Methods in Legume-Rhizobium Technology

Total Page:16

File Type:pdf, Size:1020Kb

Methods in Legume-Rhizobium Technology METHODS IN LEGUME-RHIZOBIUM TECHNOLOGY by P. Somasegaran and H. J. Hoben University of Hawaii NifTAL* Project and MIRCEN* Department of Agronomy and Soil Science Hawaii Institute of Tropical Agriculture and Hunan Resources College of Tropical Agriculture and Human. Resources May, 1985 This document was prepared under United States Agency for International Development (USAID) contract No. DAN-0613-C-00-2064-00 * NifTAL and MIRCEN are acronyms for Nitrogen fixation in Tropical Agricultural Legumes and Microbiological Resources Center, respectively FOREWORD There is no doubt that in the near future the emerging biotechnology based on genetic engineering and somatic cell fusion will contribute significantly to solving agricultural problems. Presently, however, so much of the available technology, i.e., inoculum technology, is not being fully enough utilized in agriculture. It would be prudent to devote major efforts to their adoption. Serious obstacles to adoption of modern technologies, especially in developing countries, is the shortage of trained personnel. It is, therefore, essential for all development support projects to include a training component. This book is the culmination of several years of experience in training of scientists and technicians from developing countries. The six-week Training Course, for which this book is intended, was developed at NifTAL and, in the early years, taught there. Subsequently, the course was taken to the field and offered at host institutions in Africa, Asia and Latin America. Somasegaran and Hoben have done a commendable job of drawing from their experience with these courses. They have compiled an “All You Ever Wanted To Know About …” style book that is not only valuable to developing country scientists, but also useful for technicians and graduate students starting work with the legume/Rhizobium symbiosis. B. Ben Bohlool Professor, University of Hawaii Director, NifTAL project May, 1985 INTRODUCTION The symbiosis between the root-nodule bacteria of the genus Rhizobium and legumes results in the fixation of atmospheric nitrogen in root-nodules. This symbiotic relationship is of special significance to legume husbandry as seed inoculation with effective strains of Rhizobium can meet the nitrogen requirements of the legume to achieve increased yields. Obviously, such a phenomenon is of world-wide interest because it implies lesser dependence on expensive petroleum based nitrogen fertilizers for legumes. In all regions of the world where food consumption exceeds production or where nitrogenous fertilizer has to be imported, leguminous crops have a special relevance. Self- sufficiency for nitrogen supply and the high protein and calorific values of food, forage and feed legumes make them increasingly attractive. Greater use of legumes can have a significant beneficial impact in tropical countries where population increase and food production are most out of balance, and where the purchasing power for imported fertilizers is least adequate. The University of Hawaii NifTAL Project was funded by the United States Agency for International Development to promote greater use of symbiotic nitrogen fixation through Legume-Rhizobium Technology. An essential component in NifTAL’s overall objective was specialized training in Legume-Rhizobium Technology. This strategy would provide the means of transferring the techniques in Legume- Rhizobium Technology for the implementation of viable research and development programs in nitrogen fixation in tropical countries. Training was initiated in 1976 when Professor J.M. Vincent prepared the first course outline for NifTAL. Since then, the authors have conducted similar training courses in Hawaii, Kenya, Malaysia, Mexico, Thailand and India. The valuable experiences gained in these intensive six-week training courses led the authors to identify and develop the key research and development activities essential for Legume-Rhizobium Technology. PREFACE It was in 1970 that Professor J.M. Vincent published his excellent book entitled “A Manual for Practical Study of Root-Nodule Bacteria.” Unfortunately this book is out of print at the present time. The motivation for this book of methods grew out of the ever-increasing role of the Legume-Rhizobium symbiosis in agricultural production in tropical countries where the benefits of this unique symbiosis can only be realized through correct practices in Legume-Rhizobium Technology. This book is designed for the practicing technologist to provide competent technical support to research and development activities relevant to Legume-Rhizobium Technology. Teachers and students will also find this volume useful in addressing the applied aspects of the Legume-Rhizobium symbiosis especially when exercises are supported by well prepared lectures. There are four sections to this book and they related the sequence of activities which should be followed in Rhizobium research. Each exercise is structured to include all the steps required to accomplish the particular experiment. Certain activities in the exercise require a knowledge or a source of information and this is given in the Appendix. At the end of each section are recommended journal articles and textbooks for more background on principles or greater detail on methods. In putting together this book, we have indicated to the user by cross- reference that the various sections support each other. For example, the serological techniques in Section C are not meant only for strain identification in nodules but also for checking strain contamination in inoculant production and quality control. It is hoped that this volume will serve as an instrument of self-instruction since the skills can be acquired by careful practice of techniques. Satisfactory completion of the exercises should impart to the user a good working knowledge and competence in Legume-Rhizobium Technology. The exercises in this volume were tested successfully in all the NifTAL training courses and intern training programs and we hope that this volume will be useful in organizing similar courses by other institutions. The authors would appreciate comments and suggestions for effecting further revisions to improve this volume. Padmanabhan Somasegaran Heinz J. Hoben May 1985 ACKNOWLEDGEMENTS The authors are indebted to several colleagues who are specialists and who contributed constructively in the review of preliminary versions of this volume. We gratefully acknowledge the support of professor J.M. Vincent who reviewed and supplied us with detailed notes and comments for each exercise. We are indebted to him as the outline of this volume is based on a course outline originally conceived by him while he was a consultant to the NifTAL Project. The authors express their sincere thanks to Dr. J.C. Burton for his encouragement and support. His review, comments, and suggestions especially in Section D were invaluable. We wish to express our gratitude to Dr. J. Halliday for his continued interest, encouragement and support in the preparations of this volume. The authors are indebted to the invaluable review support given by Drs. P.H. Graham, D.H. Hubbell, B.B. Bohlool, P.W. Singleton, J.W. King, R.W. Weaver, J.A. Thompson and L.A. Materon. The authors wish to express their sincere gratitude to Dr. Velitin Gurgun of the University of Ankara (Turkey) who did an excellent review on the final version of this volume. We appreciate all participants of the NifTAL Training courses, intern trainees, and visiting scientists whose comments and suggestions were invaluable in making this work more comprehensive. In the final analysis, the production of this volume was the result of teamwork and support given to us by several NifTAL Project staff members. We express our sincere appreciation to all these helpful people. They are Ms. Princess Ferguson who handled all logistics pertaining to publication besides editing; Ms. Judith Dozier for the painstaking checking, proofreading and editing of the typed manuscripts; Mr. Keith Avery who patiently handled much of the graphics and artwork; and Ms. Karean Zukeran and Ms. Mary Rohner for the administrative and secretarial support. CONTENTS Introduction. 1 Exercise 1. TO COLLECT NODULES AND ISOLATE RHIZOBIUM. 7 a. Recognizing legumes and identifying them in the field b. Recovering nodules in the field c. Preserving nodules d. Examining nodules and bacteroids e. Isolating Rhizobium from nodule f. Performing the presumptive test g. Authenticating the isolates as Rhizobium h. Preserving Rhizobium cultures Requirements Exercise 2. TO OBSERVE THE INFECTION PROCESS. 30 a. Culturing strains of rhizobia in YM broth b. Germinating seeds c. Preparing a Fahraeus-slide d. Inoculating the seedlings e. Observing the root-hairs under the microscope f. Comparing root hair deformations Requirements Exercise 3. TO STUDY CULTURAL PROPERTIES, CELL MORPHOLOGICAL CHARACTERISTICS AND SOME NUTRITIONAL REQUIREMENTS OF RHIZOBIUM. 40 a. Preliminary subculturing of different bacterial cultures b. Comparing cell morphology and gram stain reactions of Rhizobium with those of other microorganisms c. Determining gram stain reactions of various bacteria d. Characterizing growth of rhizobia using a range of media e. Observing growth reactions on modified media Requirements Exercise 4. TO QUANTIFY THE GROWTH OF RHIZOBIUM. 53 a. Preliminary culturing of fast and slow- growing rhizobia b. Determining the total count with a Petroff- Hausser chamber c. Using the Petroff-Hausser counting chamber d. Estimating cell concentration
Recommended publications
  • Examination of Zoonotic Bacterial Pathogens in Canine and Feline Raw Meat-Based Diets
    F.P.J. van Bree, Utrecht University, 2016 Paper Paper Examination of zoonotic bacterial pathogens in canine and feline raw meat-based diets F.P.J. van Bree, P.A.M. Overgaauw The feeding of raw meat-based diets (RMBD) to companion animals has become increasingly popular in recent years. However, such diets were demonstrated to be possibly contaminated with various zoonotic bacterial species in several studies and so the feeding of these diets could pose a risk to both animal and human health. Data about the situation in the Netherlands, or Europe in general are not available. Therefore, the purpose of this study was to evaluate the contamination of commercial RMBDs available in the Netherlands with zoonotic bacterial pathogens. Thirty-five commercial RMBDs were evaluated via bacterial culture for Escherichia coli O157:H7, extended- spectrum beta-lactamase (ESBL-)producing E. coli, Listeria monocytogenes and Salmonella spp.. E. coli O157:H7 was isolated from eight (23%) products, ESBL-producing E. coli from twenty- eight (80%) products, L. monocytogenes from nineteen (54%) products, other Listeria spp. from fifteen (43%) products, and Salmonella spp. from seven (20%) products. The results of this study demonstrate the need to pay attention to the potential of RMBDs to be a source for zoonotic bacterial pathogens in the Netherlands. These diets cannot be ruled out as a possible source for bacterial infections in both humans and animals and therefore companion animal owners should be informed about the associated risks. Keywords: raw meat-based diet; BARF; E. coli O157; ESBL; Listeria monocytogenes; Salmonella; public health In recent years it has become increasingly popular among of them are intended to provide for a complete diet for dogs dog and cat owners to feed raw meat-based diets (RMBD), and/or cats.
    [Show full text]
  • Roles of Non-Frankia Bacteria in Root Nodule Formation and Function in Alnus Sp
    University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2021 Roles of Non-Frankia Bacteria in Root Nodule Formation and Function in Alnus sp. Kelsey Christine Mercurio University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/honors Part of the Agriculture Commons, Biology Commons, Environmental Microbiology and Microbial Ecology Commons, Microbial Physiology Commons, and the Plant Biology Commons Recommended Citation Mercurio, Kelsey Christine, "Roles of Non-Frankia Bacteria in Root Nodule Formation and Function in Alnus sp." (2021). Honors Theses and Capstones. 603. https://scholars.unh.edu/honors/603 This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Roles of Non-Frankia Bacteria in Root Nodule Formation and Function in Alnus sp. Honors Senior Thesis, University of New Hampshire, Kelsey Mercurio Additional Contributors: Céline Pesce, Ian Davis, Erik Swanson, Lilly Friedman, & Louis S. Tisa Department of Molecular, Cellular, and Biomedical Sciences University of New Hampshire, Durham, NH, USA. Roles of non-Frankia bacteria in root nodule formation and function in Alnus sp. Abstract: Plant roots are home to a wide variety of beneficial microbes; understanding and optimizing plant- microbe interactions may be critical to enhance global food security in a sustainable, equitable way. With the help of their nitrogen-fixing bacterial partner, Frankia, actinorhizal plants form symbiotic root nodules and play important roles in agroforestry and land reclamation.
    [Show full text]
  • Natural Endophytic Association Between Rhizobium Etli and Maize (Zea Mays L.)
    Journal of Biotechnology 91 (2001) 117–126 www.elsevier.com/locate/jbiotec Natural endophytic association between Rhizobium etli and maize (Zea mays L.) M.L. Gutie´rrez-Zamora, E. Martı´nez-Romero * Centro de In6estigacio´n sobre Fijacio´n de Nitro´geno, UNAM. Ap.P. 565A, 62251 Cuerna6aca, Mexico Received 19 September 2000; received in revised form 16 January 2001; accepted 2 February 2001 Abstract Maize (Zea mays) and bean (Phaseolus 6ulgaris) have been traditionally grown in association for thousands of years in Mesoamerica. From surface sterilized maize roots, we have isolated over 60 Rhizobium strains that correspond to Rhizobium etli bv. phaseoli (the main symbiont of bean) on the basis of 16S rRNA gene restriction patterns, metabolic enzyme electropherotypes, organization of nif genes, and the ability to nodulate beans. The colonization capacity of some of the isolates was tested with an unimproved maize cultivar and with 30 maize land races. Increases in plant dry weight upon R. etli inoculation were recorded with some of the land races, and these increases may be related to plant growth promotion effects. Additionally, from within maize grown in monoculture we have also recovered R. etli isolates recognizable by their 16S rRNA gene types, which lack nif genes and are incapable of nodulating bean. These strains are presumed to correspond to the earlier described non-symbiotic R. etli obtained from bean rhizosphere. © 2001 Elsevier Science B.V. All rights reserved. Keywords: Rhizobium; Endophytes; Maize; Land races; Nitrogen fixation 1. Introduction 1998; James, 2000). In both sugar cane and rice, bacterial nitrogen fixation can contribute a sub- Cereals such as maize have high N fertilization stantial proportion of N to the plant (App et al., requirements for optimal yield.
    [Show full text]
  • Nitrogen Fixation by Non-Leguminous Plants
    Nitrogen Fixation by Non-leguminousPlants CharleneVan Raalte ALL STUDENTS OF BIOLOGY learn about legumes, ation in the non-legumes, I could find little information. Downloaded from http://online.ucpress.edu/abt/article-pdf/44/4/229/339852/4447478.pdf by guest on 03 October 2021 including such agriculturally essential plants as peas, My interest in these plants subsequently led me to several beans, and alfalfa that form a symbiosis with nitrogen- teams of biologists actively researching many aspects of fixing root nodule bacteria. But most biology students the biology and ecology of the non-leguminous nitrogen never learn about another abundant, widespread, and fixers. These scientists have recently made some impor- perhaps equally important group of plants that have tant discoveries of theoretical as well as immediate prac- nitrogen-fixingroot nodules quite different from those of tical interest. Some of these findings will be described the legumes. This group of non-leguminous nitrogen- here. fixing plants includes alder trees and shrubs (Alnus sp.), bayberry and sweet gale (Myrica sp.), and sweet-fern (Comptonia peregrina). These plants are rarely men- TABLE1. The BiologicalCharacteristics of NitrogenFixation tioned in basic biology or ecology texts, despite the fact The initialreaction N2 + 6H+-2NFL that their nitrogen-enrichingability makes them important FinalProducts components of their ecosystems and potentially very Aminoacids and proteins useful to farmers and foresters. OrganismsResponsible Onlybacteria (many types) The so-called nitrogen-fixing plants are of special in- EnzymeInvolved Nitrogenase(common to all N terest to me because I study vegetation tolerant of fixers) nutrient-poor soils. These plants have an advantage in Energetics Energyrequired to breakthe tripleN2 bond such soils since they associate with bacteriathat can con- vert or "fix" nitrogenous gas to ammonium (table 1).
    [Show full text]
  • Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
    City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I.
    [Show full text]
  • Rhizobium,, Agrobacterium Agrobacterium
    Systems Microbiology Wednes Nov 1 - Brock Ch 17, 586-591 Ch 19, 656-66 Ch 31, 989-991 •• TheThe GlobalGlobal NitrogenNitrogen CycleCycle •• NN2 fixationfixation -- generalgeneral considerationsconsiderations •• PlantPlant microbialmicrobial symbiosessymbioses RhizobiumRhizobium,, AgrobacteriumAgrobacterium Table and diagram of the key processes and prokaryotes in the nitrogen cycle removed due to copyright restrictions. See Figure 19-28 in Madigan, Michael, and John Martinko. Brock Biology of Microorganisms. 11th ed. Upper Saddle River, NJ: Pearson PrenticeHall, 2006. ISBN: 0131443291. Nitrification Chemolithoautotrophs (aerobic) • Ammonia Oxidizers (Nitrosomonas, Nitrosococcus) • Nitrite Oxidizers (Nitrobacter, Nitrococcus) • Slow growing (less free energy available) • Enzyme ammonia monooxygenase - NO - NO - NH4 NO2 2 3 AO NO e- e- CO2 CH2O CO2 CH2O O2 H20 O2 H20 NH + Cation exchange capacity: 4 the ability of a soil to hold on to cations + NH + soil NH4 4 particle Microbial nitrification can effect + NH4 the retention of nitrogen in soil - NO3 - NO3 - NO3 - NO3 - NO - NO - NH4 NO2 2 3 AO NO e- e- CO2 CH2O CO2 CH2O O2 H20 O2 H20 NITROGEN CYCLING IN AQUARIA Image of fish swimming in an aquarium removed due to copyright restrictions. http://www.hubbardbrook.org/research/ gallery/powerpoint/Slide2.jpg ViewView from aboveabove Lake Lake 226 226 divider divider curtain curtain in Augustin August 1973. 1973. The bright green colour results from Cyanobacteria, which are growing on phosphorus added to the near side of the curtain. What happen’s when you dump lots of phosphate in a lake ??? Aerial view of Lake 227 in 1994. Note the bright green color caused by algae stimulated by the experimental addition of phosphorus for the 26th consecutive year.
    [Show full text]
  • Nodulation and Growth of Shepherdia × Utahensis ‘Torrey’
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2020 Nodulation and Growth of Shepherdia × utahensis ‘Torrey’ Ji-Jhong Chen Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Plant Sciences Commons Recommended Citation Chen, Ji-Jhong, "Nodulation and Growth of Shepherdia × utahensis ‘Torrey’" (2020). All Graduate Theses and Dissertations. 7946. https://digitalcommons.usu.edu/etd/7946 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. NODULATION AND GROWTH OF SHEPHERDIA ×UTAHENSIS ‘TORREY’ By Ji-Jhong Chen A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Plant Science Approved: ______________________ ____________________ Youping Sun, Ph.D. Larry Rupp, Ph.D. Major Professor Committee Member ______________________ ____________________ Jeanette Norton, Ph.D. Heidi Kratsch, Ph.D. Committee Member Committee Member _______________________________________ Richard Cutler, Ph.D. Interim Vice Provost of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2020 ii Copyright © Ji-Jhong Chen 2020 All Rights Reserved iii ABSTRACT Nodulation and Growth of Shepherdia × utahensis ‘Torrey’ by Ji-Jhong Chen, Master of Science Utah State University, 2020 Major Professor: Dr. Youping Sun Department: Plants, Soils, and Climate Shepherdia × utahensis ‘Torrey’ (hybrid buffaloberry) (Elaegnaceae) is presumable an actinorhizal plant that can form nodules with actinobacteria, Frankia (a genus of nitrogen-fixing bacteria), to fix atmospheric nitrogen. However, high environmental nitrogen content inhibits nodule development and growth.
    [Show full text]
  • Thesis Evaluations That Increase Value for Pork
    THESIS EVALUATIONS THAT INCREASE VALUE FOR PORK EXPORT PRODUCTS Submitted by Dan Sewald Department of Animal Sciences In partial fulfillment of the requirements For the degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2017 Master’s Committee: Advisor: Dale R. Woerner Keith E. Belk Gary Mason Copyright by Dan Robert Sewald 2017 All Rights Reserved ABSTRACT EVALUATIONS THAT INCREASE VALUE FOR PORK EXPORT PRODUCTS Experiment 1: An evaluation of the suitability of porcine lung tissue for human consumption This study was conducted to provide evidence of the safety of pork lungs for human consumption via an assessment of prevalence of potentially pathogenic bacteria and infectious agents. Specifically, the goal was to collect evidence that could be used to petition the current regulation disallowing use of pork lungs for human food. Pork lungs have been labeled by the U.S. Meat Export Federation as a widely consumed product across Asia as well as South and Central America. It was believed that there is profit potential in saving pork lungs and exporting them to specified countries. Pork lungs must first be deemed safe and edible before they can be sold on the export market. Lungs (N = 288) were collected from a total of six federally inspected young market barrow/gilt or sow processing facilities. In an attempt to obtain a representative sample of production at each facility on a given day, lungs were randomly selected throughout the entire production day. All collected lungs were removed and processed using aseptic techniques to prevent any exogenous contamination. Lung samples were tested for the presence of pathogens and other physical contamination.
    [Show full text]
  • Revised Taxonomy of the Family Rhizobiaceae, and Phylogeny of Mesorhizobia Nodulating Glycyrrhiza Spp
    Division of Microbiology and Biotechnology Department of Food and Environmental Sciences University of Helsinki Finland Revised taxonomy of the family Rhizobiaceae, and phylogeny of mesorhizobia nodulating Glycyrrhiza spp. Seyed Abdollah Mousavi Academic Dissertation To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public examination in lecture hall 3, Viikki building B, Latokartanonkaari 7, on the 20th of May 2016, at 12 o’clock noon. Helsinki 2016 Supervisor: Professor Kristina Lindström Department of Environmental Sciences University of Helsinki, Finland Pre-examiners: Professor Jaakko Hyvönen Department of Biosciences University of Helsinki, Finland Associate Professor Chang Fu Tian State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University, China Opponent: Professor J. Peter W. Young Department of Biology University of York, England Cover photo by Kristina Lindström Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae ISSN 2342-5423 (print) ISSN 2342-5431 (online) ISBN 978-951-51-2111-0 (paperback) ISBN 978-951-51-2112-7 (PDF) Electronic version available at http://ethesis.helsinki.fi/ Unigrafia Helsinki 2016 2 ABSTRACT Studies of the taxonomy of bacteria were initiated in the last quarter of the 19th century when bacteria were classified in six genera placed in four tribes based on their morphological appearance. Since then the taxonomy of bacteria has been revolutionized several times. At present, 30 phyla belong to the domain “Bacteria”, which includes over 9600 species. Unlike many eukaryotes, bacteria lack complex morphological characters and practically phylogenetically informative fossils. It is partly due to these reasons that bacterial taxonomy is complicated.
    [Show full text]
  • Defining the Rhizobium Leguminosarum Species Complex
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2020 doi:10.20944/preprints202012.0297.v1 Article Defining the Rhizobium leguminosarum species complex J. Peter W. Young 1,*, Sara Moeskjær 2, Alexey Afonin 3, Praveen Rahi 4, Marta Maluk 5, Euan K. James 5, Maria Izabel A. Cavassim 6, M. Harun-or Rashid 7, Aregu Amsalu Aserse 8, Benjamin J. Perry 9, En Tao Wang 10, Encarna Velázquez 11, Evgeny E. Andronov 12, Anastasia Tampakaki 13, José David Flores Félix 14, Raúl Rivas González 11, Sameh H. Youseif 15, Marc Lepetit 16, Stéphane Boivin 16, Beatriz Jorrin 17, Gregory J. Kenicer 18, Álvaro Peix 19, Michael F. Hynes 20, Martha Helena Ramírez-Bahena 21, Arvind Gulati 22 and Chang-Fu Tian 23 1 Department of Biology, University of York, York YO10 5DD, UK 2 Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; [email protected] 3 Laboratory for genetics of plant-microbe interactions, ARRIAM, Pushkin, 196608 Saint-Petersburg, Russia; [email protected] 4 National Centre for Microbial Resource, National Centre for Cell Science, Pune, India; [email protected] 5 Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; [email protected] (M.M.); [email protected] (E.K.J.) 6 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; [email protected] 7 Biotechnology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Bangladesh; [email protected] 8 Ecosystems and Environment Research programme , Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Finland; [email protected] 9 Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; [email protected] 10 Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Cd.
    [Show full text]
  • Isolation and Characterization of Nitrogen Fixing Bacteria That Nodulate Alien Invasive Plant Species Prosopis Juliflora (Swart) DC
    ISSN (E): 2349 – 1183 ISSN (P): 2349 – 9265 4(1): 183–191, 2017 DOI: 10.22271/tpr.201 7.v4.i1 .027 Research article Isolation and characterization of nitrogen fixing bacteria that nodulate alien invasive plant species Prosopis juliflora (Swart) DC. in Marigat, Kenya John O. Otieno1,2*, David W. Odee1, Stephen F. Omondi1, Charles Oduor1 and Oliver Kiplagat2 1Kenya Forestry Research Institute, P.O. Box 20412-00200, Nairobi, Kenya 2School of Agriculture and Biotechnology, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya *Corresponding Author: [email protected] [Accepted: 22 April 2017] Abstract: A total of 150 bacterial strains were isolated from the root nodules of Prosopis juliflora growing in soils collected from Marigat area of Kenya. Soil samples from representative colonized zones of Tortilis, Grass and Prosopis were used in trapping the microsymbionts. A physiological plate screening allowed the selection of 60 strains which were characterized based on morphological, cultural and biochemical characteristics. Tolerance to salinity, acid and alkaline pH and resistance to antibiotics were studied as phenotypic markers. Morphological characteristics allowed the description of a wide physiological diversity among tested isolates. Establishing mutualistic interactions in novel environments is important for the successful establishment of some non-native plant species. The associations may have negative impact on the interaction networks of the native species whereby non-native species becoming dominant. Our study suggests that P. juliflora may have led to the diversity of N-fixing microsymbionts observed in the study area. The study provides basis for further research on the phylogeny of rhozobial strains nodulating P. juliflora, as well as their use as inoculants to improve growth and nitrogen fixation in arid lands of Kenya.
    [Show full text]
  • Specificity in Legume-Rhizobia Symbioses
    International Journal of Molecular Sciences Review Specificity in Legume-Rhizobia Symbioses Mitchell Andrews * and Morag E. Andrews Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Academic Editors: Peter M. Gresshoff and Brett Ferguson Received: 12 February 2017; Accepted: 21 March 2017; Published: 26 March 2017 Abstract: Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga).
    [Show full text]