Enhancement of Adhesion Characteristics of Low-Density Polyethylene Using Atmospheric Plasma Initiated-Grafting of Polyethylene Glycol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Hydrogen Bond Assisted Adhesion in Portland Cement-Based Materials
136 Cerâmica 57 (2011) 136-139 Hydrogen bond assisted adhesion in Portland cement-based materials (Adesão assistida por ligação de hidrogênio em materiais à base de cimento Portland) H. L. Rossetto1,2, V. C. Pandolfelli1 1Departamento de Engenharia de Materiais - DEMa, Universidade Federal de S. Carlos - UFSCar, Rod. Washington Luiz, km 235, S. Carlos, SP 13565-590 2Instituto de Física de S. Carlos, Universidade de S. Paulo - IFSC-USP, Av. Trabalhador São-Carlense 400, S. Carlos, SP 13566-590 [email protected] Abstract Adhesion is a physical-chemical parameter able to render innovations to Portland cement-based materials. However, this concept still lacks experimental evidence to underlie further developments in this subject. This work has demonstrated how distinct substances can impart different adhesion forces after evaluating the hydration degree and the mechanical strength of non-reactive cementitious materials. The substances capable of making tridimensional hydrogen bonds, such as water, for instance, were the most effective in providing cementitious samples with improved bending strength. It implies that water is not only important because of its role in cement hydration, but also because it develops adhesion between hydrated cementitious surfaces. More than speculating the fundamental understanding on adhesion in Portland cement-based materials, the present paper intends to stimulate thinking on how to take the benefits of the water confined between the hydrated cementitious surfaces as an in-built nanoadhesive, so far little explored, but at the same time so prone to yield high performance materials. Keywords: adhesion, hydrogen bond, mechanical properties, Portland cement. Resumo Adesão é um parâmetro físico-químico que pode promover inovações em materiais à base de cimento Portland. -
UNIVERSITY of CALIFORNIA, IRVINE Kinetic Studies Of
UNIVERSITY OF CALIFORNIA, IRVINE Kinetic Studies of Multivalent Nanoparticle Adhesion DISSERTATION submitted in partial satisfaction of the requirements for the deGree of DOCTOR OF PHILOSOPHY in Biomedical EnGineerinG by MinGqiu WanG Dissertation Committee: Assistant Professor Jered Haun, Chair Associate Professor Jun Allard Professor YounG Jik Kwon 2018 © 2018 MinGqiu WanG DEDICATION To my parents, for their unconditional love and support. ii TABLE OF CONTENTS DEDICATION.......................................................................................................................... II TABLE OF CONTENTS........................................................................................................ III LIST OF FIGURES .................................................................................................................. V LIST OF TABLES ................................................................................................................. VII ACKNOWLEDGMENTS ..................................................................................................... VIII CURRICULUM VITAE ........................................................................................................... X ABSTRACT OF THE DISSERTATION ............................................................................... XI 1. INTRODUCTION ........................................................................................................... 1 1.1. TARGET NANOPARTICLE ADHESION ............................................................................................ -
Adhesion and Cohesion
Hindawi Publishing Corporation International Journal of Dentistry Volume 2012, Article ID 951324, 8 pages doi:10.1155/2012/951324 Review Article Adhesion and Cohesion J. Anthony von Fraunhofer School of Dentistry, University of Maryland, Baltimore, MD 21201, USA Correspondence should be addressed to J. Anthony von Fraunhofer, [email protected] Received 18 October 2011; Accepted 14 November 2011 Academic Editor: Cornelis H. Pameijer Copyright © 2012 J. Anthony von Fraunhofer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its impor- tance with regard to adhesive dentistry and bonding to enamel and dentin is discussed. 1. Introduction molecular attraction by which the particles of a body are uni- ted throughout the mass. In other words, adhesion is any at- Every clinician has experienced the failure of a restoration, be traction process between dissimilar molecular species, which it loosening of a crown, loss of an anterior Class V restora- have been brought into direct contact such that the adhesive tion, or leakage of a composite restoration. -
Download (PDF)
Nanotechnology Education - Engineering a better future NNCI.net Teacher’s Guide To See or Not to See? Hydrophobic and Hydrophilic Surfaces Grade Level: Middle & high Summary: This activity can be school completed as a separate one or in conjunction with the lesson Subject area(s): Physical Superhydrophobicexpialidocious: science & Chemistry Learning about hydrophobic surfaces found at: Time required: (2) 50 https://www.nnci.net/node/5895. minutes classes The activity is a visual demonstration of the difference between hydrophobic and hydrophilic surfaces. Using a polystyrene Learning objectives: surface (petri dish) and a modified Tesla coil, you can chemically Through observation and alter the non-masked surface to become hydrophilic. Students experimentation, students will learn that we can chemically change the surface of a will understand how the material on the nano level from a hydrophobic to hydrophilic surface of a material can surface. The activity helps students learn that how a material be chemically altered. behaves on the macroscale is affected by its structure on the nanoscale. The activity is adapted from Kim et. al’s 2012 article in the Journal of Chemical Education (see references). Background Information: Teacher Background: Commercial products have frequently taken their inspiration from nature. For example, Velcro® resulted from a Swiss engineer, George Mestral, walking in the woods and wondering why burdock seeds stuck to his dog and his coat. Other bio-inspired products include adhesives, waterproof materials, and solar cells among many others. Scientists often look at nature to get ideas and designs for products that can help us. We call this study of nature biomimetics (see Resource section for further information). -
Unique Properties of Water!
Name: _______ANSWER KEY_______________ Class: _____ Date: _______________ Unique Properties of Water! Word Bank: Adhesion Evaporation Polar Surface tension Cohesion Freezing Positive Universal solvent Condensation Melting Sublimation Dissolve Negative 1. The electrons are not shared equally between the hydrogen and oxygen atoms of water creating a Polar molecule. 2. The polarity of water allows it to dissolve most substances. Because of this it is referred to as the universal solvent 3. Water molecules stick to other water molecules. This property is called cohesion. 4. Hydrogen bonds form between adjacent water molecules because the positive charged hydrogen end of one water molecule attracts the negative charged oxygen end of another water molecule. 5. Water molecules stick to other materials due to its polar nature. This property is called adhesion. 6. Hydrogen bonds hold water molecules closely together which causes water to have high surface tension. This is why water tends to clump together to form drops rather than spread out into a thin film. 7. Condensation is when water changes from a gas to a liquid. 8. Sublimation is when water changes from a solid directly to a gas. 9. Freezing is when water changes from a liquid to a solid. 10. Melting is when water changes from a solid to a liquid. 11. Evaporation is when water changes from a liquid to a gas. 12. Why does ice float? Water expands as it freezes, so it is LESS DENSE AS A SOLID. 13. What property refers to water molecules resembling magnets? How are these alike? Polar bonds create positive and negative ends of the molecule. -
Packaging with Topas® Coc Packaging with Topas® Coc
PACKAGING WITH TOPAS® COC PACKAGING WITH TOPAS® COC TOPAS Advanced Polymers TOPAS Advanced Polymers is the world’s leading maker of COC (cyclic TOPAS Advanced Polymers also supplies the chemical raw material nor- olefin copolymer), a glass-clear plastic for healthcare, optics, packag- bornene. A joint venture of Polyplastics Co., Ltd. and Daicel Corporation, ing, and electronics applications. From insulin delivery, to food contact the company is headquartered in Frankfurt, Germany. It operates the films, to tablet and smartphone displays, TOPAS is the high performance world's largest COC plant in Oberhausen, Germany. TOPAS® is a regis- material of choice. The broad global regulatory compliance of TOPAS tered trademark of TOPAS Advanced Polymers for its family of cyclic can make your next development a simpler task. olefin copolymer resins. Important The properties of articles can be affected by a variety of factors, includ- specified, the numerical values given in this literature are for reference ing choice of material, additives, part design, processing conditions, purposes only and not for use in product design. Without exception, and exposure to the environment. Customers should take responsibility please follow the information and other procedures explained in this as to the suitability of a particular material or part design for a spe- literature. This literature does not guarantee specific properties for our cific application. In addition, before commercializing a product that company’s products. Please take the responsibility to verify intellectual incorporates TOPAS, customers should take the responsibility of car- property rights of third parties. rying out performance evaluations. The products mentioned herein are not designed or promoted for use in medical or dental implants. -
Occurrence of Reverse Side Effects in Corona Treatment of Dispersion
RESEARCH ARTICLE Occurrence of Reverse Side Effects in Corona Treatment of Dispersion-coated Paperboard and its Influence on Grease Barrier Properties PREFACE API 2015 Sami-Seppo Ovaska Ringaudas Rinkunas Lappeenranta University of Technology Vilnius University [email protected] [email protected] Tadeusz Lozovksi Robertas Maldzius Vilnius University & University of Bialystok Vilnius University Vilnius Branch [email protected] [email protected] Jonas Sidaravicius Leena-Sisko Johansson Vilnius Gediminas Technical University Aalto University [email protected] [email protected] Monika Österberg Kaj Backfolk Aalto University Lappeenranta University of Technology [email protected] [email protected] ABSTRACT The uncoated side of dispersion-barrier-coated paperboards was exposed to positive and negative direct current corona treatments in order to confirm the occurrence of backside treatment and clarify its effects on the usability of the paperboard. The main component of the coating dispersions was hydroxypropylated potato starch and the effects of talc and styrene-butadiene latex additions on backside treatment were evaluated. Coatings with a high talc proportion showed excellent initial grease resistance, but corona-induced strikethroughs caused a drastic decrease in grease penetration time. The root-mean-square roughness measurements revealed moderate surface roughening at the backside, indicating thus backside treatment. The alterations in surface free energies and rapeseed oil contact angles confirmed the occurrence of backside treatment. The high polarization potential of latex played a key role in these observations. At the same time, the inertity of talc had a stabilizing effect but it did not prevent backside treatment completely. X-ray photoelectron spectroscopy results verified that backside treatment occurs also when the barrier-coated side of the substrate is treated with corona, indicating that a dispersion coating layer does not prevent this undesired phenomenon. -
Oxygen-Reducing Enzymes in Coatings and Films for Active Packaging |
Kristin Johansson | Oxygen-reducing enzymes in coatings and films for active packaging | | Oxygen-reducing enzymes in coatings and films for active packaging Kristin Johansson Oxygen-reducing enzymes in coatings and films for active packaging Oxygen-reducing enzymes This work focused on investigating the possibility to produce oxygen-scavenging packaging materials based on oxygen-reducing enzymes. The enzymes were incorporated into a dispersion coating formulation applied onto a food- in coatings and films for packaging board using conventional laboratory coating techniques. The oxygen- reducing enzymes investigated included a glucose oxidase, an oxalate oxidase active packaging and three laccases originating from different organisms. All of the enzymes were successfully incorporated into a coating layer and could be reactivated after drying. For at least two of the enzymes, re-activation after drying was possible not only Kristin Johansson by using liquid water but also by using water vapour. Re-activation of the glucose oxidase and a laccase required relative humidities of greater than 75% and greater than 92%, respectively. Catalytic reduction of oxygen gas by glucose oxidase was promoted by creating 2013:38 an open structure through addition of clay to the coating formulation at a level above the critical pigment volume concentration. For laccase-catalysed reduction of oxygen gas, it was possible to use lignin derivatives as substrates for the enzymatic reaction. At 7°C all three laccases retained more than 20% of the activity they -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
Hydraulics Manual Glossary G - 3
Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B. -
Tyvek ® Printing Guide
, China 兽桃 Mask Bag, designed by Shou Tao Tao Mask Bag, designed by Shou DuPont™ Tyvek ® Graphics EMEA Printability Guide Water Resistant Paper-like Light Tear Resistant Recyclable Printable DuPont™ Tyvek ® Graphics EMEA Printability Guide DuPont™ Tyvek® is a popular printing substrate due to its light weight, smooth surface, high dimensional stability, opacity, toughness and durability. Uncoated Tyvek® can be printed using most digital and commercial printing processes. Some digital presses and some aqueous ink jet printers require a special coating. Tyvek® can be printed either sheet or web-fed. Tyvek® can be printed the same way as paper, although some of its physical properties do require special attention. To achieve excellent print quality, both the designer and printer must understand the unique properties and characteristics of Tyvek®. Tyvek® is made of continuous high-density polyethylene filaments. By using heat and pressure, these filaments are bonded into a base material for printing which turns out to be neither paper, cloth nor plastic film, but it integrates the advantages of those three materials. Tyvek® material has a melting point of 135°C and is a water-resistant and non-absorbent material with superior dimensional stability, high strength, and a smooth matt surface. Most traditional printing technologies can be used for Tyvek® printing, as well as some digital printing. The following Tyvek® printing quick reference guidelines have been summarized based on our current knowledge and the relevant contents will be updated