Manuscript Post Print

Total Page:16

File Type:pdf, Size:1020Kb

Manuscript Post Print Page 5 of 28 Analytical & Bioanalytical Chemistry 1 2 3 IMMUNOASSAY QUANTIFICATION OF HUMAN INSULIN ADDED TO 4 TERNARY PARENTERAL NUTRITION CONTAINERS: COMPARISON OF TWO 5 METHODS 6 7 Authors: Hélose Henry 1,2 , Damien Lannoy 1,2 , Nicolas Simon 1,2 , David Seguy 3, , Mich"le 8 5 1 1,2 1 1,2 9 D#Herbome% , Christine (arthélémy , (ertrand Décaudin , Thierry Dine , Pascal Odou 10 11 12 1. -niv. Lille, .A 7305 1 23ITA 1 2roupe de 3echerche sur les formes In7ectables et les Technologies 13 Associées, 8159000 Lille, 8rance 14 2. Pharmacy Institute, CH- Lille, 8159000 Lille, 8rance 15 3. -niversity of Lille, -995 ; LI3IC ; Lille Inflammation 3esearch International Center, 8159000 Lille, 8rance 16 . -niversity Hospital of Lille, Department of Nutrition, 8159000 Lille, 8rance 5. Immunoanalysis center, (iology and Pathology Center, CH- Lille, 8159000 Lille, 8rance 17 18 19 For Peer Review 20 21 22 Corresponding author: 23 24 Dr. Damien Lannoy 25 26 8aculté des Sciences Pharmaceutiques et (iologiques, .A 7305 ; 23ITA Laboratoire de 27 28 29 (iopharmacie, Pharmacie 2alénique et Hospitali"re, 3, rue du Professeur Laguesse ; (.P. 83, 30 31 59000 Lille Cedex, 8rance. 32 33 Tel: ?33 3 20 90 0 29 34 35 8ax: ?33 (0A3 20 95 90 09 36 37 38 .1mail address: damien.lannoyBuniv1lille2.fr. 39 40 41 42 43 44 AcCnowledgments: the authors especially want to thanC Mrs Alexandra Tavernier for her 45 46 extensive revision of the final manuscript. 47 48 49 50 51 52 53 54 55 56 57 58 59 60 1 Analytical & Bioanalytical Chemistry Page 6 of 28 1 2 3 ABSTRACT 4 5 Background : Adding insulin directly into infusion bags seems to be a useful method for 6 7 controlling hyperglycemia in patients under ternary parenteral nutrition (TPNA. Its efficacy is 8 9 10 assessed by glycemic monitoring but few data are available on insulin stability in this 11 12 situation. Among the various methods for quantifying insulin levels in human serum, the 13 14 immunoassay ones seemed potentially appropriate for a TPN admixture containing high lipid 15 16 concentrations. Ee sought to identify and validate which of two immunoassay methods was 17 18 19 the better to quantifyFor human insulin Peer and consequent Reviewly be adapted to studying its stability in a 20 21 TPN admixture. 22 23 M thods : Two immunoassay methods to quantify recombinant human insulin were assessed 24 25 in industrial TPN: an immunoradiometric assay (I3MAA and an 26 27 28 immunoelectrochemiluminometric assay (I.CMAA. Falidation trials for both methods were 29 30 based on the accuracy profile method. 31 32 R sults : Interference with immunometric assays due to the high lipidic content of TPN was 33 34 eliminated through an improved preparation protocol using a bovine serum albumin ((SAA 35 36 diluted in phosphate buffer saline (P(SA. The relative total error of I.CMA varied from 1.7 37 38 39 to .52G while it varied from ; 0.32 to 8.37G with I3MA. Only I.CMA provided an 40 41 accuracy profile with a 95G confidence interval of calculated1tolerance limits falling between 42 43 the chosen acceptance limits (i.e. total error H10GA. 44 45 Conclusions : I.CMA combined with a (SA dilution is a simple and semi1automatic method 46 47 48 that provides an accurate quantification of human insulin in a TPN admixture without any 49 50 interference from lipids. 51 52 53 54 K ywords: human insulin, parenteral nutrition solutions, immunoassay, validation, accuracy 55 56 57 profile 58 59 60 2 Page 7 of 28 Analytical & Bioanalytical Chemistry 1 2 3 4 5 INTRODUCTION 6 7 The aim of parenteral nutrition therapy is to supplement or cover nutritional requirements via 8 9 10 the intravenous route when both oral and enteral intaCes are insufficient or contraindicated. 11 12 Ternary parenteral nutrition (TPNA corresponds to an admixture providing macronutrients 13 14 (glucose, amino1acids, lipidsA and micronutrients (electrolytes, vitamins and trace elementsA. 15 16 Considering the amount of glucose infused, hyperglycemia is very common during TPN in 17 18 19 elderly and home parenteralFor nutritionPeer patients, Reviewand concerns most patients in intensive care 20 21 units I1,2J. Hyperglycemia in both non1critically and critically ill patients receiving TPN is 22 23 Cnown to be responsible for an increase in the risC of hospital mortality I3J. Such patients 24 25 may require exogenous insulin in their TPN, but in spite of the guidelines on safe practices for 26 27 28 parenteral nutrition provided by the American Society of Parenteral and .nteral Nutrition I J, 29 30 few data concerning the stability of insulin in TPN are available I5,0J. 31 32 Insulin concentration is currently measured by separative methods, such as high performance 33 34 liquid chromatography coupled with -F detection I7;9J or si%e exclusion chromatography 35 36 I10J, which are not adapted to the complex TPN medium. Mass spectrometry1based methods, 37 38 39 more sensitive but more expensive, require a complicated sample preparation (i.e. 40 125 41 immunoextractionA and dedicated equipment I11J. 3adiolabeled insulin ( I1insulinA I12J is 42 43 useful for studying adsorption on containers, but cannot indicate any modification in 44 45 biological activity, or offer any assessment of either structural or conformational changes in 46 47 48 insulin (from primary to quaternary structureA. The presence of lipids hinders the accurate 49 50 measurement of insulin concentration in all1in1one TPN admixtures regardless of the 51 52 quantification method I13J. This means that other assays, capable of measuring the amount of 53 54 insulin in TPN admixtures precisely, have to be carried out. Immunometric assays are 55 56 routinely used today to quantify human insulin and its analogues in serum I1 ;10J. The 57 58 59 60 3 Analytical & Bioanalytical Chemistry Page 8 of 28 1 2 3 Immuno3adioMetric Assay (I3MAA I17J and Immuno.lectroChemiluminoMetric Assay 4 5 (I.CMAA I18J have shown a high level of specificity for human insulin because of their 6 7 mechanism involving anti1insulin antibodies as well as their high sensitivity. 8 9 10 The aim of our study was to determine the ability of such techniques to quantify insulin at low 11 12 concentrations in a TPN admixture, to validate them and maCe use of one in a stability study 13 14 of insulin in a TPN admixture. 15 16 17 18 19 MATERIALS ANDFor METHODS Peer Review 20 21 Drugs, chemicals and reagents 22 23 Olimel TM N7. (1.5 L bags, (axter, Deerfield, -SAA is the mixture used as TPN (containing 24 25 glucose, amino acid solution, with other electrolytes and lipid emulsionA. Decan TM (Aguettant, 26 27 TM 28 Lyon, 8ranceA and Cernevit ((axter, Deerfield, -SAA were used as additives to TPN. 29 TM 30 -muline rapid (100 I-/mL human insulinA was purchased from .li1Lilly (Suresnes, 31 32 8ranceA. Isotonic saline serum (0.9G NaClA was purchased from (axter. 33 34 Sodium dihydrogen phosphate monohydrate (NaH 2PO , H 2OA and sodium phosphate dibasic 35 36 dodecahydrate (Na HPO , 12 H OA, designed for phosphate buffer saline (P(SA preparations, 37 2 2 38 39 were purchased from Cooper (Melun, 8ranceA. Hydrochloric acid (HCl 25GA and 40 41 tris(hydroxymethylAaminomethane (T3ISA powder were purchased from MercC Millipore 42 43 (Molsheim, 8ranceA. (ovine serum albumin ((SAA F1fraction was purchased from 44 45 .uromedex (Souffelmeyersheim, 8ranceA. Diluted human serum albumin (dHSA, Fialebex TM 46 47 48 0 mg/mLA was purchased from L8( (Lille, 8ranceA. Human gamma globulins (H2(OA were 49 50 purchased from Sigma Aldrich (Saint Louis, -SAA. 51 52 53 54 55 56 57 58 59 60 Page 9 of 28 Analytical & Bioanalytical Chemistry 1 2 3 Sample preparation 4 5 Cernevit TM was reconstituted with 5 mL of 0.9G NaCl and gently shaCen to obtain a 6 7 homogenous solution. Decan TM was then directly introduced into the TPN bag. Seals were 8 9 10 finally broCen by rolling the bag onto itself to mix all nutrients of the TPN admixture. After 11 12 mixing, this worC medium corresponded to the TPN admixture (emulsion enriched with 13 14 vitamins and trace elementsA. It could be stored at 5H3LC up to 2 hours and used for other 15 16 assays. 17 18 19 All assays were Forperformed atPeer a 20,000 MI-/mL Review (i.e. 20 I-/LA insulin concentration, 20 21 corresponding to the usual concentration in medical wards when insulin is added to TPN. 22 23 .very step was carried out with calibrated laboratory materials. Samples were taCen from 24 25 flasCs immediately after preparation without any intermediate transfer step into another 26 27 28 container. 29 30 31 32 Instrumentation 33 34 Immunoreactive insulin concentration was determined by I3MA with the (i1insulin I3MA TM 35 36 set (Cisbio international, Paris, 8ranceA or by I.CMA with the Insulin .lecsys TM assay 37 38 39 (3oche diagnostics, Meylan, 8ranceA. As calibration and measuring ranges were respectively 40 TM TM 41 1 to 500 MI-/ml for (i1insulin I3MA and 0.2 to 1000 MI-/ml for Insulin .lecsys , a two1 42 43 step 1/200 dilution of all samples was performed. 8inal samples were analy%ed on two 44 45 different instruments: radioactivity was determined on a Ei%ard 1 70 2amma coulter 46 47 48 (Cis(io, Saclay, 8ranceA, while I.CMA used an e001 Cobas (3oche diagnostics, Mannheim, 49 50 2ermanyA. The latter apparatus was calibrated with a Calset insulin calibrating Cit and 51 52 controlled with Precicontrol multimarCer solutions both purchased from the same 53 54 manufacturer (3oche, Mannheim, 2ermanyA. All assays were performed in glass containers 55 56 (volumetric flasCs or tubesA to avoid container;content interactions.
Recommended publications
  • Test Directory
    800.541.7891 509.755.8600 Test Directory Fax 509.921.7107 Billing Code Test Code [sunquest] (1,3)-BETA-D-GLUCAN (FUNGITELL) 13BGA 13BGA Synonyms Fungitell; Glucan Container Type Red top tube (plain) Store and Transport Refrigerated Specimen Type Serum Preferred Volume 2 mL Minimum Volume 0.5 mL Specimen Processing Separate serum from cells within 2 hours of collection and transfer to a standard PAML aliquot tube Room Temp Unacceptable Refrigerated 2 weeks Frozen (-20°C) 2 weeks Unacceptable Condition Hemolyzed, lipemic and icteric samples Reference Laboratory ARUP Reference Lab Test Code 2002434 CPT Codes 87449 Test Schedule Mon-Fri Turnaround Time 2-4 days Method Semi-Quantitative Colorimetry Test Includes (1,3-beta-D-glucan, pg/mL; (1,3-beta D-glucan Interpretation. Notes Reference ranges for pediatric patients (less than 18 years old) have not been established. Assay ranges were validated in adult subjects. Supply Item Number 1372 Billing Code Test Code [sunquest] 1, 5 ANHYDROGLUCITOL (GLYCOMARK) GLYMAR GLYMAR Synonyms Anhydroglucitol, 1,5 AD; GlycoMark® Container Type Serum separator tube (gold, brick, SST, or corvac) Store and Transport Refrigerated Specimen Type Serum Preferred Volume 1 mL Minimum Volume 0.2 mL Specimen Processing Allow serum specimen to clot completely at room temperature. Separate serum or plasma from cells and transfer to a standard PAML aliquot tube Room Temp 1 week Refrigerated 1 week Frozen (-20°C) 1 month Alternate Specimens Lavender (EDTA) Reference Laboratory ARUP Reference Lab Test Code 0081335 CPT Codes 84378 Test Schedule Mon-Fri Turnaround Time 2-4 days Method Quantitative Enzymatic Test Includes GlycoMark, ug/mL.
    [Show full text]
  • Anti-Insulin Antibodies in Von Freien Und Totalen Anti-Insulin Dans Le Sérum Humain Human Serum Antikörpern in Humanserum
    Février 2019 – Modèle 014 Cisbio Bioassays Parc Marcel Boiteux – BP 84175 – 30200 Codolet / France - Tél. 33 (0)4.66.79.67.00 ANTI-INSULIN AAI ANTIBODIES Trousse pour le dosage radioimmunologique Kit for radioimmunoassay for determination Kit zur radioimmunologischen Bestimmung des anticorps anti-insuline libres et totaux of free and total anti-insulin antibodies in von freien und totalen Anti-Insulin dans le sérum humain human serum Antikörpern in Humanserum La trousse contient : Kit content : Inhalt des Kits : Traceur ≤ 52 kBq 2 x 5 mL Tracer ≤ 52 kBq 2 x 5 mL Tracer ≤ 52 kBq 2 x 5 mL Solution précipitante 1 x 100 mL Precipitating solution 1 x 100 mL Präzipitationslösung 1 x 100 mL Réactif d’extraction 1 x 10 mL Extraction reagent 1 x 10 mL Extraktionsreagenz 1 x 10 mL Tampon de neutralisation 1 x 10 mL Neutralization buffer 1 x 10 mL Neutralisationspuffer 1 x 10 mL Contrôle négatif (C1) 1 x qsp 1 mL Negative control 1 x qs 1 mL Negativkontrolle 1 x qs 1 mL Contrôle positif (C2) 1 x qsp 1 mL Positive control 1 x qs 1 mL Positivkontrolle 1 x qs 1 mL Mode d’emploi 1 Instruction for use 1 Gebrauchsinformation 1 Attention : Certains réactifs contiennent de l’azoture de sodium Warning : Some reagents contain sodium azide Achtung : Einige Reagenzien enthalten Natriumazid Kit per il dosaggio radioimmunologico degli Equipo radioinmunológica para la Δοκιμασία για τον ραδιοανοσολογικό anticorpi anti-insulina liberi e totali nel siero determinación de los anticuerpos anti- προσδιορισμό των ελεύθερων και συνολικών umano insulina libres y totales en suero humano αντισωμάτων έναντι της ινσουλίνης στον ανθρώπινο ορό .
    [Show full text]
  • BLOOD TYPE) Methodology: Tube Agglutination BBK Set Up: Daily, As Ordered ABORH BLOOD TYPE 6.0 Ml Whole Blood (Pink) ABORH Report Available: Same Day
    LAB OE TEST REFERENCE SPECIMEN ORDER ORDER PROCEDURE RANGE REQUIREMENTS MNEMONIC NAME ABORH GROUP (BLOOD TYPE) Methodology: Tube agglutination BBK Set up: Daily, as ordered ABORH BLOOD TYPE 6.0 mL whole blood (Pink) ABORH Report available: Same day CPT Code: 86900, 86901 ACA or ACLA - See Anti-Cardiolipin Antibodies ACE - see Angiotensin-1 Converting Enzyme ACETAMINOPHEN, SERUM Methodology: Immunoassay 1 mL blood (Gn -Li (PST)) Set up: Daily, as ordered or LAB ACETAMINOPHEN Accompanies report Report available: Same day 1 mL serum (SS) ACET Minimum: 0.5 mL CPT Code: 80329 ACETYLCHOLINE RECEPTOR 1.0 mL serum (SS) BINDING ANTIBODIES (QUEST 206) Minimum: 0.5 mL ACETYLCHOLINE BINDING Methodology: RIA LAB Accompanies report RECEP Set up: Tues-Sat Allow serum to clot at room ACETYL BIND Report available: 1-2 days temperature. Serum should be separated from cells within 1 CPT Code: 83519 hour of collection. ACETYLCHOLINE RECEPTOR BLOCKING ANTIBODIES (QUEST 34459) 1.0 mL serum (SS) centrifuge ACETYLCHOLINE Methodology: RIA with 1 hr of collection LAB Accompanies report BLOCKING RECEP Set up:Mon, Wed, Fri ACETYL BLO Report available: Next day Minimum:0.5 mL CPT Code: 83519 ACETYLCHOLINE RECEPTORMODULATING ANTIBODY (QUEST 26474) 1 mL serum (SS) ACETYLCHOL LAB Methodology: RIA Accompanies report MODULATING RECEP ACETYL MOD Set up: Tue,Thur,Sun Minimum: 0.5 mL Report available: 5 days CPT Code: 83519 ACETYLCHOLINESTERASE, QUALITATIVE, GEL ELECTROPHORESIS (QUEST 185314) This test is automatically performed on all 1.5 mL Amniotic fluid, ROOM Alpha-Fetroprotein
    [Show full text]
  • KPNW Specimen Requirements ***Please Hit 'Ctrl'+'F' to Open the 'Find on This Page' Funtion
    Page 1 of 368 KPNW Specimen Requirements ***Please hit 'Ctrl'+'F' to open the 'Find on this page' funtion. Panel Name Panel Description Preferred Collection/Volume: RED 10 No Gel Barrier Tubes Volume: 1.0 mL Serum Alternative Collection: GRN Li Hep or LAV EDTA Volume: 1.0 mL Plasma TAT: Report available: 5 Days Test Schedule: Saturday Morning Method: Liquid Chromatography/Tandem Mass Spectrometry Test Facility: Quest Diagnostics Nichols Inst San Juan Capistrano 33608 Ortega Highway San Juan Capistrano, CA 92690-6130 Clinical Data: 11-Deoxycortisol (Compound S) is useful in diagnosing patients with 11-beta- hydroxylase deficiency (second leading cause of congenital adrenal hyperplasia) and 11-Deoxycortisol primary (adrenal failure) or secondary (hypothalmic-pituitary ACTH deficiency) adrenal insufficiency. Patient Preparation: An early morning specimen is preferred Specimen Stability: Room Temperature: 4 days Refrigerated: 4 days Frozen: 4 weeks Ship serum frozen or refrigerated Test Code: CHANTILLY T.C.30543 TO SJC TC 30543X Processing: Centrifuge and aliquot into Referred Tests aliquot tube. Note if serum or plasma on specimen. Freeze solid. Transport: Transport frozen on ice. Preferred Collection/Volume: Preserve 24-hour urine with 25 mL of 50% Acetic Acid (preferred) or 30 mL 6N HCl or 1 gram Boric Acid/100 mL (acceptable) during collection. Refrigerate during collection. TAT: Next Day Test Schedule: Monday-Friday Night Method: Colorimetric Test Facility: Quest Diagnostics Nichols Institute 14225 Newbrook Drive Chantilly, VA 20153 17 Ketosteroids Total Pediatric 24 Hr Urine Labeling: Please specify on the request form and on the urine container the patient's age, sex, and (Includes Creatinine the total 24-hour urine volume Ratio) Specimen Stability: Room Temperature: 8 hours Refrigerated: 7 days Frozen: 30 days (-20c) Please specify on the request form and on the urine container the patient's age, sex, and the total 24-hour urine volume.
    [Show full text]
  • 1 Detection of Antibodies Directed to the N-Terminal Region of GAD Is
    Page 1 of 30 Diabetes Detection of antibodies directed to the N-terminal region of GAD is dependent on assay format and contributes to differences in the specificity of GAD autoantibody assays for type 1 diabetes Short running title: Improved specificity of autoantibodies to N-terminally truncated GAD Alistair JK Williams1, Vito Lampasona2, Michael Schlosser3, Patricia W Mueller4, David L Pittman5, William E Winter5, Beena Akolkar6, Rebecca Wyatt1, Cristina Brigatti2, Stephanie Krause7, Peter Achenbach7 and Participating Laboratories 1. School of Clinical Sciences, University of Bristol, Bristol, UK 2. Division of Genetics and Cell Biology & Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy 3. Department of Medical Biochemistry and Molecular Biology and Institute of Pathophysiology, University Medical Center of Greifswald, Karlsburg, Germany 4. Molecular Risk Assessment Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA 5. Department of Pathology, University of Florida, Gainesville, FL, USA 6. Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA 7. Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany Correspondence to – Alistair Williams Diabetes and Metabolism, School of Clinical Sciences Learning and Research Building, Southmead Hospital Bristol BS10 5NB Fax: +44 117 323 5336 Tel: +44 117 414 7900 [email protected] Word count: 2836 Figures: 4 Supplemental figures: 3 Supplemental table: 1 Supplemental appendix: 1 1 Diabetes Publish Ahead of Print, published online May 13, 2015 Diabetes Page 2 of 30 ABSTRACT Autoantibodies to glutamate decarboxylase (GADA) are sensitive markers of islet autoimmunity and type 1 diabetes.
    [Show full text]
  • Technology Development in the Field of Ligand Binding Assays Comparison Between ELISA and Other Methods
    20-X5 Technology Development inthe Field of Ligand Binding Assays Comparison between ELISA and other methods Tanya Al-Khafaf, Björn Ancker Persson, Johanna Cederblad, Albert Häggström, Reneh Kostines, Lina Löfström, Ella Schleimann-Jensen Client: Mercodia AB Client representative: Henning Henschel Supervisor: Lena Henriksson 1MB332, Independent Project in Molecular Biotechnology, 15 hp, spring semester 2020 Master Programme in Molecular Biotechnology Engineering Biology Education Centre, Uppsala University Abstract In this project, given to us by Mercodia AB, research in the field of im- munoassays is done in order to investigate if there are methods that are better than the conventional ELISA. ELISA is known to have some issues, such as ”The Hook effect”, many washing steps and cross-reactivity with the antibod- ies used in the assay. Therefore the need of other methods has arised. The result of the research showed that there are a huge number of methods that measure specific biomarkers. In this report 17 different techniques are presented. These techniques are: Mass Spectrometry (MS), Chemilumines- cence Immunoassay (CLIA), AlphaLISA, Lateral Flow Immunoassay (LFIA), Microfluidics-based Immunoassays, Paper Based Immunoassays, Biosensors and Aptasensors, Immuno-PCR, Proximity Ligand Assay (PLA), Proximity Extension Assays (PEA), Meso-scale discovery (MSD), Multiplex Assay, Dig- ital Bioassay, Bioluminescence Resonance Emission Transfer (BRET), Homo- geneous Time Resolved Fluorescence (HTRF) and NanoBiT. Each of the listed methods are compared according to several parameters such as specificity, sen- sitivity, measure range, sample volume, degree of automation, runtime and cost for each analyzed sample. The methods that showed an upward trend were: AlphaLISA, BRET, Biosen- sors, CLIA, Digital ELISA, methods using gold nanoparticles (AuNPs), HTRF, Immuno-PCR, Lateral Flow, MSD, Microfluidics, Multiplex methods, NanoBiT, paper-based, PEA, Simoa and Single molecule detection.
    [Show full text]
  • Role of Complement in Mouse Macrophage Binding of Haemophilus Influenzae Type B
    Role of complement in mouse macrophage binding of Haemophilus influenzae type b. G J Noel, … , D M Mosser, P J Edelson J Clin Invest. 1990;85(1):208-218. https://doi.org/10.1172/JCI114414. Research Article Previous in vivo studies demonstrated that clearance of encapsulated Haemophilus influenzae from blood is associated with the deposition of C3 on these bacteria and is independent of the later complement components (C5-C9). Since clearance of encapsulated bacteria is determined by phagocytosis of bacteria by fixed tissue macrophages, we studied the interaction of H. influenzae type b with macrophages in vitro. Organisms bound to macrophages in the presence of nonimmune serum. Binding was not evident in heat-treated serum or in serum from complement depleted animals and was inhibited by F(ab')2 fragments of antibody to C3 and by blockade of the macrophage complement receptor type 3. The majority of organisms bound in the presence of complement alone remained extracellular. Antibody in the form of convalescent serum or an IgG1 monoclonal to type b capsule did not increase the total number of organisms associated with macrophages, but did increase the number of organisms ingested. Furthermore, complement enhanced antibody- mediated ingestion. This in vitro study demonstrates that complement largely mediates binding of H. influenzae to macrophages. This binding may be critical in determining the early clearance of these bacteria from blood and may be an important mechanism of defense in the nonimmune, as well as the immune host. Find the latest version: https://jci.me/114414/pdf Role of Complement in Mouse Macrophage Binding of Haemophilus influenzae type b Gary J.
    [Show full text]
  • Test Code Test Name Components Specimen Method Comments
    Test Code Test Name Components Specimen Method Comments Report *CD3 *CD19 2 mL (1 mL min.) serum from 1 SST AND 6 mL (4 mL *CD16 + min.) whole blood in 2 Lavender Top (EDTA) tubes ABORTION CD56*TNF-alpha AND 3 mL (2 mL min.) whole blood in 1 Green Top Flow Cytometry, Sample by Mon 4 Z785 PANEL *HLA DR, DQA1 (Sodium Heparin) tube. Ship immediately at CLIA, PCR pm; Report Wed & DQB1 (Class II) 18–22°C. DO NOT REFRIGERATE OR FREEZE. Specify Typing time, date and clinical details on test request form. ABSOLUTE 3 mL (1 mL min.) whole blood in 1 Lavender Top Electrical H022 EOSINOPHIL Daily (EDTA) tube. Ship refrigerated. DO NOT FREEZE. Impedance, VCS COUNT; AEC ABSOLUTE 3 mL (1 mL min.) whole blood in 1 Lavender Top Electrical H052 LYMPHOCYTE Daily (EDTA) tube. Ship refrigerated. DO NOT FREEZE. Impedance, VCS COUNT ABSOLUTE 3 mL (1 mL min.) whole blood in 1 Lavender Top Electrical H051 NEUTROPHIL Daily (EDTA) tube. Ship refrigerated. DO NOT FREEZE. Impedance, VCS COUNT ACETYLCHOLINE Sample by 7th of RECEPTOR 2 mL (0.5 mL min.) serum from 1 Red Top (No the month; RW002 (ACHR) Immunoassay Additive) tube. Ship refrigerated or frozen. Report after 2–3 BLOCKING weeks ANTIBODY This assay should not be requested for patients who have ACETYLCHOLINE recently received RECEPTOR 2 mL (1 mL min.) serum from 1 SST. Ship radio-isotopes Sample by Wed / S220 (ACHR) refrigerated or frozen. Avoid general anaesthetic or Radioimunoassay therapeutically or Sat 9 am; Report BINDING muscle relaxant drugs 24 hours prior to sampling.
    [Show full text]
  • Identification of Unique Antigenic Determinants in The
    Diabetes Care Volume 40, April 2017 561 fi Maria Acevedo-Calado,1 Eddie A. James,2 Identi cation of Unique Antigenic Michael P. Morran,3 Susan L. Pietropaolo,1 Qin Ouyang,1 David Arribas-Layton,2 Determinants in the Amino Marco Songini,4 Marco Liguori,4 Anna Casu,5 Richard J. Auchus,6 Terminus of IA-2 (ICA512) in Shuai Huang,7 Liping Yu,8 Aaron Michels,8 Roberto Gianani,1,9 and Childhood and Adult Autoimmune Massimo Pietropaolo1 Diabetes: New Biomarker Development Diabetes Care 2017;40:561–568 | DOI: 10.2337/dc16-1527 OBJECTIVE EMERGING TECHNOLOGIES AND THERAPEUTICS The characterization of diverse subtypes of diabetes is a dynamic field of clinical research and an active area of discussion. The objective of this study was to identify new antigenic determinants in the neuroendocrine autoantigen IA-2 (ICA512) and assess whether circulating autoantibodies directed to new IA-2 epitopes identify autoimmune diabetes in young and adult populations with diabetes. RESEARCH DESIGN AND METHODS 1Division of Diabetes, Endocrinology and Metab- Clinically diagnosed patients with type 2 diabetes (n = 258; diabetes duration: olism, Department of Medicine, Baylor College of 0.01–31 years) were evaluated using a new biomarker detecting autoantibodies Medicine, Houston, TX 2Benaroya Research Institute, University of directed to the extracellular domain of the neuroendocrine autoantigen IA-2 (IA- Washington, Seattle, WA 2ec). The proportion of IA-2ec autoantibodies was also evaluated in newly di- 3Department of Medicinal Chemistry, College of agnosed patients with type 1 diabetes (n = 150; diabetes duration: 0.04–0.49 Pharmacy, University of Toledo, Toledo, OH 4Diabetes Clinic, Department of Internal Medicine, years).
    [Show full text]
  • Insulin Autoantibodies As Determined by Competitive Radiobinding Assay Are Positively Correlated with Impaired Beta-Cell Function- the Ulm-Frankfurt Population Study
    Klinische Klin Wochenschr (1991) 69:736-741 Wochen- schrift 9Springer-Verlag 1991 Originals Insulin Autoantibodies as Determined by Competitive Radiobinding Assay are Positively Correlated with Impaired Beta-Cell Function- The Ulm-Frankfurt Population Study N. Yassin I, J. Seigler 1, M. Glfick 1, B.O. Boehm z, E. Heinze 3, E.F. Pfeiffer 1, and W.A. Scherbaum 1 1 Abteilung Innere Medizin I, Universit/it Ulm, Ulm 2 Abteilung Endokrinologie, Universit/it Frankfurt, Frankfurt 3 Kinderklinik, Universit/it Ulm, Ulm Summary. Out of a random population of 4208 of such patients [1, 2, 7, 17]. Therefore, their possi- non-diabetic pupils without a family history of ble role as predictive markers for the future devel- Type I diabetes 44 (1.05%) individuals had islet opment of Type I diabetes has attracted much at- cell antibody (ICA) levels greater or equal to 5 tention. Juvenile Diabetes Foundation (JDF) units. 39 of Islet cell antibodies (ICA) are associated with these ICA-positives could be repeatedly tested for newly diagnosed Type I diabetes and they have circulating insulin autoantibodies (CIAA) using a become indispensable tools for the initial screening competitive radiobinding assay. The results were to indicate the risk for the later development of compared with the insulin responses in the intrave- the disease. However, ICA may be transiently posi- nous glucose tolerance tests (IVGTT) and with tive and unrelated to diabetes [15], so that addi- HLA types. Six pupils were positive for CIAA. tional parameters should be evaluated. Recently All of them had complement-fixing ICA, and 5 autoantibodies against proinsulin were described of them were HLA-DR4 positive.
    [Show full text]
  • Systemic Lupus Erythematosus.Ann Rheum Dis 2010; 69: 1704-10
    The General Practice Guide to Autoimmune Diseases Edited by Y. Shoenfeld and P.L. Meroni The General Practice Guide to Autoimmune Diseases Edited by Y. Shoenfeld and P.L. Meroni PABST SCIENCE PUBLISHERS Lengerich, Berlin, Bremen, Miami, Riga, Viernheim, Wien, Zagreb Bibliographic information published by Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Na- tionalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. The use of registered names, trademarks, etc. in this publi- cation does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulation and therefore free for general use. The authors and the publisher of this volume have taken care that the informa- tion and recommendations contained herein are accurate and compatible with the standards generally accepted at the time of publication. Nevertheless, it is difficult to ensure that all the information given is entirely accurate for all circumstances. The publisher disclaims any liability, loss, or damage incurred as a consequence, directly or indirectly, of the use and application of any of the contents of this volume. © 2012 Pabst Science Publishers, 49525 Lengerich http://www.pabst-publishers.de Printing: MercedesDruck, Berlin Typesetting: Hilmar Schlegel, Berlin Cover: Agentur für zeitgemäße Kommunikation Kaner Thompson www.kanerthompson.de ISBN 978-3-89967-770-6 The general practice guide to autoimmune diseases The development of autoimmunity and autoimmune diseases is believed to in- volve interactions“ between genes,hormones,and the environment and was labeled in 1989 as The mosaic of autoimmunity”.
    [Show full text]
  • Test Selection and Interpretation the Quest Diagnostics
    The Quest Diagnostics Manual Endocrinology Test Selection and Interpretation Fourth Edition The Quest Diagnostics Manual Endocrinology Test Selection and Interpretation Fourth Edition Edited by: Delbert A. Fisher, MD Senior Science Officer Quest Diagnostics Nichols Institute Professor Emeritus, Pediatrics and Medicine UCLA School of Medicine Consulting Editors: Wael Salameh, MD, FACP Medical Director, Endocrinology/Metabolism Quest Diagnostics Nichols Institute San Juan Capistrano, CA Associate Clinical Professor of Medicine, David Geffen School of Medicine at UCLA Richard W. Furlanetto, MD, PhD Medical Director, Endocrinology/Metabolism Quest Diagnostics Nichols Institute Chantilly, VA ©2007 Quest Diagnostics Incorporated. All rights reserved. Fourth Edition Printed in the United States of America Quest, Quest Diagnostics, the associated logo, Nichols Institute, and all associated Quest Diagnostics marks are the trademarks of Quest Diagnostics. All third party marks − ®' and ™' − are the property of their respective owners. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, and information storage and retrieval system, without permission in writing from the publisher. Address inquiries to the Medical Information Department, Quest Diagnostics Nichols Institute, 33608 Ortega Highway, San Juan Capistrano, CA 92690-6130. Previous editions copyrighted in 1996, 1998, and 2004. Re-order # IG1984 Forward Quest Diagnostics Nichols Institute has been
    [Show full text]