Array-Based Comparative Genomic Hybridization of Mapped BAC DNA Clones to Screen for Chromosome 14 Copy Number Abnormalities in Meningiomas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected]. -
Hierarchical Looping of Zigzag Nucleosome Chains in Metaphase Chromosomes
Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes Sergei A. Grigoryeva,1, Gavin Bascomb, Jenna M. Buckwaltera, Michael B. Schuberta, Christopher L. Woodcockc, and Tamar Schlickb,d,1 aDepartment of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033; bDepartment of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, NY 10012; cBiology Department, University of Massachusetts, Amherst, MA 01003; and dNYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved December 22, 2015 (received for review September 14, 2015) The architecture of higher-order chromatin in eukaryotic cell nuclei is However, evidence for 30-nm fibers in interphase nuclei of living largely unknown. Here, we use electron microscopy-assisted nucleo- cells has been controversial (reviewed in refs. 9 and 10). For exam- some interaction capture (EMANIC) cross-linking experiments in ple, whereas a distinct 30-nm fiber architecture is observed in ter- combination with mesoscale chromatin modeling of 96-nucleosome minally differentiated cells (11, 12), neither continuous nor periodic arrays to investigate the internal organization of condensed chroma- 30-nm fibers are observed in the nuclei of proliferating cells (13–15). tin in interphase cell nuclei and metaphase chromosomes at nucleo- However, zigzag features of the chromatin fibers are well supported somal resolution. The combined data suggest a novel hierarchical by nucleosome interaction mapping in vitro (16) and in vivo (15). looping model for chromatin higher-order folding, similar to rope For chromatin architecture within metaphase chromosomes, flaking used in mountain climbing and rappelling. -
Ftsk Actively Segregates Sister Chromosomes in Escherichia Coli
FtsK actively segregates sister chromosomes in Escherichia coli Mathieu Stoufa,b, Jean-Christophe Meilea,b, and François Corneta,b,1 aLaboratoire de Microbiologie et de Génétique Moléculaires, Centre National de la Recherche Scientifique, F-31000, Toulouse, France; and bUniversité Paul Sabatier, Université de Toulouse, F-31000, Toulouse, France Edited by Nancy E. Kleckner, Harvard University, Cambridge, MA, and approved May 23, 2013 (received for review March 6, 2013) Bacteria use the replication origin-to-terminus polarity of their cir- with the divisome, is also required (13, 14). FtsK acts in a region cular chromosomes to control DNA transactions during the cell cy- about 400 kb long (15) and translocates DNA toward dif.Trans- cle. Segregation starts by active migration of the region of origin location is oriented by recognition of the FtsK-orienting polar followed by progressive movement of the rest of the chromo- sequences (KOPS) DNA motifs that are preferentially oriented somes. The last steps of segregation have been studied extensively toward dif, particularly in the ter region (4, 16–18). Upon reaching in the case of dimeric sister chromosomes and when chromosome the dif site, FtsK activates XerCD-mediated recombination that organization is impaired by mutations. In these special cases, the resolves chromosome dimers. The oriented translocation activity divisome-associated DNA translocase FtsK is required. FtsK pumps of FtsK also is strictly required when chromosome organization is chromosomes toward the dif chromosome dimer resolution site impaired by mutations, for instance by inactivation of the MukBEF using polarity of the FtsK-orienting polar sequence (KOPS) DNA complex (19, 20) or in strains carrying important asymmetry of the motifs. -
Organization, Evolution and Function of Alpha Satellite Dna
ORGANIZATION, EVOLUTION AND FUNCTION OF ALPHA SATELLITE DNA AT HUMAN CENTROMERES by M. KATHARINE RUDD Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Huntington F. Willard Department of Genetics CASE WESTERN RESERVE UNIVERSITY January, 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. 1 Table of Contents Table of contents.................................................................................................1 List of Tables........................................................................................................2 List of Figures......................................................................................................3 Acknowledgements.............................................................................................5 Abstract................................................................................................................6 -
The DNA Methylation Landscape of Glioblastoma Disease Progression Shows Extensive Heterogeneity in Time and Space
bioRxiv preprint doi: https://doi.org/10.1101/173864; this version posted August 9, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space Johanna Klughammer1*, Barbara Kiesel2,3*, Thomas Roetzer3,4, Nikolaus Fortelny1, Amelie Kuchler1, Nathan C. Sheffield5, Paul Datlinger1, Nadine Peter3,4, Karl-Heinz Nenning6, Julia Furtner3,7, Martha Nowosielski8,9, Marco Augustin10, Mario Mischkulnig2,3, Thomas Ströbel3,4, Patrizia Moser11, Christian F. Freyschlag12, Jo- hannes Kerschbaumer12, Claudius Thomé12, Astrid E. Grams13, Günther Stockhammer8, Melitta Kitzwoegerer14, Stefan Oberndorfer15, Franz Marhold16, Serge Weis17, Johannes Trenkler18, Johanna Buchroithner19, Josef Pichler20, Johannes Haybaeck21,22, Stefanie Krassnig21, Kariem Madhy Ali23, Gord von Campe23, Franz Payer24, Camillo Sherif25, Julius Preiser26, Thomas Hauser27, Peter A. Winkler27, Waltraud Kleindienst28, Franz Würtz29, Tanisa Brandner-Kokalj29, Martin Stultschnig30, Stefan Schweiger31, Karin Dieckmann3,32, Matthias Preusser3,33, Georg Langs6, Bernhard Baumann10, Engelbert Knosp2,3, Georg Widhalm2,3, Christine Marosi3,33, Johannes A. Hainfellner3,4, Adelheid Woehrer3,4#§, Christoph Bock1,34,35# 1 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. 2 Department of Neurosurgery, Medical University of Vienna, Vienna, Austria. 3 Comprehensive Cancer Center, Central Nervous System Tumor Unit, Medical University of Vienna, Austria. 4 Institute of Neurology, Medical University of Vienna, Vienna, Austria. 5 Center for Public Health Genomics, University of Virginia, Charlottesville VA, USA. 6 Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vi- enna, Vienna, Austria. -
Comparative Genomic Hybridization in the Detection of DNA Copy Number Abnormalities in Uveal Melanoma1
[CANCER RESEARCH 54. 4764-4768. September 1. 1994] Comparative Genomic Hybridization in the Detection of DNA Copy Number Abnormalities in Uveal Melanoma1 Kathleen B. Gordon, Curtis T. Thompson, Devron H. Char,2 Joan M. O'Brien, Stewart Kroll, Siavash Ghazvini, and Joe W. Gray Ocular Oncology Unii IK. B. G., D. H. C., J. M. O., S. K., S. G.¡and Laboratory of Molecular Cylomelry ¡C.T. T., J. W. G.I, University of California, San Francisco, California 94143-0730 ABSTRACT identified, and the possibility that more than one locus is involved in tumor initiation and progression can be assessed. Genomic DNA from Genomic instability appears to play an important role in the develop tumor specimens is used so that genetic alterations identified with ment, growth, invasiveness, and eventual metastasis of the neoplastic cell. CGH are not artifactually altered by propagation in cell culture. In the We have used a powerful new technique, comparative genomic hybrid present study, we used CGH to detect alterations in gene copy number ization, to evaluate genetic alterations in 10 fresh frozen uveal melanomas. Comparative genomic hybridization utilizes dual fluorescence in situ hy in ten fresh frozen uveal melanomas. bridization to characterize chromosome deletions and duplications, allow ing for simultaneous evaluation of the entire human genome. Several MATERIALS AND METHODS consistent chromosomal abnormalities were detected. This study con Clinical Data. Ten uveal melanomas were evaluated after primary enucle- firmed previous findings obtained using standard cytogenetic techniques ation. The tumors were classified histologically according to the modified but demonstrated an increased incidence in abnormalities of chromo Callender classification (5). -
Two Distinct Domains in Drosophila Melanogaster Telomeres
Copyright Ó 2005 by the Genetics Society of America DOI: 10.1534/genetics.105.048827 Two Distinct Domains in Drosophila melanogaster Telomeres Harald Biessmann,* Sudha Prasad,† Valery F. Semeshin,‡ Eugenia N. Andreyeva,‡ Quang Nguyen,§ Marika F. Walter* and James M. Mason†,1 *Developmental Biology Center, University of California, Irvine, California 92697, †Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, ‡Laboratory of Molecular Cytogenetics, Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk 630090, Russia and §Department of Biological Chemistry, University of California, Irvine, California 92697 Manuscript received July 27, 2005 Accepted for publication August 16, 2005 ABSTRACT Telomeres are generally considered heterochromatic. On the basis of DNA composition, the telomeric region of Drosophila melanogaster contains two distinct subdomains: a subtelomeric region of repetitive DNA, termed TAS, and a terminal array of retrotransposons, which perform the elongation function instead of telomerase. We have identified several P-element insertions into this retrotransposon array and compared expression levels of transgenes with similar integrations into TAS and euchromatic regions. In contrast to insertions in TAS, which are silenced, reporter genes in the terminal HeT-A, TAHRE,orTART retroelements did not exhibit repressed expression in comparison with the same transgene construct in euchromatin. These data, in combination with cytological studies, provide evidence that the subtelomeric TAS region exhibits features resembling heterochromatin, while the terminal retrotransposon array exhibits euchromatic characteristics. NA sequences at the ends of eukaryotic chromo- tandem repeats of 457 bp (Walter et al. 1995; Mason D somes are the products of a telomere elongation et al. -
Staining, and in Situ Digestion with Restriction Endonucleases
Heredity66 (1991) 403—409 Received 23 August 1990 Genetical Society of Great Britain An analysis of coho salmon chromatin by means of C-banding, AG- and fluorochrome staining, and in situ digestion with restriction endonucleases R. LOZANO, C. RUIZ REJON* & M. RUIZ REJON* Departamento de Biologia Animal, Ecologia y Genética. E. /ngenierIa T. AgrIcola, Campus Universitario de Almeria, 04120 AlmerIa and *Facu/tad de Ciencias, 18071 Granada, Universidad de Granada, Spain Thechromosome complement of the coho salmon (Oncorhynchus kisutch) has been analysed by means of C-banding, silver and fluorochrome staining, and in situ digestion with restriction endo- nucleases. C-banding shows heterochromatic regions in the centromeres of most chromosomes but not in the telomeric areas. The fifteenth metacentric chromosome pair contains a large block of constitutive heterochromatin, which occupies almost all of one chromosome arm. This region is also the site where the ribosomal cistrons are located and it reacts positively to CMA3/DA fluorochrome staining. The NORs are subject to chromosome polymorphism, which might be explicable in terms of an amplification of ribosomal cistrons. The digestion banding patterns produced by four types of restriction endonucleases on the euchromatic and heterochromatic regions are described. Two kinds of highly repetitive DNAs can be distinguished and the role of restriction endonucleases as a valuable tool in chromosome characterization studies, as well as in the analysis of the structure and organization of fish chromatin, are also discussed. Keywords:C-banding,coho salmon, fluorochrome staining, restriction endonuclease banding. (Oncorhynchus kisutch), as well as applying conven- Introduction tional banding techniques, we have analysed the Theuse of restriction endonucleases (REs) is becom- mitotic chromosomes using DNA base-pair-specific ing common not only in molecular biology but also as fluorochromes and in situ digestion with restriction an important tool in molecular cytogenetics. -
NDRG2 Combined with EGFR Improved Its Prognostic Value for Lung Adenocarcinoma
NDRG2 combined with EGFR improved its prognostic value for lung adenocarcinoma Bo Yang ( [email protected] ) Tianjin First Central Hospital https://orcid.org/0000-0003-0052-048X Xiao-Ping Li Tianjin First Central Hospital Hong-Gang Zhou Nankai University College of Pharmacy Tao Jiang Fourth Military Medical University Ting Xiao Nankai University College of Pharmacy Yu-Li Wei Nankai University College of Pharmacy Liang Zhang Tianjin First Central Hospital Wen-Chen Wang PLA Army General Hospital Wei-Dong Zhang Tianjin First Central Hospital Research article Keywords: N-Myc downstream-regulated gene2; Epidermal growth factor receptor; Adenocarcinoma; Prognosis Posted Date: September 10th, 2019 DOI: https://doi.org/10.21203/rs.2.14181/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/10 Abstract Background N-Myc downstream-regulated gene2 (NDRG2) plays an important role in lung adenocarcinoma (LUAD). Epidermal growth factor receptor (EGFR) mutation has signicantly improved prognosis in patients with adenocarcinoma. We aimed to elucidate the clinical value of NDRG2/EGFR as a prediction of prognosis in patients with lung adenocarcinoma. Materials and Methods Immunohistochemistry and western blot analysis were conducted to detect the expression of NDRG2 protein. Association between NDRG2/EGFR expression and clinicopathological parameters of the patients were examined. Serum Carcinoembryonic antigen (CEA) level was examined prior to treatment in patients with LUAD. Patients’ survival rate was assessed by Kaplan–Meier. Candidates for independent prognostic biomarkers were analyzed using a COX proportional hazard model. Results NDRG2 levels were signicantly decreased in patients with lung adenocarcinoma. NDRG2 levels were positively correlated with CEA and EGFR. -
Holocentric Chromosomes: Convergent Evolution, Meiotic Adaptations, and Genomic Analysis
Chromosome Res DOI 10.1007/s10577-012-9292-1 Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis Daniël P. Melters & Leocadia V. Paliulis & Ian F. Korf & Simon W. L. Chan # Springer Science+Business Media B.V. 2012 Abstract In most eukaryotes, the kinetochore protein trait has arisen at least 13 independent times (four times in complex assembles at a single locus termed the centro- plants and at least nine times in animals). Holocentric mere to attach chromosomes to spindle microtubules. chromosomes have inherent problems in meiosis because Holocentric chromosomes have the unusual property of bivalents can attach to spindles in a random fashion. attaching to spindle microtubules along their entire Interestingly, there are several solutions that have evolved length. Our mechanistic understanding of holocentric to allow accurate meiotic segregation of holocentric chro- chromosome function is derived largely from studies in mosomes. Lastly, we describe how extensive genome the nematode Caenorhabditis elegans, but holocentric sequencing and experiments in nonmodel organisms chromosomes are found over a broad range of animal may allow holocentric chromosomes to shed light on and plant species. In this review, we describe how hol- general principles of chromosome segregation. ocentricity may be identified through cytological and molecular methods. By surveying the diversity of organ- Keywords centromere . holocentric . meiosis . isms with holocentric chromosomes, we estimate that the phylogeny. tandem repeat . chromosome Abbreviations Responsible Editor: Rachel O’Neill and Beth Sullivan. ChIP-seq Chromatin immunoprecipitation Electronic supplementary material The online version of this followed by sequencing article (doi:10.1007/s10577-012-9292-1) contains ChIP-chip Chromatin immunoprecipitation supplementary material, which is available to authorized users. -
Subtelomere Organization in the Genome of the Microsporidian Encephalitozoon Cuniculi: Patterns of Repeated Sequences and Physic
Dia et al. BMC Genomics (2016) 17:34 DOI 10.1186/s12864-015-1920-7 RESEARCH ARTICLE Open Access Subtelomere organization in the genome of the microsporidian Encephalitozoon cuniculi: patterns of repeated sequences and physicochemical signatures Ndongo Dia1*, Laurence Lavie2, Ngor Faye3, Guy Méténier2, Edouard Yeramian4, Christophe Duroure5, Bhen S. Toguebaye3, Roger Frutos6, Mbayame N. Niang1, Christian P. Vivarès2, Choukri Ben Mamoun7 and Emmanuel Cornillot8,9* Abstract Background: The microsporidian Encephalitozoon cuniculi is an obligate intracellular eukaryotic pathogen with a small nuclear genome (2.9 Mbp) consisting of 11 chromosomes. Although each chromosome end is known to contain a single rDNA unit, the incomplete assembly of subtelomeric regions following sequencing of the genome identified only 3 of the 22 expected rDNA units. While chromosome end assembly remains a difficult process in most eukaryotic genomes, it is of significant importance for pathogens because these regions encode factors important for virulence and host evasion. Results: Here we report the first complete assembly of E. cuniculi chromosome ends, and describe a novel mosaic structure of segmental duplications (EXT repeats) in these regions. EXT repeats range in size between 3.5 and 23.8 kbp and contain four multigene families encoding membrane associated proteins. Twenty-one recombination sites were identified in the sub-terminal region of E. cuniculi chromosomes. Our analysis suggests that these sites contribute to the diversity of chromosome ends organization through Double Strand Break repair mechanisms. The region containing EXT repeats at chromosome extremities can be differentiated based on gene composition, GC content, recombination sites density and chromosome landscape. Conclusion: Together this study provides the complete structure of the chromosome ends of E. -
Integrative Genomic Analysis Identifies NDRG2 As a Candidate Tumor Suppressor Gene Frequently Inactivated in Clinically Aggressive Meningioma
Research Article Integrative Genomic Analysis Identifies NDRG2 as a Candidate Tumor Suppressor Gene Frequently Inactivated in Clinically Aggressive Meningioma Eriks A. Lusis,1 Mark A. Watson,2 Michael R. Chicoine,3 Meghan Lyman,4 Peter Roerig,5 Guido Reifenberger,5 David H. Gutmann,4 and Arie Perry1 1Division of Neuropathology, Departments of 2Pathology and Immunology, 3Neurosurgery, and 4Neurology, Washington University School of Medicine, St. Louis, Missouri; and 5Department of Neuropathology, Heinrich-Heine-University, Du¨sseldorf, Germany Abstract and TSLC1 are also common (2, 4–6). However, there are few Although meningiomas are common central nervous system known genetic changes associated with the malignant progression tumors, little is known about the genetic events responsible of meningioma. Although losses of chromosomal arms 14q and 1p for malignant progression. In this study, we employed gene are common in anaplastic tumors (WHO grade III) and are expression profiling to identify transcripts whose expression generally associated with poor prognosis (7, 8), the relevant tumor was lost in anaplastic (WHO grade III) versus benign (WHO suppressor genes that map to these loci have not been identified. grade I) meningioma. Approximately 40% of genes down- Loss of heterozygosity studies have had limited success in regulated in anaplastic meningioma were localized to chro- identifying minimal regions of deletion, in part, due to the fact mosomes 1p and 14q. One specific gene located at 14q11.2, that the entire chromosome or chromosomal arm is lost in most NDRG2, was consistently down-regulated in grade III menin- examples. In the current study, we used a strategy combining expression profiling with known cytogenetic alterations, leading gioma, a finding which we validated at both the transcript and protein levels in independent sets of clinically and patholog- to the identification of NDRG2 as a potential meningioma- ically diverse meningiomas.