O Attribution — You Must Give Appropriate Credit, Provide a Link to the License, and Indicate If Changes Were Made

Total Page:16

File Type:pdf, Size:1020Kb

O Attribution — You Must Give Appropriate Credit, Provide a Link to the License, and Indicate If Changes Were Made COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujcontent.uj.ac.za/vital/access/manager/Index?site_name=Research%20Output (Accessed: Date). A CASE STUDY ON THE HISTORICAL WATER QUALITY TRENDS PERTAINING TO THE JUKSKEI RIVER IN THE GAUTENG PROVINCE, SOUTH AFRICA BY JANAVI MELLISSA JARDINE-DA SILVA MINOR DISSERTATION Submitted in partial fulfilment of the requirements for the degree MASTER OF SCIENCE (MSc) In ENVIRONMENTAL MANAGEMENT In the FACULTY OF SCIENCE At the UNIVERSITY OF JOHANNESBURG SUPERVISOR: Dr I.T. RAMPEDI 08th April 2016 ACKNOWLEDGEMENTS I would like to extend a word of sincere thanks and appreciation to the following people in recognition of the meaningful role and support they have provided during the course of the Research Project. Dr I.T Rampedi, my Supervisor for his unwavering guidance, support, effort and encouragement throughout the project. The Department of Water Affairs (DWA) for supplying water quality data and monitoring information. Michiel Jonker from Ecotone Freshwater Consultants for his advice and allowing me to make use of his GIS and water quality assessment tools. My parents and brother for their support and encouragement and my husband, Richard for his support and encouragement during the entire research period. ABSTRACT Due to the geographical position of the Jukskei River in the built-up and densely populated landscape, it has been historically subject to many water quality problems, particularly of bacterial nature, as well as from other pollution sources. At one stage, between 1995 and 2005, this river was subject to increasing pH levels and variable concentrations of sulphates, potassium, phosphates and nitrates. The potential for flooding and changes in water quality are expected to have a direct correlation to the changes in surface coverage of the built environment surrounding the Jukskei River. Major storm water management concerns have arisen in urban areas as a result of increased severity and frequency of flooding, with detrimental consequences for society and the environment. There is therefore a dire need to constantly monitor water quality, as the pollution loads gathered in the Jukskei channel ultimately reach the Hartbeespoort Dam, which is already in a state of high eutrophication. In responding to these water management challenges, it is crucial to understand the relationship between land use change, rainfall trends and water quality, so that storm water runoff can be managed effectively and efficiently. Data which was obtained from the Department of Water Affairs (DWA) for the 28 year period from 1986 to 2014, shows overall concentrations of pollutants for three sites (Site A, Site B and Site C) along the Jukskei River. This correlates inversely to the increases in average water flows at these sites. The increased water flow and increased urban land use coverage over the period may be responsible for the decrease in pollutant concentrations at these sites. The reasons for the more marked decrease in pollutant concentrations at Site A than Site B may be that Site A is located downstream of Site B. This could be due to the increased incidence of development-related impermeable surfaces occurring in close proximity to Site B, whereas Site A is further from the urban edge. It appears that an increase in the area of impermeable surfaces over time is negatively correlated with pollutant concentrations. This would imply that increased impermeable surfaces provide increased flow into the Jukskei River and therefore allow for the dilution of pollutants entering this river. This negative correlation is expected to continue into the future and the dilution effect may possibly be enhanced with increased development of impermeable surfaces within Johannesburg, depending on other water quality inputs. A case study on the historical water quality trends pertaining to the Jukskei River in the Gauteng province, South Africa. TABLE OF CONTENTS Table of Contents 1 INTRODUCTION ..................................................................................................................... 6 1.1 INTRODUCTION AND BACKGROUND TO THE RESEARCH PROBLEM ........................................................ 6 1.1.1 Statement of the Research Problem ................................................................................................. 6 1.1.2 Research Aim and Objectives .......................................................................................................... 8 1.2 RESEARCH METHODOLOGY .................................................................................................................. 8 1.2.1 Stage 1 ............................................................................................................................................. 8 1.2.2 Stage 2 ............................................................................................................................................. 9 1.2.3 Stage 3 ............................................................................................................................................. 9 2 LITERATURE REVIEW ......................................................................................................... 10 2.1 INTRODUCTION ................................................................................................................................... 10 2.1.1 Understanding the pollution context of the Jukskei River ............................................................. 11 2.2 IMPACTS OF URBANISATION ON THE JUKSKEI RIVER .......................................................................... 12 2.2.1 Background on previous Jukskei River Water Quality Datasets ................................................... 14 3 DESCRIPTION OF THE STUDY AREA ............................................................................... 15 3.1 GENERAL BACKGROUND TO THE STUDY AREA .................................................................................. 15 3.2 LOCATION OF THE JUKSKEI RIVER ...................................................................................................... 15 3.3 GEOLOGY, SOIL AND TOPOGRAPHY .................................................................................................... 16 3.4 NATURAL VEGETATION ...................................................................................................................... 17 3.5 SOCIO-ECONOMIC FACTORS ................................................................................................................ 17 4 DATA COLLECTION AND METHODOLOGY ...................................................................... 19 4.1 INTRODUCTION ................................................................................................................................... 19 4.1.1 Water Quality Guidelines and Standards ...................................................................................... 19 4.1.2 Comparison of Various Standards ................................................................................................. 19 4.2 DATA COLLECTION ............................................................................................................................. 22 4.2.1 Geographical Position of Monitoring Sites ................................................................................... 22 4.3 CORRELATING HISTORICAL WATER QUALITY DATA WITH HISTORICAL LAND USE DATA ................. 23 4.4 CLIMATE ............................................................................................................................................. 28 4.4.1 Average Historical Rainfall Patterns within Gauteng ................................................................... 28 5 RESULTS AND DISCUSSION .............................................................................................. 30 5.1 INTRODUCTION ................................................................................................................................... 30 5.1.1 Average Seasonal Flow Rates (DWA, 1986 to 2014) .................................................................... 30 5.2 WATER QUALITY DATA ANALYSIS ..................................................................................................... 31 5.2.1 Analysis of Historical Water Quality (DWA - 1986 to 2014) ........................................................ 31 5.2.2 Site A (DWA A21 90169), Site B (DWA A21 90189) and Site C (DWA A21 90191) Water Quality 32 5.3 ANALYSES OF PHYSICAL DETERMINANDS .......................................................................................... 41 5.3.1 pH .................................................................................................................................................. 41 5.3.2 Electrical Conductivity .................................................................................................................
Recommended publications
  • A Gis Approach for Flood Vulnerability and Adaptation Analysis in Diepsloot, Johannesburg
    A GIS APPROACH FOR FLOOD VULNERABILITY AND ADAPTATION ANALYSIS IN DIEPSLOOT, JOHANNESBURG ADELINE NGIE (Student No. 201003585) Department of Geography, Environmental Management and Energy Studies Supervisors: Prof. H.J. Annegarn Maryna Storie Gauteng City-Region Observatory, (A collaboration between the University of Johannesburg, the University of the Witwatersrand, Johannesburg and the Gauteng Provincial Government) A minor dissertation submitted to the Faculty of Science, University of Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Environmental Management. 30 January 2012 Affidavit TO WHOM IT MAY CONCERN This serves to confirm that I, Adeline NGIE with student number 201003585 and bearer of Cameroonian Passport Number 01138195, enrolled for an MSc in Environmental Management with the Department of Geography, Environmental Management and Energy Studies in the Faculty of Science, herewith declare that my academic work titled: A GIS approach for flood vulnerability and adaptation analysis in Diepsloot, Johannesburg, is in line with the Plagiarism Policy of the University of Johannesburg, with which I am familiar. I further declare that this work is authentic and original unless clearly indicated otherwise and in such instances full reference to the source is acknowledged and I do not pretend to receive any credit for such acknowledged quotations, and that there is no copyright infringement in my work. I declare that no unethical research practices were used or material gained through dishonesty. I understand that plagiarism is a serious offence and that should I contravene the Plagiarism Policy notwithstanding signing this affidavit, I may be found guilty of a serious criminal offence (perjury) that would amongst other consequences compel the University to inform all other tertiary institutions of the offence and to issue a corresponding certificate of reprehensible academic conduct to whoever request such a certificate from the institution.
    [Show full text]
  • Contaminants of Emerging Concern in the Hartbeespoort Dam Catchment
    VU Research Portal Contaminants of emerging concern in the Hartbeespoort Dam catchment and the uMngeni River estuary 2016 pollution incident, South Africa Rimayi, Cornelius; Odusanya, David; Weiss, Jana M.; de Boer, Jacob; Chimuka, Luke published in Science of the Total Environment 2018 DOI (link to publisher) 10.1016/j.scitotenv.2018.01.263 document version Publisher's PDF, also known as Version of record document license Article 25fa Dutch Copyright Act Link to publication in VU Research Portal citation for published version (APA) Rimayi, C., Odusanya, D., Weiss, J. M., de Boer, J., & Chimuka, L. (2018). Contaminants of emerging concern in the Hartbeespoort Dam catchment and the uMngeni River estuary 2016 pollution incident, South Africa. Science of the Total Environment, 627, 1008-1017. https://doi.org/10.1016/j.scitotenv.2018.01.263 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Land Cover Change on Urban Flood Hazard: a Case Study of the Jukskei River in Alexandra Township, Johannesburg, South Africa
    South African Journal of Geomatics, Vol. 10. No. 2, August 2021 Hydrological Impacts of Land Use - Land Cover Change on Urban Flood Hazard: A Case Study of the Jukskei River in Alexandra Township, Johannesburg, South Africa. Tshepo Sylvester Mawasha1 and Wilma Britz2 Department of Geoscience, Nelson Mandela University, Port Elizabeth, South Africa 1 [email protected], 2 [email protected] DOI: http://dx.doi.org/10.4314/sajg.v10i2.11 Abstract Flooding in urban areas is a major natural disaster causing damage to infrastructure, properties and loss of life. In urban areas the major causes behind the changing hydrological processes (i.e., floods) include topography, increase in precipitation due to climate change and change in land- use/land-cover (LULC) over time. The objective of this study is to evaluate the spatial and temporal LULC change impacts on flooding along the Jukskei River in Alexandra Township, Johannesburg, South Africa. The LULC images of 1987 MSS and 2015 OLI derived from Landsat satellite were pre- processed and classified using a supervised classification method. The analysis of LULC revealed that, there is an increase in built-up area from 934,2 ha to 1277,2 ha and reduction in intact and sparse vegetation from 190,5 ha to 62,4 ha and 380,8 ha to 142,1 ha, respectively, between the years 1987 and 2015. The flood depth map, velocity map and flood depth-velocity for different return periods and LULC scenarios have been developed by using an integrated approach of the Hydrological Engineering Centre-River Analysis System (HEC-RAS) and the HEC-GeoRAS with the geographic information system (GIS) and remote sensing data.
    [Show full text]
  • Social Paradigm Shift Required to Counter the Eutrophication of the Hartbeespoort Dam in South Africa
    Water and Society V 159 SOCIAL PARADIGM SHIFT REQUIRED TO COUNTER THE EUTROPHICATION OF THE HARTBEESPOORT DAM IN SOUTH AFRICA INGRID DENNIS & STEFANUS RAINIER DENNIS Centre for Water Sciences and Management, North-West University, South Africa ABSTRACT Sewage discharges are poisoning major rivers and dams in South Africa, including the Hartbeespoort Dam. High nutrient concentrations promote algae growth, leading to eutrophication. The dam has been in a hypertrophic state since the early 1970s. Mismanagement of waste water treatment works (WWTWs) within the catchment area are largely to blame, with over 280 tons of phosphate and nitrate deposits. Point source pollution in the form of malfunctioning WWTWs and diffuse sources from informal settlements present along streams and rivers within the catchment area, are responsible for the high nutrient levels. Many of these settlements use water directly from the river/stream. The first step to address the problem of eutrophication is by reducing the nutrient source. A conservative mass transport model was developed to predict phosphate levels and was used to assess the impact on the dam. The average phosphate levels entering the dam is 0.72 mg/L and the target to reduce algae growth is 0.15 mg/L. Various treatment options were investigated to solve the problem, but these efforts were mainly focused on treating the symptoms rather than the cause and treatment options were very costly. Legislation regarding water pollution this is in place, but is not enforced by government. The model predictions indicate that even if all WWTWs reach a zero discharge of phosphates, the required target will still not be met.
    [Show full text]
  • Evaluation of Disaster Risk Management in Flood Prone Areas: a Case Study of Bramfischerville
    Evaluation of Disaster Risk Management in Flood Prone Areas: A Case Study of Bramfischerville Nhlanhla Mkhulisa 0600124N A research report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Development Planning. Johannesburg, 2017 DEDICATION To the late Dr. Krisno Nimpuno i DECLARATION I, Nhlanhla Mkhulisa declare that this Research Report is my own unaided work. It is being submitted for the Degree of Master of Science in Development Planning at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other University. _______________________________ (Signature of candidate) ________day of ________________ 20 _____ in _________________________ ii Abstract Throughout the 21st century, floods have caused major disasters in urban areas worldwide and especially in Africa. Several factors influence the ability of government to manage flood disasters through the phases of, preparedness, mitigation, response and recovery at a local level. The vulnerability of poor communities to flood disasters exacerbates the impact of the flooding on their livelihoods. The inability of governments to communicate effectively with communities about preparedness strategies for flood mitigation has resulted in much damage in urban areas. The study used semi-structured interviews with Disaster Management officials and community members involved in flooding to evaluate the Disaster Risk Management in Bramfischerville. The fieldwork took place in Bramfischerville that was affected by the 2009 floods. The research revealed that the 2009 Bramfischerville floods were caused by heavy rains, the building of RDP housing on a floodplain and ineffective implementation of Disaster Management strategies by the CoJ.
    [Show full text]
  • Guideline to Develop a Sustainable Urban River Management Plan
    GUIDELINE TO DEVELOP A SUSTAINABLE URBAN RIVER MANAGEMENT PLAN Report to the Water Research Commission by D Henning, K Mphake, B Mdala, M Sunil, R van Aardt and E Jackson Nemai Consulting PO Box 1673 SUNNINGHILL 2157 WRC Report No KV 202/07 ISBN 978-1-77005-655-8 December 2007 DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. EXECUTIVE SUMMARY Nemai Consulting was appointed by the Water Research Commission (WRC) to generate a ‘Guideline to Develop a Sustainable Urban River Management Plan’ (SURMP). The study intends to create a guideline document to aid the compilation of a plan that addresses the impacts and management of specifically urban rivers. Salient themes surrounding urban rivers, such as pollution and impact sources and the concomitant effects, are discussed in the bulk of the document. The document culminates in a guideline which navigates the reader through the steps required to prepare a SURMP. Section B presents the findings of a research expedition on ‘urban rivers’ and their inherent characteristics. Although this section by no means exhaustively describes urban rivers, it sets the scene for the detailed examinations to follow. Section C examines the water quality of urban rivers. This section commences with exploring the effects of urban land uses (i.e. agriculture, industry, mining, commercial, residential and recreational) on water quality. Thereafter, the management of water quality is discussed under considerations for water quality appraisal and the subsequent management measures required to address the variables of concern.
    [Show full text]
  • Freshwater Resource Ecological Assessment As
    FRESHWATER RESOURCE ECOLOGICAL ASSESSMENT AS PART OF THE WATER USE LICENSE APPLICATION REQUIREMENTS FOR THE PROPOSED OUTFALL SEWER NETWORK IN HELDERFONTEIN, NEAR MIDRAND, GAUTENG PROVINCE Prepared for Nali Sustainable Solutions (Pty) Ltd March 2017 Revised December 2017 Prepared by: Scientific Aquatic Services Report author: A. Mileson Report reviewer: S. van Staden (Pr. Sci. Nat) Report reference: SAS 217025 Date: March 2017 Revised: December 2017 Scientific Aquatic Services CC CC Reg No 2003/078943/23 Vat Reg. No. 4020235273 PO Box 751779 Gardenview 2047 Tel: 011 616 7893 Fax: 086 724 3132 E-mail: [email protected] SAS 217025 March 2017 EXECUTIVE SUMMARY Based on the findings of the freshwater resource assessment and the results of the risk assessment, it is the opinion of the ecologist that although the proposed development poses a risk to a portion of the wetland systems (i.e. where the linear development will cross the systems) and may potentially impact negatively on a very small portion of the riparian zone associated with the Jukskei River, these risks can be satisfactorily mitigated. Adherence to cogent, well-conceived and ecologically sensitive site development plans, and the mitigation measures provided in this report as well as general good construction practice, will greatly reduce the significance of perceived impacts. It is the opinion of the specialist therefore that the proposed linear development, from a freshwater resource conservation perspective, be considered favourably, with the proviso that strict adherence to mitigation measures is enforced, in order to ensure that the ecological integrity of the freshwater resources is not further compromised. MANAGEMENT SUMMARY Scientific Aquatic Services (SAS) was appointed to conduct a freshwater resource ecological assessment as part of the Water Use License Application (WULA) requirements for the proposed sewer network in Helderfontein, near Midrand, within the Gauteng Province.
    [Show full text]
  • Response of Urban and Peri-Urban Aquatic Ecosystems to Riparian Zones Land Uses and Human Settlements: a Study of the Rivers, Jukskei, Kuils and Pienaars
    Response of urban and peri-urban aquatic ecosystems to riparian zones land uses and human settlements: A study of the rivers, Jukskei, Kuils and Pienaars Report to the Water Research Commission By Renias A. Dube, Beatrice Maphosa, Aiden Malan, Demilade M. Fayemiwo, Dziedzi Ramulondi and Thabisile A. Zuma Nxt2u (Pty) Ltd WRC Report No. 2339/1/17 ISBN No. 978-1-4312-0919-4 October 2017 Obtainable from Water Research Commission Private Bag X03 Gezina, 0031 [email protected] or download from www.wrc.org.za DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. Printed in the Republic of South Africa © WATER RESEARCH COMMISSION Executive summary The negative impacts of land use on aquatic ecosystems have generated conditions that are conducive to the devastation of goods and services emanating from water resources. In South Africa, the problem has been at its worst in urban and peri-urban areas where settlements and other land uses developed over several decades during which environmental legislation was absent. In more recent years, when legislation has been enacted, weak monitoring and enforcement has perpetuated the degeneration of goods and services emanating from aquatic ecosystems. The degrading land uses include industry, mining, agriculture and human settlements. In more recent times, starting in the mid-twentieth century, the rate of aquatic ecosystem degradation escalated due to the establishment of land uses in close proximity to, or on riparian areas to wetlands and other sensitive parts of the aquatic ecosystem.
    [Show full text]
  • The Development of the Lanseria Integrated Open Space Plan Based on Development Trends, Ecological and Park Planning Requirements
    INSTITUTE OF ENVIRONMENTAL AND RECREATIONAL MANAGEMENT PUBLIC SPACES AND PLACES – FUTURE VALUE, TRENDS, AND GLOBAL VIEWS: The Development of the Lanseria Integrated Open Space Plan based on development trends, ecological and park planning requirements. PAPER 2018 Paper by Johan Barnard, & Erika van den Heever 1. INTRODUCTION City of Johannesburg Metropolitan Municipality (CoJ) has invested in Integrated Open Space Plans for various regions within the Johannesburg boundaries. These Open Space Plans aim to assist with informing decision making processes relating to development and open spaces and to identify areas to be protected for greening, park development or conservation programs. Integrated Open Space Plans have been prepared for the Greater Kyalami, Ruimsig-Honeydew and Greater Bosonia areas by Royal Haskoning DHV. CoJ commissioned Newtown Landscape Architects Consortium to develop the Integrated Open Space Plan for the Lanseria Sub-region. Integrated Open Space Plan for the Lanseria Sub-region (for ease of reference the document is further referred to as LIOSP). The LIOSP is intended to achieve the following: • Providing a detailed information base on all open space resources within the study area, including existing conservation areas as well as key ecological and socio-economic open spaces; • Develop a set of Principles and Guidelines to inform integrated decision making by the CoJ regarding issues affecting open space resources on the Regional and Local scale; • Providing an institutional, management and implementation framework, including the identification of implementation priorities, to ensure effective and collaborative management of the Open Space Network. 1.1. Study area The study area extends from Lanseria Airport in the north, Kya Sand / Bloubosrand to the south, Diepsloot to the east and the R512 which forms the western boundary of the study area, as reflected in Figure 1 and falls within the jurisdiction of City of Johannesburg Metropolitan Municipality.
    [Show full text]
  • Evaluating the Effectiveness of Freshwater Fishes As Bio-Indicators for Urban Impacts in the Crocodile (West) Catchment, South Africa
    Evaluating the effectiveness of freshwater fishes as bio-indicators for urban impacts in the Crocodile (West) catchment, South Africa Jonathan C Levin1, Darragh J Woodford1, 2* and Gavin C Snow1 1School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa 2South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown 6140, South Africa Urbanisation in South Africa has resulted in the degradation of aquatic ecosystems across a rural-to-urban gradient; impacting the availability of clean water. Biological organisms, including fish assemblages, have been used as indicators of environmental change, as part of monitoring programmes designed to protect and improve aquatic ecosystem conditions. However, the effectiveness of individual freshwater fish species as bio-indicators for urban impacts has not yet been evaluated. This study investigated the occurrence of freshwater fish species across three urban gradients within the upper Crocodile River sub-management area as potential bio-indicators. Having collected presence and absence data, five native fish species were determined to be widespread. Their effectiveness as bio-indicators for six environmental drivers, identified through principle component analysis, was assessed using species stressor-response curves derived from logistic regression analysis. Of the five species, the largescale yellowfishLabeobarbus ( marequensis) and stargazer catfish (Amphilius uranoscopus) showed potential to be effective bio-indicators for urban impacts on aquatic water quality and instream habitat. These taxa, as effective urban bio-indicators, have the potential to improve the efficiency of urban river health assessments through reducing data gathering and staff training requirements. Keywords: aquatic ecosystems, integrity, Fish Response Assessment Index (FRAI), species occurrence, stressor- response curves INTRODUCTION (Li et al., 2010).
    [Show full text]
  • Alexandra: a Case Study of Service Deivery for the Presidential 10 Year Review Project June 2003
    Alexandra: A Case study of service deivery for the Presidential 10 year review project June 2003 Review by the Human Sciences Research Council (Democracy and Governance Programme) In Association with Indlovo Link Dr. Marlene Roefs, Democracy and Governance, HSRC Mr. Vino Naidoo, Democracy and Governance, HSRC Mr. Mike Meyer, Indlovo Link Ms. Joan Makalela, Democracy and Governance, HSRC (Photography by Jankie Matlala) Our sincere appreciation goes to the City of Johannesburg (Region 7 Office), including the People’s Centre Information Services; the Social, Physical and LED Clusters of the ARP; and members of the public. Review of Service Delivery for the Presidential 10 Year Review Project: Alexandra Review conducted by the Democracy and Governance programme-HSRC, June 2003 ___________________________________________________________________________________ TABLE OF CONTENTS Executive Summary 1. Introduction ..........................................................................................................................10 1.1 Urban Renewal Programme .............................................................................................11 1.2 Description of Alexandra.....................................................................................................12 1.3 Population profile...................................................................................................................15 1.4 Overview of Recent History................................................................................................16
    [Show full text]
  • 25 Nguni Drive, Longmeadow Business Estate, Gauteng Unlock the Potential of Space
    25 Nguni Drive, Longmeadow Business Estate, Gauteng Unlock the potential of space A space is more than its surface area and walls; it’s a canvas for human experience. More than structure and aesthetics, spaces enable connections and inspire. Spaces engage us; they are sensory and invite interaction. They draw us in and influence our wellbeing. Spaces hold history. They can be imagined and reimagined. At Investec Property, we don’t just look at how a space is, but at how it can be and what it can bring to people’s lives. We see the value it holds and the opportunities it presents. We see the potential of space. Location We get the fundamentals right. Everything we’ve achieved is built on the understanding that location is strategic. Once we have the right Relation location and understand We engage with our the context of the space, stakeholders and tenants we begin to imagine how to understand their we can repurpose it to requirements now, and its full potential. Then, we anticipate how these we create a sought-after might change in future. environment that both From this knowledge, we complements and adds evolve spaces so that Innovation to its surrounds. It’s they work optimally for We innovate to realise how we develop quality our occupiers. We also the potential of space assets that hold value prioritise the preservation and collaborate with new and deliver attractive of sound covenants to partners, shifting the long-term returns. ensure low vacancies. emphasis from assets to By valuing and investing experiences that meet our in human connections, clients’ needs.
    [Show full text]