permian faults and insights into building the Tian Shan. Journal of Asian Earth Sciences, Elsevier, 2020, 200, pp.104466. 10.1016/j.jseaes.2020.104466. hal-02902631 HAL Id: hal-02902631 https://hal.archives-ouvertes.fr/hal-02902631 Submitted on 20 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Thermochronology of the highest Central Asian massifs 2 (Khan Tengri - Pobedi, SE Kyrgyztan): evidence for Late 3 Miocene (ca. 8 Ma) reactivation of Permian faults and 4 insights into building the Tian Shan 5 a* b c d c e f 6 Rolland, Y. , Jourdon, A. , Petit, C. , Bellahsen, N. , Loury, C. -
Nomenclàtor Mundial: Rússia I Països Propers Comissió D'onomàstica
Nomenclàtor mundial: Rússia i països propers Comissió d’Onomàstica Novembre 2019 Països revisats: Armènia Azerbaidjan Belarús Geòrgia Kazakhstan Kirguizstan Mongòlia Rússia Tadjikistan Turkmenistan Ucraïna Uzbekistan Nomenclàtor mundial: Armènia Estat Categoria Proposta Forma secundària Forma oficial Armènia 0_Estat Armènia Հայաստան [Hayastan] Armènia 1_Capital Yerevan Երևան [Yerevan] Armènia 2_Població Gyumri Գյումրի [Gyumri] Armènia; Elevació 2 Ararat Արարատ [Ararat] (Ar.); Ağrı Dağı Turquia (Tur.) Armènia Llac, albufera Sevana, llac Սևանա լիճ [Sevana lič]̣ Nomenclàtor mundial: Azerbaidjan Estat Categoria Proposta Forma secundària Forma oficial Azerbaidjan 0_Estat Azerbaidjan (, l') Azǝrbaycan Azerbaidjan 1_Capital Bakú Bakı Azerbaidjan 2_Població Ağdam Ağdam Azerbaidjan 2_Població Balakən Balakən Azerbaidjan 2_Població Bankǝ Bankǝ Azerbaidjan 2_Població Gəncə Gəncə Azerbaidjan 2_Població Lənkəran Lənkəran Azerbaidjan 2_Població Mingəçevir Mingəçevir Azerbaidjan 2_Població Naxçıvan Naxçıvan Azerbaidjan 2_Població Sumqayıt Sumqayıt Azerbaidjan 2_Població Xudat Xudat Azerbaidjan Elevació 1 Talış, muntanyes Talış dağları Rússia; Elevació 1 Caucas, el Qafqaz (Az.); Կովկաս [Kovkas] Geòrgia; (Ar.); კავკასია [K'avk'asia] (Ge.); Azerbaidjan Кавказ [Kavkaz] (Rus.) Azerbaidjan Elevació 2 Bazardüzü, pic Bazardüzü dağı Azerbaidjan Llac, albufera Sarısu, llac Sarısu göl Azerbaidjan; Mar, oceà Càspia, mar Каспий маңы ойпаты (Kaspii mańy Kazakhstan; oipaty) (Ka.); Xəzər dənizi (Azer.); Rússia; Каспийское море (Rus.); Hazar Turkmenistan deňzi (Tur.) -
Quantifying Trends of Land Change in Qinghai-Tibet Plateau During 2001–2015
remote sensing Article Quantifying Trends of Land Change in Qinghai-Tibet Plateau during 2001–2015 Chao Wang, Qiong Gao and Mei Yu * Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, San Juan, PR 00936, USA; [email protected] (C.W.); [email protected] (Q.G.) * Correspondence: [email protected]; Tel.: +1-787-764-0000 Received: 1 September 2019; Accepted: 17 October 2019; Published: 20 October 2019 Abstract: The Qinghai-Tibet Plateau (QTP) is among the most sensitive ecosystems to changes in global climate and human activities, and quantifying its consequent change in land-cover land-use (LCLU) is vital for assessing the responses and feedbacks of alpine ecosystems to global climate changes. In this study, we first classified annual LCLU maps from 2001–2015 in QTP from MODIS satellite images, then analyzed the patterns of regional hotspots with significant land changes across QTP, and finally, associated these trends in land change with climate forcing and human activities. The pattern of land changes suggested that forests and closed shrublands experienced substantial expansions in the southeastern mountainous region during 2001–2015 with the expansion of massive meadow loss. Agricultural land abandonment and the conversion by conservation policies existed in QTP, and the newly-reclaimed agricultural land partially offset the loss with the resulting net change of 5.1%. Although the urban area only expanded 586 km2, mainly at the expense of agricultural − land, its rate of change was the largest (41.2%). Surface water exhibited a large expansion of 5866 km2 (10.2%) in the endorheic basins, while mountain glaciers retreated 8894 km2 ( 3.4%) mainly in the − southern and southeastern QTP. -
Climate Vulnerability in Asia's High Mountains
Climate Vulnerability in Asia’s High Mountains COVER: VILLAGE OF GANDRUNG NESTLED IN THE HIMALAYAS. ANNAPURNA AREA, NEPAL; © GALEN ROWELL/MOUNTAIN LIGHT / WWF-US Climate Vulnerability in Asia’s High Mountains May 2014 PREPARED BY TAYLOR SMITH Independent Consultant [email protected] This report is made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of WWF and do not necessarily reflect the views of USAID or the United States Government. THE UKOK PLATEAU NATURAL PARK, REPUBLIC OF ALTAI; © BOGOMOLOV DENIS / WWF-RUSSIA CONTENTS EXECUTIVE SUMMARY .........................................1 4.2.1 Ecosystem Restoration ........................................... 40 4.2.2 Community Water Management .............................. 41 State of Knowledge on Climate Change Impacts .................. 1 4.3 Responding to Flooding and Landslides ....................... 41 State of Knowledge on Human Vulnerability ......................... 1 4.3.1 Flash Flooding ......................................................... 41 Knowledge Gaps and Policy Perspective .............................. 3 4.3.2 Glacial Lake Outburst Floods .................................. 42 Recommendations for Future Adaptation Efforts ................. 3 4.3.3 Landslides ............................................................... 43 4.4 Adaptation by Mountain Range ....................................... 44 Section I 4.4.1 The Hindu Kush–Karakorum–Himalaya Region -
Decentralized Electrification of Suyuek in Xinjiang
Decentralized Electrification of Suyuek in Xinjiang EDF Solution for Decentralized Rural Electrification Asia Pacific Branch, EDF R&D, EDF Group CONTENTCONTENT • Brief introduction of EDF Activities • EDF’s solution for Decentralized Electrification • Introduction of Suyuek Decentralized Rural Electrification project BriefBrief IntroductionIntroduction ofof EDFEDF • Public Electrical Company, be responsible for power generation and distribution of electricity. • Public service mission • Power Installation 120GW (101.2GW in France) * Nuclear 62.3% * Hydro 20.1% * Thermal 17.6% EDF INTERNATIONAL INVESTISSEMENT Hydro & Gas Nuclear Other Renewable 7.3% 10.5% 6% 25.2% CCGT IGCC Coal 20% 1% 38.2% EDFEDF’’ss solutionsolution forfor decentralizeddecentralized electrificationelectrification • Situation in France * 10000 isolating sites far from the grid * Most of these isolated sites have been electrified by EDF through decentralized electrification EDFEDF’’ss solutionsolution forfor decentralizeddecentralized electrificationelectrification • Programme ACCESS * 4 existing Projects: - 2 projects in Mali in Africa - 1 project in Morocco - 1 project in South Africa * Supplied population 100,000 (still augment) * Under developing projects -Laos - Madagascar - Philippines SuyuekSuyuek decentralizeddecentralized ruralrural electrificationelectrification projectproject • Background of the project • Participants of the project • Project Description ENR conference in Bonn, june 2004, China’s declaration : “By 2010 the capacity of renewable energy will -
Sudanworkingpaper
SUDANWORKINGPAPER Comparing borderland dynamics Processes of territorialisation in the Nuba Mountains in Sudan, southern Yunnan in China, and the Pamir Mountains in Tajikistan Leif Ole Manger Department of Social Anthropology, (UiB) Universtity of Bergen SWP 2015: 3 The programme Assisting Regional Universities in Sudan and South Sudan (ARUSS) aims to build academic bridges between Sudan and South Sudan. The overall objective is to enhance the quality and relevance of teaching and research in regional universities. As part of the program, research is carried out on a number of topics which are deemed important for lasting peace and development within and between the two countries. Efforts are also made to influence policy debates and improve the basis for decision making in both countries as well as among international actors. ARUSS is supported by the Norwegian Ministry of Foreign Affairs. About the author Leif Ole Manger is Professor in the Department of Social Anthropology at the University of Bergen. His research has emphasis on the Horn of Africa, the Middle East and the Indian Ocean, with long-term field research in the Sudan, and shorter fieldworks in Yemen, Hyderabad, India, Singapore and China. His research focuses on economic and ecological anthropology, development studies, planning, land tenure, trade, communal labour, Arabization and Islamization. Mixing a broad cultural historical understanding of a region with current events is also important in Manger’s latest work on borders and borderland populations. Regionally this work focuses the borderland situations between Sudan and the new nation state of South Sudan, between post-Soviet Tajikistan, China and Afghanistan, and between contemporary China, Myanmar and India.