Blood Cell Models

Total Page:16

File Type:pdf, Size:1020Kb

Blood Cell Models BLOOD CELL MODELS Erythrocyte Platelet BLOOD CELL MODELS Neutrophil Eosinophil BLOOD CELL MODELS Basophil Monocyte BLOOD CELL MODELS Lymphocyte BLOOD CELL MODELS BLOOD CELL MODELS BLOOD CELL MODELS BLOOD CELL MODELS BLOOD SMEAR SLIDES Erythrocyt es Platelets Neutrophi l Eosinophil Lymphocyt e Monocyt e Basophil BLOOD SMEAR SLIDES HEART MODEL Brachiocephalic Artery Left Common Carotid Artery ANTERIOR VIEW LEFT VIEW Left Subclavian Superior Artery Vena Aortic Arch Cava Pulmonary Ligamentum Arteriosus Right Trunk Aortic Aorta Atrium Arch Pulmonary Arteries Pulmonary Coronary Veins Arteries Left Atrium Left Ventricle Right Ventricle Interventricular Sulcus (groove between ventricles) ANTERIOR VIEW Brachiocephalic Artery HEART MODEL ANTERIOR VIEW Left Common Carotid Artery Aortic Pulmonary Superior Left Subclavian Artery Arch Arteries Vena Cava Pulmonary Aortic Trunk Arch Right Pulmonary Semilunar Atrium Bicuspid Valve Aorta Valve Aortic Semilunar Valve Interventricular Septum (Separates ventricles) Tricuspid Valve Left Ventricle Chordae Pulmonary Tendineae Veins Right Left Ventricle Atrium Endocardium (inner layer) Left Myocardium (muscle layer) Papillary Muscles Ventricle Epicardium (outer layer) HEART MODEL Superior Superior Vena Vena Cava Cava RIGHT VIEW Pulmonary Trunk Aorta Right Aorta Atrium Right Right Ventricle Ventricle Fossa Ovalis Tricuspid Valve Right Inferior Atrium Vena Cava HEART MODEL Brachiocephalic Artery Brachiocephalic Left POSTERIOR VIEW Artery Subclavian Left Artery Common Left Carotid Common Artery Carotid Left Artery Subclavian Artery Superior Vena Cava Superior Vena Cava Pulmonary Arteries Bicuspid Right Valve Atrium Fossa Ovalis Inferior Vena Cava Left Pulmonary Pulmonary Atrium Veins Veins HEART MODEL ANTERIOR VIEW LEFT VIEW ANTERIOR VIEW HEART MODEL ANTERIOR VIEW HEART MODEL RIGHT VIEW HEART MODEL POSTERIOR VIEW ARTERY & VEIN MODEL Artery Vein Vein Valve Tunica Externa Tunica Media Tunica Interna ARTERY & VEIN MODEL ARTERY & VEIN SLIDE Artery Tunica Interna Tunica Media Tunica Externa Vein ARTERY & VEIN SLIDE LYMPH NODE SLIDE Medulla (inner region) Hilus Cortex (outer region) Capsule (outer layer) Germinal Nodules Center Spleen Slide Red Pulp White Pulp Central Artery FETAL CIRCULATORY MODEL Placenta Umbilical Cord Ductus Venosus Umbilical Vein Umbilical Arteries FETAL CIRCULATORY MODEL Ductus Arteriosus Forame Ovale FETAL CIRCULATORY MODEL FETAL CIRCULATORY MODEL ARM & LEG MODELS Axillary Artery Brachial Artery Radial Artery Ulnar Artery ARM & LEG MODELS Femoral Artery Femoral Vein FLAT CIRCULATORY MODEL Left Jugular Common Vein Carotid Artery Right Common Left Carotid Brachiocephalic Artery Vein Right Aortic Arch Left Brachiocephalic Subclavian Vein Artery Right Aortic Subclavian Arch Artery & Vein Aorta Axillary Pulmonary Artery Trunk Pulmonary Veins Pulmonary Superior Arteries Vena Cava Inferior Vena Brachiocephalic Cava Artery Gastric Artery Brachial & Vein Artery Splenic Artery Hepatic & Vein Vein Celiac & Artery Artery Renal Vein Superior & Artery Mesenteric Artery Inferior Abdominal Vena Aorta Cava Inferior Mesenteric Artery FLAT CIRCULATORY MODEL Inferior Vena Cava Superior Mesenteric Ulnar Artery & Vein Artery Renal Vein Radial & Artery Vein & Artery Abdominal Aorta Common Iliac Inferior Arteries Mesenteric & Veins Artery Internal External Iliac Iliac Arteries Veins & & Veins Arteries Femoral Femoral Vein Arteries (Has been & Veins cut off) (Vein has been Greater cut off) Saphenous Vein FLAT CIRCULATORY MODEL FLAT CIRCULATORY MODEL Right Common LARGE TORSO MODEL Left Common Carotid Artery Carotid Artery Right Left Jugular Subclavian Vein Artery Left Right Subclavian Subclavian Vein Vein Right Left Jugular Subclavian Vein Artery Right Left Brachiocephalic Brachiocephalic Vein Vein Superior Pulmonary Vena Veins AortaCava Pulmonary Aortic Arteries Arch Pulmonary Trunk Inferior Vena Cava LARGE TORSO MODEL Common Iliac Internal Artery Iliac Arteries Common Iliac Vein Left Genital Internal Artery Iliac Vein Left External Right Iliac Genital Artery Artery Left Femoral External Vein Iliac Vein Femoral Artery LARGE TORSO MODEL LARGE TORSO MODEL .
Recommended publications
  • Evaluation of Artery Visualizations for Heart Disease Diagnosis
    Evaluation of Artery Visualizations for Heart Disease Diagnosis Michelle A. Borkin, Student Member, IEEE, Krzysztof Z. Gajos, Amanda Peters, Dimitrios Mitsouras, Simone Melchionna, Frank J. Rybicki, Charles L. Feldman, and Hanspeter Pfister, Senior Member, IEEE Fig. 1. Left: Traditional 2D projection (A) of a single artery, and 3D representation (C) of a right coronary artery tree with a rainbow color map. Right: 2D tree diagram representation (B) and equivalent 3D representation (D) of a left coronary artery tree with a diverging color map. Abstract—Heart disease is the number one killer in the United States, and finding indicators of the disease at an early stage is critical for treatment and prevention. In this paper we evaluate visualization techniques that enable the diagnosis of coronary artery disease. A key physical quantity of medical interest is endothelial shear stress (ESS). Low ESS has been associated with sites of lesion formation and rapid progression of disease in the coronary arteries. Having effective visualizations of a patient’s ESS data is vital for the quick and thorough non-invasive evaluation by a cardiologist. We present a task taxonomy for hemodynamics based on a formative user study with domain experts. Based on the results of this study we developed HemoVis, an interactive visualization application for heart disease diagnosis that uses a novel 2D tree diagram representation of coronary artery trees. We present the results of a formal quantitative user study with domain experts that evaluates the effect of 2D versus 3D artery representations and of color maps on identifying regions of low ESS. We show statistically significant results demonstrating that our 2D visualizations are more accurate and efficient than 3D representations, and that a perceptually appropriate color map leads to fewer diagnostic mistakes than a rainbow color map.
    [Show full text]
  • Ipsilateral Subclavian Steal in Association with Aberrant Origin of the Left Vertebral Artery from the Aortic Arch
    411 Ipsilateral Subclavian Steal in Association with Aberrant Origin of the Left Vertebral Artery from the Aortic Arch John Holder1 Five cases are reported of left subclavian steal syndrome associated with anomalous Eugene F. Binet2 origin of the left vertebral artery from the aortic arch. In all five instances blood flow at Bernard Thompson3 the origin of the left vertebral artery was in an antegrade direction contrary to that usually reported in this condition. The distal subclavian artery was supplied via an extensive collateral network of vessels connecting the vertebral artery to the thyro­ cervical trunk. If a significant stenosis or occlusion is present within the left subc lavi an artery proximal to the origin of the left vertebral artery, the direction of the bl ood fl ow within the vertebral artery will reverse toward the parent vessel (retrograde flow). This phenomenon occurs when a negative pressure gradient of 20-40 torr exists between the vertebral-basilar artery junction and th e vertebral-subc lavian artery junction [1-3]. We describe five cases of subclavian steal confirmed by angiography where a significant stenosis or occlusion of the left subclavian artery was demonstrated in association with anomalous origin of th e left vertebral artery directly from the aortic arch. In all five cases blood flow at the origin of the left vertebral artery was in an antegrade direction contrary to that more commonly reported in the subclavian steal syndrome. Materials and Methods The five patients were all 44- 58-year-old men. Three sought medical attention for symptoms specificall y related to th e left arm .
    [Show full text]
  • Anatomy of the Large Blood Vessels-Veins
    Anatomy of the large blood vessels-Veins Cardiovascular Block - Lecture 4 Color index: !"#$%&'(& !( "')*+, ,)-.*, $()/ Don’t forget to check the Editing File !( 0*"')*+, ,)-.*, $()/ 1$ ($&*, 23&%' -(0$%"'&-$(4 *3#)'('&-$( Objectives: ● Define veins, and understand the general principles of venous system. ● Describe the superior & inferior Vena Cava and their tributaries. ● List major veins and their tributaries in the body. ● Describe the Portal Vein. ● Describe the Portocaval Anastomosis Veins ◇ Veins are blood vessels that bring blood back to the heart. ◇ All veins carry deoxygenated blood. with the exception of the pulmonary veins(to the left atrium) and umbilical vein(umbilical vein during fetal development). Vein can be classified in two ways based on Location Circulation ◇ Superficial veins: close to the surface of the body ◇ Veins of the systemic circulation: NO corresponding arteries Superior and Inferior vena cava with their tributaries ◇ Deep veins: found deeper in the body ◇ Veins of the portal circulation: With corresponding arteries Portal vein Superior Vena Cava ◇Formed by the union of the right and left Brachiocephalic veins. ◇Brachiocephalic veins are formed by the union of internal jugular and subclavian veins. Drains venous blood from : ◇ Head & neck ◇ Thoracic wall ◇ Upper limbs It Passes downward and enter the right atrium. Receives azygos vein on its posterior aspect just before it enters the heart. Veins of Head & Neck Superficial veins Deep vein External jugular vein Anterior Jugular Vein Internal Jugular Vein Begins just behind the angle of mandible It begins in the upper part of the neck by - It descends in the neck along with the by union of posterior auricular vein the union of the submental veins.
    [Show full text]
  • Penetrating Carotid Artery: Uncommon Complex and Lethal Injuries
    Eur J Trauma Emerg Surg (2011) 37:429–437 DOI 10.1007/s00068-011-0132-3 REVIEW ARTICLE Penetrating carotid artery: uncommon complex and lethal injuries J. A. Asensio • T. Vu • F. N. Mazzini • F. Herrerias • G. D. Pust • J. Sciarretta • J. Chandler • J. M. Verde • P. Menendez • J. M. Sanchez • P. Petrone • C. Marini Received: 16 June 2011 / Accepted: 19 June 2011 / Published online: 15 July 2011 Ó Springer-Verlag 2011 Abstract Carotid arterial injuries are the most difficult or occasionally via surgical cricothyroidotomy. Establish- and certainly the most immediately life-threatening injuries ing a surgical airway can be a difficult procedure given the found in penetrating neck trauma. Their propensity to bleed distortion of anatomic landmarks caused by hemorrhage. It actively and potentially occludes the airway and makes is also fraught with danger, as the incision may release the surgical intervention very challenging. Their potential for contained hematoma, resulting in torrential bleeding that causing fatal neurological outcomes demands that trauma can obscure the operative site and place the patient at risk surgeons exercise excellent judgment in the approach to for aspiration. These injuries incur high morbidity and their definitive management. The purpose of this article is mortality. Their neurologic sequelae can be devastating. to review the diagnosis and management of these injuries. Fortunately they are not common. Keywords Vascular Á Trauma Historical perspective Introduction The first documented case of the treatment of a cervical vascular injury is attributed to the French surgeon Ambrose Carotid arterial injuries are the most difficult and certainly Pare (1510–1590) [1], who was able to ligate the lacerated the most immediate life-threatening injuries found in carotid artery and a jugular vein of a wounded soldier.
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Thoracic Aorta
    GUIDELINES AND STANDARDS Multimodality Imaging of Diseases of the Thoracic Aorta in Adults: From the American Society of Echocardiography and the European Association of Cardiovascular Imaging Endorsed by the Society of Cardiovascular Computed Tomography and Society for Cardiovascular Magnetic Resonance Steven A. Goldstein, MD, Co-Chair, Arturo Evangelista, MD, FESC, Co-Chair, Suhny Abbara, MD, Andrew Arai, MD, Federico M. Asch, MD, FASE, Luigi P. Badano, MD, PhD, FESC, Michael A. Bolen, MD, Heidi M. Connolly, MD, Hug Cuellar-Calabria, MD, Martin Czerny, MD, Richard B. Devereux, MD, Raimund A. Erbel, MD, FASE, FESC, Rossella Fattori, MD, Eric M. Isselbacher, MD, Joseph M. Lindsay, MD, Marti McCulloch, MBA, RDCS, FASE, Hector I. Michelena, MD, FASE, Christoph A. Nienaber, MD, FESC, Jae K. Oh, MD, FASE, Mauro Pepi, MD, FESC, Allen J. Taylor, MD, Jonathan W. Weinsaft, MD, Jose Luis Zamorano, MD, FESC, FASE, Contributing Editors: Harry Dietz, MD, Kim Eagle, MD, John Elefteriades, MD, Guillaume Jondeau, MD, PhD, FESC, Herve Rousseau, MD, PhD, and Marc Schepens, MD, Washington, District of Columbia; Barcelona and Madrid, Spain; Dallas and Houston, Texas; Bethesda and Baltimore, Maryland; Padua, Pesaro, and Milan, Italy; Cleveland, Ohio; Rochester, Minnesota; Zurich, Switzerland; New York, New York; Essen and Rostock, Germany; Boston, Massachusetts; Ann Arbor, Michigan; New Haven, Connecticut; Paris and Toulouse, France; and Brugge, Belgium (J Am Soc Echocardiogr 2015;28:119-82.) TABLE OF CONTENTS Preamble 121 B. How to Measure the Aorta 124 I. Anatomy and Physiology of the Aorta 121 1. Interface, Definitions, and Timing of Aortic Measure- A. The Normal Aorta and Reference Values 121 ments 124 1.
    [Show full text]
  • Rare Case of a Kidney and Inferior Vena Cava Abnormalities With
    Clinics and Practice 2018; volume 8:1079 Rare case of a kidney and inferior vena cava Case Report Correspondence: Timir K. Paul, Division of Cardiology, Department of Medicine, East abnormalities with extensive A 27-year-old male with no significant Tennessee State University, 329 N State of lower extremity deep vein past medical history was admitted with Franklin Rd, Johnson City, TN 37604, USA. right lower extremity pain and swelling that Tel.: 423.979.4100 - Fax: 423.979.4134. thrombosis in a young started a week ago. Patient first noted E-mail: [email protected] healthy male swelling in the right ankle that was associ- ated with pain in the calf and thigh. Pain Key words: Deep vein thrombosis; Inferior vena cava hypoplasia; Renal hypoplasia. was described as progressively worsening Muhammad Khalid,1 1 1 with tightness and heaviness in the affected Contributions: MK wrote the initial manu- Manisha Nukavarapu, Rupal Shah, leg that was exacerbated with ambulation. 2 script draft and literature review; MN and RS Timir K. Paul Patient endorsed recent short duration of reviewed the initial draft with editions and TK 1Department of Medicine; 2Division of immobility involving a 4 hour road trip but did final revision and any edition as needed. Cardiology, Department of Medicine, denied any recent surgery, prior history of thrombosis, weight changes, new bone pain, Conflict of interest: the authors declare no East Tennessee State University, potential conflict of interest. Johnson City, TN, USA or history of easy bruising or bleeding. No known history of any congenital abnormal- Funding: none. ities, intra uterine growth restriction, oligo- hydramnios and no pregnancy related com- Received for publication: 6 May 2018.
    [Show full text]
  • Branches of Axillary Artery for PDF 13.5.11
    Diagram of branches Acromial Br lar Br icu of axillary artery Clav rtery mial a oacro Thorac Deltoid Br t 1st Par d 2n Superior thoracic artery Anterior Pectoral Br circumflex t Par Pectoralis minor humeral d artery 3r Sub- scapular artery Lateral thoracic artery Circumflex scapular artery Posterior circumflex humeral artery TheFromFrom axillary 1st2nd3rd part part artery (a)superior .(a) (a) subscapular begins The thoracoacromial thoracic at the runs outer– itdown runs border artery within along the of– a the thestoutlong firstfirst subscapularshort ribintercostal trunk,and ends nerve,which space. at projustthe- lowerjectswithin border forwardthe posterior of over terres theaxillary major inner ,fold. where boarder Near it continuesof the pectoralis lower as angle the minor brachial of theand scapula dividesartery. itinto divides four branches.into two, one (i) side clavicular, goes to runs the sideup over of the subclavius chest, the ; (ii) other pectoral to the is deep large surface and runs of Thedownthe latissimusaxillary between artery with the runsthetwo longacrosspectorals subscapular the withsuperior the nerve. externalaspect Near of anterior theits origin axilla thoracic itand gives is markednerve, off a large and by asuppliesbranch, line drawn thethese circumflexfrom muscles; the middle scapular(iii) acromial, of the artery, clavicle usually which to comes apasses point off backhalf-way a common through between trunk the “triangu withthe two the- condylesdeltoid,lar space” andof tothe runs the humerus, back dorsum beneath when of the the scapula. deltoidarm is raisedtoward(b) The to the anteriora right acromion; angle. circumflex and (iv) humeral deltoid runsartery down which beside is a smallthe cephalic artery thatvein, passes in a groove out across between the frontdeltoid of andthe pectoralishumerus, Itmajor,sending is divided and a branch endsinto threein up these to partsthe muscles.
    [Show full text]
  • Blood Vessels
    BLOOD VESSELS Blood vessels are how blood travels through the body. Whole blood is a fluid made up of red blood cells (erythrocytes), white blood cells (leukocytes), platelets (thrombocytes), and plasma. It supplies the body with oxygen. SUPERIOR AORTA (AORTIC ARCH) VEINS & VENA CAVA ARTERIES There are two basic types of blood vessels: veins and arteries. Veins carry blood back to the heart and arteries carry blood from the heart out to the rest of the body. Factoid! The smallest blood vessel is five micrometers wide. To put into perspective how small that is, a strand of hair is 17 micrometers wide! 2 BASIC (ARTERY) BLOOD VESSEL TUNICA EXTERNA TUNICA MEDIA (ELASTIC MEMBRANE) STRUCTURE TUNICA MEDIA (SMOOTH MUSCLE) Blood vessels have walls composed of TUNICA INTIMA three layers. (SUBENDOTHELIAL LAYER) The tunica externa is the outermost layer, primarily composed of stretchy collagen fibers. It also contains nerves. The tunica media is the middle layer. It contains smooth muscle and elastic fiber. TUNICA INTIMA (ELASTIC The tunica intima is the innermost layer. MEMBRANE) It contains endothelial cells, which TUNICA INTIMA manage substances passing in and out (ENDOTHELIUM) of the bloodstream. 3 VEINS Blood carries CO2 and waste into venules (super tiny veins). The venules empty into larger veins and these eventually empty into the heart. The walls of veins are not as thick as those of arteries. Some veins have flaps of tissue called valves in order to prevent backflow. Factoid! Valves are found mainly in veins of the limbs where gravity and blood pressure VALVE combine to make venous return more 4 difficult.
    [Show full text]
  • A High Origin Subscapular Trunk and Its Clinical Implications
    ogy iol : Cu ys r h re P n t & R Anatomy & Physiology: Current y e s m e o a t Ariyo, Anat Physiol 2018, 8:2 r a c n h A Research DOI: 10.4172/2161-0940.1000296 ISSN: 2161-0940 Case Report Open Access A High Origin Subscapular Trunk and its Clinical Implications Olutayo Ariyo* Department of Pathology Anatomy and Cell Biology, SKMC, Thomas Jeffesron University, Philadelpphia, PA United States *Corresponding author: Olutayo Ariyo, Department of Pathology Anatomy and Cell Biology, SKMC, Thomas Jeffesron University, Philadelpphia, PA United States, Tel: 610-638-9278; E-mail: [email protected] Received date: May 07, 2018; Accepted date: May 24, 2018; Published date: May 28, 2018 Copyright: © 2018 Ariyo O. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Important variations in the arrangement of branches of the axillary artery revolve around the origin of the subscapular artery. The case of a "high origin" subscapular artery as a common trunk to lateral thoracic, common circumflex humeral trunk in the left upper limb of a 72 year-old female cadaver, is discussed. This variant trunk originated posterior to the pectoralis minor muscle about 2-3 cm posteroinferior to that of the thoracoaromial artery. Trunk formations in the axillary artery with four or more branches sharing a common stem of origin are infrequent compared with those with fewer numbers. In certain surgical orthopedic procedures, surgeons sometimes administer a ligature in the 3rd part of the artery, relying on a suprascapular/dorsal scapular-circumflex scapular colateral pathway to dump blood into the artery distal to the ligature.
    [Show full text]
  • The Variations of the Subclavian Artery and Its Branches Ahmet H
    Okajimas Folia Anat. Jpn., 76(5): 255-262, December, 1999 The Variations of the Subclavian Artery and Its Branches By Ahmet H. YUCEL, Emine KIZILKANAT and CengizO. OZDEMIR Department of Anatomy, Faculty of Medicine, Cukurova University, 01330 Balcali, Adana Turkey -Received for Publication, June 19,1999- Key Words: Subclavian artery, Vertebral artery, Arterial variation Summary: This study reports important variations in branches of the subclavian artery in a singular cadaver. The origin of the left vertebral artery was from the aortic arch. On the right side, no thyrocervical trunk was found. The two branches which normally originate from the thyrocervical trunk had a different origin. The transverse cervical artery arose directly from the subclavian artery and suprascapular artery originated from the internal thoracic artery. This variation provides a short route for posterior scapular anastomoses. An awareness of this rare variation is important because this area is used for diagnostic and surgical procedures. The subclavian artery, the main artery of the The variations of the subclavian artery and its upper extremity, also gives off the branches which branches have a great importance both in blood supply the neck region. The right subclavian arises vessels surgery and in angiographic investigations. from the brachiocephalic trunk, the left from the aortic arch. Because of this, the first part of the right and left subclavian arteries differs both in the Subjects origin and length. The branches of the subclavian artery are vertebral artery, internal thoracic artery, This work is based on a dissection carried out in thyrocervical trunk, costocervical trunk and dorsal the Department of Anatomy in the Faculty of scapular artery.
    [Show full text]
  • Vascular Anomalies Compressing the Oesophagus and Trachea
    Thorax: first published as 10.1136/thx.24.3.295 on 1 May 1969. Downloaded from T7horax (1969), 24, 295. Vascular anomalies compressing the oesophagus and trachea J. C. R. LINCOLN, P. B. DEVERALL, J. STARK, E. ABERDEEN, AND D. J. WATERSTON From the Hospital for Sick Children, Great Ormond Street, London W.C.I Vascular rings formed by anomalies of major arteries can compress the trachea and oesophagus so much as to cause respiratory distress and dysphagia. Twenty-nine patients with this condition are reviewed and discussed in five groups. The symptoms and signs are noted. Radiological examination by barium swallow is the most useful diagnostic aid. Symptoms can only be relieved by operation. The trachea is often deformed at the site of the constricting ring. Only infrequently is there immediate relief from the pre-operative symptoms. Two babies were successfully treated for an aberrant left pulmonary artery. The diagnosis and treatment of major arterial DOUBLE AORTIC ARCH Nineteen children were anomalies which cause compression of the oeso- treated for some form of double aortic arch. Their phagus and trachea are now well established. age at operation ranged from 1 week to 11 months, Although an aberrant right subclavian artery was but the majority were treated at about the age of described in 1794 by Bayford (Fig. 1), who gave 5 to 6 months (Fig. 2). Frequently the presenting the detailed post-mortem finding in a woman who symptoms had been noticed since birth but for had died from starvation secondary to this varying reasons there was delay in making the http://thorax.bmj.com/ anomaly, and a double aortic arch was described correct diagnosis.
    [Show full text]